

EEC173B/ECS152C, Winter 2006

Cellular Wireless Network

- Architecture and Protocols
- Applying concepts learned in first two weeks:
 - Frequency planning, channel allocation & hand-offs

Chuah, Winter 06

Wireless Wide-Area Networks (WWANs)

- Early mobile system achieves large coverage area by using a single, high powered transmitted with an antenna mounted on a tall tower
 - E.g., Bell mobile system in New York City (1970s) could support 12 simultaneous calls over a thousand square miles
- Cellular concept was a major breakthrough to solve the problem of spectral congestion and user capacity
 - Replace single, high power transmitted (large cell) with many low power transmitters (small cells)
 - Each base station (BS) gets a portion of the total number of channels
 - Neighboring BSs are assigned different groups of channels so that interference is minimized

^{*} Acknowledgment: Selected slides from Prof. Schiller

1st Generation Cellular System: AMPS

- Advanced Mobile Phone System (AMPS)
 - Divides 800 MHz spectrum into several channels, each 30 KHz wide => 832 full-duplex channels
 - Cellular structure uses cluster size of seven (*N*=7), r=10-20 Km
 - Use concept of trunking (as in phone networks)
 - Grade-of-service (GoS) measures network accessibility, i.e., probability of call being block or experiencing a queuing delay greater than a threshold value
 - AMPS is designed for GoS=2%

3

Problems with 1G Systems

- No use of encryption
- Inferior call quality
 - Analog traffic is degraded by interference. In contrast to digital traffic, no coding or error correction is applied
- Spectrum inefficiency
 - Dedicated channel allocated per user
 - Unlike digital signals that allow compression, cannot reduce amount of capacity needed to send data

2G systems

 2G systems are Digital: convert speech into digital code (a series of pulses)

2nd Generation: GSM

- Formerly: Groupe Spéciale Mobile (founded 1982)
- Now: Global System for Mobile Communication
- Pan-European standard (ETSI, European Telecommunications Standardisation Institute)
- Simultaneous introduction of essential services in three phases (1991, 1994, 1996) by the European telecommunication administrations (Germany: D1 and D2)
 - → Seamless roaming within Europe possible
- Today many providers all over the world use GSM (more than 184 countries in Asia, Africa, Europe, Australia, America)
 - More than 747 million subscribers
 - More than 70% of all digital mobile phones use GSM
 - Over 10 billion SMS per month in Germany, > 360 billion/year worldwide

_

GSM: Performance Characteristics

- Support for voice and data services
- Total mobility
 - International access, chip-card enables use of access points of different providers
 - Worldwide connectivity
 - One number, the network handles localization
- High capacity
 - Better frequency efficiency, smaller cells, more customers per cell
- High transmission quality
 - High audio quality and reliability for wireless, uninterrupted phone calls at higher speeds (e.g., from cars, trains)
- Security functions
 - Access control, authentication via chip-card and PIN

GSM - TDMA/FDMA (1)

- GSM uses FDM to separate the channels
 - Each call is allotted a duplex channels separated by 45MHz, each channel has 200KHz bandwidth
 - Downlink (BS->MT) channels: 935-960MHz
 - Uplink (MT-> BS) channels: 890-915 MHz

Disadvantages of GSM

- There is no perfect system!!
- No end-to-end encryption of user data
- No full ISDN bandwidth of 64 kbit/s to the user, no transparent B-channel
- Security and Privacy issues
 - Abuse of private data possible
 - Roaming profiles accessible
- High complexity of the system
- Several incompatibilities within the GSM standards
- Safety issues
 - Reduced concentration while driving
 - Electromagnetic radiation

0

Architecture of the GSM system

- GSM is a PLMN (Public Land Mobile Network)
 - Several providers setup mobile networks following the GSM standard within each country
- Components
 - MS (mobile station)
 - BS (base station)
 - MSC (mobile switching center)
 - LR (location register)
 - Home location register (HLR) vs. Visitor location register (VLR)
- Subsystems
 - RSS (radio subsystem): covers all radio aspects
 - NSS (network and switching subsystem): call forwarding, handover, switching
 - OSS (operation subsystem): management of the network

Mobile Services Switching Center (MSC)

- The MSC plays a central role in GSM
 - Switching functions
 - Additional functions for mobility support
 - Management of network resources
 - Integration of several databases
- Functions of a MSC
 - Specific functions for paging and call forwarding
 - Termination of SS7 (signaling system no. 7)
 - Mobility specific signaling
 - Location registration and forwarding of location information
 - Provision of new services (fax, data calls)
 - Support of short message service (SMS)
 - Generation and forwarding of accounting and billing information

Base Transceiver Station and Base Station Controller

- Tasks of a BSS are distributed over BSC and BTS
 - BTS comprises radio specific functions
 - BSC is the switching center for radio channels

Functions	BTS	BSC
Management of radio channels		Χ
Frequency hopping (FH)	X	Χ
Management of terrestrial channels		X
Mapping of terrestrial onto radio channels		Χ
Channel coding and decoding	X	
Rate adaptation	X	
Encryption and decryption	X	X
Paging	X	Χ
Uplink signal measurements	X	
Traffic measurement		Х
Authentication		Х
Location registry, location update		X
Handover management		X

15

GSM Control Channels

- Broadcast control channel (BCCH)
 - Downlink channel that contains BS's identity and channel status
 - MT monitor BCCH to detect if they have moved into a new cell
- Dedicated Control Channel (DCCH)
 - Every call has its own allotted DCCH for call-setup, location updates, and call management info exchange
 - BS uses info in DCCH to track MT's footprint
- Common Control Channel (CCCH)
 - Downlink Paging Channel: used to page MT to alert it for an incoming call
 - Random Access Channel: support slotted ALOHA-based request from MT to BS for call-initiation
 - Access Grant Channel: BS informs MT of the allotted duplex channel for a call

Call to Mobile Terminal

- 1: calling a GSM subscriber
- 2: forwarding call to GMSC
- 3: signal call setup to HLR
- 4, 5: request MSRN from VLR
- 6: forward responsible MSC to GMSC
- 7: forward call to current MSC
- 8, 9: get current status of MS
- 10, 11: paging of MS
- 12, 13: MS answers
- 14, 15: security checks
- 16, 17: set up connection

Calling station 1 PSTN 2 GMSC 7 MSC 10 10 10 13 10 10 11 12 17 MS

17

Mobile Originated Call

- 1, 2: connection request
- 3, 4: security check
- 5-8: check resources (free circuit)
- 9-10: set up call

Subscriber Identity Module (SIM)

- An important feature of GSM
- SIM: Smart card pluggable into GSM phone
 - Store subscriber's ID@, network/countries subscriber is entitled to service, other user-specific info
- SIM provides personal mobility
 - SIM card can be inserted to another handset