

EEC173B/ECS152C, Winter 2006

Introduction to Wireless/Mobile Networking

- Motivation
- Design Constraints & Challenges
- Taxonomy & Class Roadmap
- History & Evolution
- Areas of Research

Acknowledgment: Selected slides from Prof. Schiller & Prof. Goldsmith

Computers for the next decades?

- Computers are integrated
 - Small, cheap, portable, replaceable no more separate devices
- Advances in technology
 - More computing power in smaller devices
 - Flat, lightweight displays with low power consumption
 - New user interfaces due to small dimensions
 - More bandwidth per cubic meter
 - Multiple wireless interfaces: wireless LANs, wireless WANs, regional wireless telecommunication networks etc., overlay networks

Chuah Spring 2005

Wireless vs. Mobile Communication

- Two aspects of mobility:
 - *User mobility*: users communicate "anytime, anywhere, with anyone"
 - Device portability: devices can be connected anytime, anywhere to the network
- Wireless vs. mobile

Examples stationary computer notebook in a hotel (Ethernet) wireless LANs in historic buildings Personal Digital Assistant (PDA)

Chuah Spring 2005

3

Mobile Communication

- The demand for mobile communication creates the need for integration of wireless networks into existing fixed networks:
 - Local area networks: standardization of IEEE 802.11, ETSI (HIPERLAN)
 - Internet: Mobile IP extension of the internet protocol IP
 - Wide area networks: e.g., internetworking of GSM and ISDN

Chuah Spring 2005

Principles of Mobile Computing

Accessibility

 Interface should be simple and intuitive to allow for quick, on-the-spot information access.

Location Awareness

- Information should always be relevant to the user's current location. Computer are aware of their environment and adapt

Context Awareness

- Computer recognize the location of the user and react appropriately (e.g., call forwarding, fax forwarding)

Mobility

- Device should be efficient in both space and weight freeing the users from physical burdens.

Security

- Device should be secure enough for users to store personal data and respect user's privacy.

Chuah Spring 2005

5

Applications - I

Vehicles

- Transmission of news, road condition, weather, music via DAB
- Personal communication using GSM
- Position via GPS
- Local ad-hoc network with vehicles close-by to prevent accidents, guidance system, redundancy
- Vehicle data (e.g., from busses, high-speed trains) can be transmitted in advance for maintenance

Emergencies

- Early transmission of patient data to the hospital, current status, first diagnosis
- Replacement of a fixed infrastructure in case of earthquakes, hurricanes, fire etc.
- Crisis, war, ...

Chuah Spring 2005

Applications - II

- Traveling salesmen
 - Direct access to customer files stored in a central location
 - Consistent databases for all agents
 - Mobile office
- Replacement of fixed networks
 - Remote sensors, e.g., weather, earth activities
 - Flexibility for trade shows
 - LANs in historic buildings
- Entertainment, education, ...
 - Outdoor Internet access
 - Intelligent travel guide with up-to-date location dependent information
 - Ad-hoc networks for multi user games

History

Chuah Spring 2005

۵

Location-Dependent Services

- Location-aware services
 - What services, e.g., printer, fax, phone, server etc. exist in the local environment
- Follow-on services
 - Automatic call-forwarding, transmission of the actual workspace to the current location
- Information services
 - "Push", e.g., current special offers in the supermarket
 - "Pull", e.g., where is the Black Forrest Cherry Cake?
- Support services
 - Caches, intermediate results, state information etc.
 "follow" the mobile device through the fixed network
- Privacy
 - Who should gain knowledge about the location

Chuah Spring 2005

EEC173B/ECS152C, Winter 2006

Introduction to Wireless/Mobile Networking

- Motivation
- Design Constraints & Challenges
- Taxonomy & Class Roadmap
- History & Evolution
- Areas of Research

Technical Challenges

- 1. Scarce Radio Spectrum
- 2. Radio Channel Characteristics
 - Time-varying and location dependent
 - Limits on signal coverage and data rates
- 3. Low power, low cost implementation
- 4. Mobility: Seamless Internetworking
- 5. Shared medium
 - Authentication, security, and privacy issues

Chuah Spring 2005

1. Scarce Radio Spectrum

- Spectrum is expensive and heavily regulated
- Frequencies have to be coordinated, useful frequencies are almost all occupied
- 3G spectrum auction in EU
 - \$35 billion in England, \$46 billion in Germany

Q: Is spectrum really that scarce and expensive?

