Review:

Routing in Packet Networks

Shortest Path Algorithms:

Dijkstra's & Bellman-Ford

Routing: Issues

- How are routing tables determined?
- Who determines table entries?
- What info used in determining table entries?
- When do routing table entries change?
- Where is routing info stored?
- How to control table size?
- Answer these and we are done!

Routing Algorithms/Protocols: Issues

- Route selection may depend on different criteria
 - Performance: choose route with smallest delay
 - Policy: choose a route that doesn't cross .gov network
- Adapt to changes in topology or traffic
 - Self-healing: little or no human intervention
- Scalability
 - Must be able to support large number of hosts, routers

3

Technique 1: Flooding

- Router forward packets to all ports except the ingress port
- Advantages:
 - Every destination in the network is reachable
 - Useful when network topology is unknown
- Disadvantages:
 - Waste capacity of links
 - Potential loops; need additional mechanism to detect
 - Time-to-Live (TTL) make sure packet eventually disappear

Hop-by-Hop/Source Routing

- Hop-by-hop routing
 - Each packet contains destination address
 - Each router chooses next-hop to destination
 - Example: IP
- Source routing
 - Sender selects the path to destination precisely
 - Routers forward packet to next-hop as specified
 - Example: IP's loose/strict source route

Distributed Routing Algorithms

- Routers cooperate using a distributed protocol
 - To create mutually consistent routing tables
- Two standard distributed routing algorithms
 - Link state routing
 - Distance vector routing

7

Link State vs Distance Vector

- Both assume that
 - The address of each neighbor is known
 - The cost of reaching each neighbor is known
- Both find global information
 - By exchanging routing info among neighbors
- Differ in info exchanged and route computation
 - LS: tells every other node its distance to neighbors
 - DV: tells neighbors its distance to every other node

Link-State

Link State Algorithm

- Basic idea: Distribute to all routers
 - Topology of the network
 - Cost of each link in the network
- Each router independently computes optimal paths
 - Each node has global view of the network
 - From itself to every destination
 - Routes are guaranteed to be loop free if
 - Each router sees the same cost for each link
 - Uses the same algorithm to compute the best path

9

Link-State

Topology Dissemination

- Each router creates a set of link state packets
 - Describing its links to neighbors
 - LSP contains
 - Router id, neighbor's id, and cost to its neighbor
- Copies of LSPs are distributed to all routers
 - Using controlled flooding
- Each router maintains a topology database
 - Database containing all LSPs

Link-State

Dijkstra's Algorithm

- Given the network topology
 - How to compute shortest path to each destination?
- Some notation
 - X: source node
 - N: set of nodes to which shortest paths are known so far
 - N is initially empty
 - D(V): cost of known shortest path from source X
 - C(U,V): cost of link U to V
 - $C(U,V) = \infty$ if not neighbors

11

Link-State

Algorithm (at Node X)

- Initialization
 - $-N = \{X\}$
 - For all nodes V
 - If V adjacent to X, D(V) = C(X, V) else $D(V) = \infty$
- Loop
 - Find U not in N such that D(U) is smallest
 - Add U into set N
 - Update D(V) for all V not in N
 - $D(V) = \min\{D(V), D(U) + C(U,V)\}$
 - Until all nodes in N

Distance Vector

Distance Vector Routing

- A router tells neighbors its distance to every router
 - Communication between neighbors only
- Based on Bellman-Ford algorithm
 - Computes "shortest paths"
- Each router maintains a distance table
 - A row for each possible destination
 - A column for each neighbor
 - $D^X(Y,Z)$: distance from X to Y via Z
- Exchanges distance vector with neighbors
 - Distance vector: current least cost to each destination

Distance Vector

Distance Vector Routing Algorithm

Iterative:

- continues until no nodes exchange info.
- *self-terminating*: no "signal" to stop

Asynchronous:

 nodes need not exchange info/iterate in lock step!

Distributed:

each node talks only with directly-attached neighbors

Distance Table data structure

- Each node has its own
- Row for each possible destination
- Column for each directly-attached neighbor to node
- Example: in node X, for dest. Y via neighbor Z:

$$\begin{array}{c} X \\ D(Y,Z) \end{array} = \begin{array}{c} \text{distance } \textit{from X to} \\ Y, \textit{via Z as next hop} \\ = c(X,Z) + \min_{W} \{D^{Z}(Y,w)\} \end{array}$$

19

Distance Vector

Distance Vector Routing: Overview

Iterative, asynchronous: each iteration caused by:

- Local link cost change
- Message from neighbor: its least cost path change from neighbor

Distributed:

- Each node notifies neighbors only when its least cost path to any destination changes
 - neighbors then notify their neighbors if necessary

Each node:

wait for (change in local link cost or msg from neighbor)

recompute distance table

if least cost path to any dest has changed, *notify* neighbors

Distance Vector

Fixes to Count-to-Infinity Problem

- Split horizon
 - A router never advertises the cost of a destination to a neighbor
 - If this neighbor is the next hop to that destination
- Split horizon with poisonous reverse
 - If X routes traffic to Z via Y, then
 - X tells Y that its distance to Z is infinity
 - Instead of not telling anything at all
 - Accelerates convergence

Link State vs Distance Vector

- Tells everyone about neighbors
- Controlled flooding to exchange link state
- Dijkstra's algorithm
- Each router computes its own table
- May have oscillations
- Open Shortest Path First (OSPF)

- Tells neighbors about everyone
- Exchanges distance vectors with neighbors
- Bellman-Ford algorithm
- Each router's table is used by others
- May have routing loops
- Routing Information Protocol (RIP)