
Path Planning

SLAM

The algorithm requires a representation of the area
and a map to the location. We do this using LIDAR. It
is used to gather information by sending a pulse of
light until it hits the target. We can determine how far
the target is, by determining how long it takes for the
light to travel back to the sensor. Once we have this
information we can start to map the area. By doing
multiple 360 degree sweeps of the area, we can
generate a map.

The A* Algorithm

With the map generated, we can implement Path
Planning. The A* heuristic search is a graph algorithm
that uses a greedy approach to find the most optimal
path. By applying this with the possible obstacles in
the area, we draw the ‘desired path’ to navigate the
autonomous car.

Towards Self-Driving Car:
Lane Line Detection and Path Planning

Project Goals
To apply traditional computer vision to perform
lane line detection and path planning.

Approach and Milestones
In order to detect lane lines, we performed
camera calibration, perspective transformation,
color and gradient thresholding, and used a
histogram-based window search. This allowed us
to calculate the radii of curvature of the lane lines
and the center offset of the car. In order to
achieve path planning, we used SLAM and A*.

Acknowledgement: The Titan XP used in this project was donated by NVIDIA Corporation. We also acknowledge the REU support from NSF CCMI-1301496 grant.

Adam Jones, Vidush Vishwanath, Devashish Kashikar, Sarvagya Vatsal Singh
Department of Electrical and Computer Engineering, University of California, Davis CA

95616

Since all camera lenses cause for some
distortion, we first correct for these distortions in
order to accurately measure the radii of curvature
and the center offset. To correct for distortion, we
take pictures of known shapes - in this case, a
chessboard, and we estimate the calibration
parameters to obtain undistorted images.

Perspective Transformation
Once we have obtained the undistorted image, we apply a perspective
transformation to get the birds-eye view of the track. We do this to remove
unnecessary information from the image.

Lane Line Detection Final Results
Below are three examples of the final results using an RC car and two real cars.

Window Search on Binary Image
We isolate the lane line pixels by applying color and gradient thresholds. Once the
lane line pixels are isolated, we perform two simultaneous histogram-based window
searches to classify each lane line pixel as belonging to either the left or right lane line.
Finally, we fit a quadratic to each lane line and use this to calculate the radii of
curvature and the center offset of the car.

Camera Calibration
Distorted Drawn Corners Undistorted

RC Car Real Car 1 Real Car 2

Vehicle View Birds-Eye View

Binary Image Window Search Best-fit Lines

Lane Line Detection

Above shows the difference between distorted
lane lines and undistorted lane lines.

Undistorting the Lane Lines
Distorted Undistorted

Lidar-generated Map

Path Planning Result