Chuah Spring 2005

19

Spectrum Allocation

Chuah Spring 2005

Spectrum Occupancy Is Low

- Shared Spectrum's measurements indicate
 - Low occupancy bands
 - High occupancy bands
 - Under 3GHz, over 62% of white space
 - White space: more than 1MHz wide 10 minutes long
- FCC Spectrum Policy Task Force Report
 - The limiting factor: spectrum access instead of physical scarcity of spectrum
 - Due to legacy command-and-control regulation
 - More flexible regulations needed

Chuah Spring 2005

2. Channel Conditions

Compared to fixed networks, wireless networks have

- Time-varying and location-dependent transmission performance
 - Higher loss-rates due to interference, e.g., emissions of engines, microwaves, lightning
 - Depends on strength of desired signals vs. noise and/or interference
- Low transmission rates
 - Local some Mbit/s, regional currently, e.g., 9.6kbit/s with GSM
- Higher delays, higher jitter
 - Connection setup time with GSM in the second range, several hundred milliseconds for other wireless systems

25

Chuah Spring 2005

3. Low-Power/Low-Cost Devices for Portability

- Limited computing power, low quality displays, small disks due to limited battery capacity
 - CPU: power consumption ~ CV²f
 - C: internal capacity, reduced by integration
 - V: supply voltage, can be reduced to a certain limit
 - f: clock frequency, can be reduced temporally
- Limited user interfaces
 - Compromise between size of fingers and portability
 - Integration of character/voice recognition, abstract symbols
- Limited memory
 - Limited value of mass memories with moving parts
 - Flash-memory or ? as alternative

4. Mobility/Seamless Inter-Networking

- Interconnectivity between fixed network and heterogeneous wireless networks
 - Wireless Wide-Area Networks (WWANs): Cellular networks
 - Wireless Local Area Networks (WLANs): WiFi, IEEE 802.11x
 - Wireless Metropolitan Area Network (WMANs): WiMAX
 - Wireless ad hoc networks, mobile ad hoc network
 - Mesh/community networks
 - Wireless sensor networks
 - ... Wearable motes?
- Need efficient architecture and protocols

Chuah Spring 2005

27

5. Shared Medium

- Always shared medium
 - Secure access mechanisms important
- Lower security, simpler active attacking
 - Radio interface accessible for everyone, base station can be simulated, thus attracting calls from mobile phones

Chuah Spring 2005

EEC173B/ECS152C, Spring 2005

Introduction to Wireless/Mobile Networking

- Motivation
- Design Constraints & Challenges
- **♦** Taxonomy & Class Roadmap
- History & Evolution
- Areas of Research

Acknowledgment: Selected slides from Prof. Schiller & Prof. Goldsmith

Influence of Mobile Communication to the Layer Model	
Application layer	Service locationNew applications (multimedia, gaming)Adaptive applications
Transport layer	Congestion and flow controlQuality of service
Network layer	Addressing, routing, device locationHand-over
Data link layer	AuthenticationMedia accessMultiplexing
Physical layer	EncryptionModulationInterferenceAttenuationFrequency
Chuah Spring 2005	1 ,

Taxonomy

- Wireless Communications: Physical Layer
 - IR vs. RF
- Wireless Networks:
 - Infrastructure: Cellular (Base Station), WLANs/WMANs
 - Ad Hoc: peer-to-peer wireless connectivity
- Medium Access Control
 - Random vs. Controlled Access

EEC173B/ECS152C, Spring 2005

Introduction to Wireless/Mobile Networking

- Motivation
- Design Constraints & Challenges
- Taxonomy & Class Roadmap
- History & Evolution
- Areas of Research

Acknowledgment: Selected slides from Prof. Schiller & Prof. Goldsmith

Early history of wireless communication

- Many people in history used light for communication
 - Heliographs, flags ("semaphore"), ...
 - 150 BC smoke signals for communication; (Polybius, Greece)
 - 1794, optical telegraph, Claude Chappe
- Here electromagnetic waves are of special importance:
 - 1831 Faraday demonstrates electromagnetic induction
 - J. Maxwell (1831-79): theory of electromagnetic Fields, wave equations (1864)
 - H. Hertz (1857-94): demonstrates with an experiment the wave character of electrical transmission through space (1888, in Karlsruhe, Germany, at the location of today's University of Karlsruhe)

Chuah Spring 2005

History of Wireless Communication I

- 1895 Guglielmo Marconi
 - First demonstration of wireless telegraphy (digital!)
 - Long wave transmission, high transmission power necessary (> 200kw)
- 1907 Commercial transatlantic connections
 - Huge base stations (30 100m high antennas)
- 1915 Wireless voice transmission New York San Francisco
- 1920 Discovery of short waves by Marconi
 - Reflection at the ionosphere
 - Smaller sender and receiver, possible due to the invention of the vacuum tube (1906, Lee DeForest and Robert von Lieben)
- 1926 Train-phone on the line Hamburg Berlin
 - Wires parallel to the railroad track

