

EEC173B/ECS152C, Winter 2006

Wireless LANs

- ♦ 802.11 Frame format
- ♦ 802.11 MAC management
 - Synchronization, Handoffs, Power

Acknowledgment: Selected slides from Prof. Schiller

huah Winter 2006

Key Points from Last Lecture

- MAC methods: DCF & PCF
- CSMA/CA with positive ACK
 - Exponential backoff
 - "Prioritized" access via different IFS values
- Hidden/exposed terminal problems
 - RTS/CTS clearing
 - Virtual sensing using received NAV

802.11 - Frame format

- Frame Types
 - Data: unicast (ACKed); broadcast/multicast (not ACKed)
 - Control: RTS/CTS, ACKs
 - Management (beacon, probe request/response, authentication, association, etc)
- Sequence numbers
 - Important against duplicated frames due to lost ACKs
- Addresses
 - Receiver, transmitter (physical), BSS identifier, sender (logical)
- Miscellaneous
 - Sending time, checksum, frame control, data

802.11 - MAC Management Sublayer

- Registration/Synchronization
 - Try to find a LAN, try to stay within a LAN
 - Timer, etc.
- Handoff: Association/Reassociation
 - Integration into a LAN
 - Roaming, i.e. change networks by changing access points
 - Scanning, i.e. active search for a network
- Power management
 - Sleep-mode without missing a message
 - Periodic sleep, frame buffering, traffic measurements
- Security
- MIB Management Information Base
 - Managing, read, write

Registration

- A management frame called beacon is transmitted periodically by the AP to establish the timing synchronization function (TSF)
- TSF contains: BSS id, timestamp, traffic indication map (TIM), power management, and roaming information
- RSS measurements are done on the beacon message
- · Association: process by which an MS registers with an AP

Handoff

- Mobility Types:
 - No transition MS is static or moving within a BSA
 - BSS transition MS moves from one BSS to another within the same ESS (extended service set)
 - ESS transition MS moves from one BSS to another BSS which belong to a different ESS (not supported)
- BSSs in an ESS communicate via Distribution System
- Reassociation service is used when an MS moves from one BSS to another within the same ESS

802.11 - Roaming

- No or bad connection? Then perform:
- Scanning
 - Scan the environment, i.e., listen into the medium for beacon signals or send probes into the medium and wait for an answer
- Reassociation Request
 - Station sends a request to one or several AP(s)
- Reassociation Response
 - Success: AP has answered, station can now participate
 - Failure: continue scanning
- AP accepts Reassociation Request
 - Signal the new station to the distribution system
 - The distribution system updates its data base (i.e., location information)
 - Typically, the distribution system now informs the old AP so it can release resources

Management Operations: Scanning

- Passive scanning
 - Listen to BS beacons
- Active scanning
 - MS sends probe request
 - BS responds to probe

Power Management (1)

- How to power-off during idle periods?
- · Idea: switch the transceiver off if not needed
- States of a station: sleep and awake
- IEEE 802.11 buffers data at the AP, and sends the data when the MS is awakened
- Timing Synchronization Function (TSF)
 - Using TSF, all MSs are synchronized they wake up at the same time to listen to beacon
- With every beacon a Traffic Indication Map (TIM) is sent that has a list of stations having buffered data
- An MS learns that it has buffered data by checking beacon and TIM

13

Power management (2)

- Infrastructure
 - Traffic Indication Map (TIM)
 - List of unicast receivers transmitted by AP
 - Delivery Traffic Indication Map (DTIM)
 - List of broadcast/multicast receivers transmitted by AP
- Ad-hoc
 - Ad-hoc Traffic Indication Map (ATIM)
 - Announcement of receivers by stations buffering frames
 - More complicated no central AP
 - Collision of ATIMs possible (scalability?)

Power saving with wake-up patterns (infrastructure)

TIM interval

DTIM interval

IEEE 802.11a (1)

- Data rate

 - 6, 9, 12, 18, 24, 36, 48, 54 Mbit/s, depending on SNR User throughput (1500 byte packets): 5.3 (6), 18 (24), 24 (36), 32 (54)
- 6, 12, 24 Mbit/s mandatory
- Transmission range
 100m outdoor, 10m indoor
 E.g., 54 Mbit/s up to 5 m, 48 up to 12 m, 36 up to 25 m, 24 up to 30m, 18 up to 40 m, 12 up to 60 m
- Frequency
- Free 5.15-5.25, 5.25-5.35, 5.725-5.825 GHz ISM-band
- Security
- Limited, WEP insecure, SSID
- Cost
- \$100
- Availability
 - Some products, some vendors

IEEE 802.11a (2)

- · Connection set-up time
 - Connectionless/always on
- Quality of Service
 - Typ. best effort, no guarantees (same as all 802.11 products)
- Manageability
 - Limited (no automated key distribution, sym. Encryption)
- Special Advantages/Disadvantages
 - Advantage: fits into 802.x standards, free ISM-band, available, simple system, uses less crowded 5 GHz band
 - Disadvantage: stronger shading due to higher frequency, no QoS

Concluding Remarks

- IEEE 802.11 WLAN is becoming real popular these days
- There is still a big room to improve the current 802.11 systems
- Important to consider how any improved system co-exists with legacy systems

26

Characteristics of Wireless LANs

- Advantages
 - Very flexible within the reception area
 - Ad-hoc networks without previous planning possible
 - (Almost) no wiring difficulties (e.g. historic buildings, firewalls)
 - More robust against disasters like, e.g., earthquakes, fire or users pulling a plug...

Characteristics of Wireless LANs

- Disadvantages
 - Typically very low bandwidth compared to wired networks (1-10 Mbit/s)
 - Many proprietary solutions, especially for higher bitrates, standards take their time (e.g. IEEE 802.11)
 - Products have to follow many national restrictions if working wireless, it takes a vary long time to establish global solutions like, e.g., IMT-2000