Chuah Spring 2005

History of Wireless Communication-II

- 1928 Many TV broadcast trials (across Atlantic, color TV, TV news)
- 1933 Frequency modulation (E. H. Armstrong)
- 1958 A-Netz in Germany
 - Analog, 160MHz, connection setup only from the mobile station, no handover, 80% coverage, 1971 11000 customers
- 1972 B-Netz in Germany
 - Analog, 160MHz, connection setup from the fixed network too (but location of the mobile station has to be known)
 - Available also in A, NL and LUX, 1979 13000 customer in D
- 1979 NMT at 450MHz (Scandinavian countries)
- 1982 Start of GSM-specification
 - Goal: pan-European digital mobile phone system with roaming
- 1983 Start of the American AMPS (Advanced Mobile Phone System, analog)
- 1984 CT-1 standard (Europe) for cordless telephones

Chuah Spring 2005

History of Wireless Communication - III

- 1986 C-Netz in Germany
 - Analog voice transmission, 450MHz, hand-over possible, digital signaling, automatic location of mobile device
 - Was in use until 2000, services: FAX, modem, X.25, e-mail, 98% coverage
- 1991 Specification of DECT
 - Digital European Cordless Telephone (today: Digital Enhanced Cordless Telecommunications)
 - 1880-1900MHz, ~100-500m range, 120 duplex channels, 1.2Mbit/s data transmission, voice encryption, authentication, up to several 10000 user/km², used in more than 50 countries
- 1992 Start of GSM
 - In D as D1 and D2, fully digital, 900MHz, 124 channels
 - Automatic location, hand-over, cellular
 - Roaming in Europe now worldwide in more than 170 countries
 - Services: data with 9.6kbit/s, FAX, voice, ...

History of wireless communication - IV

- 1994 E-Netz in Germany
 - GSM with 1800MHz, smaller cells
 - As Eplus in D (1997 98% coverage of the *population*)
- 1996 HiperLAN (High Performance Radio Local Area Network)
 - ETSI, standardization of type 1: 5.15 5.30GHz, 23.5Mbit/s
 - Recommendations for type 2 and 3 (both 5GHz) and 4 (17GHz) as wireless ATM-networks (up to 155Mbit/s)
- 1997 Wireless LAN IEEE802.11
 - IEEE standard, 2.4 2.5GHz and infrared, 2Mbit/s
 - Already many (proprietary) products available in the beginning
- 1998 Specification of GSM successors
 - For UMTS (Universal Mobile Telecommunication System) as European proposals for IMT-2000
- 1998 Iridium
 - 66 satellites (+6 spare), 1.6GHz to the mobile phone

Chuah Spring 2005

41

History of wireless communication - V

- 1999 Standardization of additional wireless LANs
 - IEEE standard 802.11b, 2.4-2.5GHz, 11Mbit/s
 - Bluetooth for piconets, 2.4Ghz, <1Mbit/s
- 1999 Decision about IMT-2000
 - Several "members" of a "family": UMTS, cdma2000, DECT, ...
- 1999 Start of WAP (Wireless Application Protocol) and i-mode
 - First step towards a unified Internet/mobile communication system
 - Access to many services via the mobile phone
- 2000 GSM with higher data rates
 - HSCSD offers up to 57,6kbit/s
 - First GPRS trials with up to 50 kbit/s (packet oriented!)
- 2000 UMTS auctions/beauty contests
 - Hype followed by disillusionment (approx. 50 B\$ paid in Germany for 6 UMTS licenses!)
- 2001 Start of 3G systems
 - Cdma2000 in Korea, UMTS in Europe, Foma (almost UMTS) in Japan

Chuah Spring 2005

Foundation: ITU-R - Recommendations for IMT-2000

- International Telecommunication Union (ITU), International Mobile Telecommunications (IMT) -2000
 - http://www.itu.int/home/imt.html
 - Global standard for third generation (3G) wireless communications

Chuah Spring 2005

Mobile Statistics Snapshot (12/2004)

• http://www.cellular.co.za/stats/stats-main.htm

Total Global Mobile Users 1.52 billion #1 Mobile Country China (300m) Total Analogue Users 34m #1 GSM Country China (282m) Total US Mobile users 140m #1 Handset Vendor 2Q02 Nokia (34.5%) #1 Network In Africa Vodacom (11m) Total Global GSM users 1.25 billion Total Global CDMA Users 202m #1 Network In Asia Unicom (153m) Total TDMA users 120m #1 Network In Japan DoCoMo Total European users 342.43m #1 Network In Europe T-Mobil (28m) Total African users 53m #1 In Infrastructure Ericsson Total 3G users 130m Global monthly SMSs 36/user Total South African users 19m SMS Sent Globally 1Q04 135 billion SMS sent in UK 3/04 2.1 billion

Chuah Spring 2005 47

Areas of Research

- Wireless Communication
 - Transmission quality (bandwidth, error rate, delay)
 - Modulation, coding, interference
 - Media access, regulations
- Mobility
 - Location dependent services
 - Location transparency
 - Quality of service support (delay, jitter, security)
- Portability
 - Power consumption
 - Limited computing power, sizes of display, ...
 - Usability