



















#### What is a Sensor Network?

- A network nodes, connected by links
- A system rather than a mechanism
  - Data is generated inside the network ("in situ")
  - Data is (potentially) processed inside the network
- · Wireless is cheaper, easier to deploy/maintain
  - Wireless Sensor Network (WSN, or ESN, ...)
  - Less disruptive to environment (or, stealthy)
- From very large (small N) to very small (large N)

UCDAVIS

### What is a WSN?

- Science
  1: the state of knowing : knowledge as distinguished from ignorance or misunderstanding [Merriam-Webster]
  - Often, if you can't measure it, you can't analyze it



























- You can't just focus on the "networking part" of the problem. It's all one big problem: ENERGY.
  - Signals people have to think about communication overhead
  - Networking people have to think about processing and memory overhead
    - · They probably have to work together!

#### **WSN** Components

- Node (battery, sensors, MCU, memory, radio)
  - All low-power and with sleep modes
  - OS, routing algorithms, application(s)
- "Gateway" or ubernodes (hierarchical)
- · "Base stations" and infrastructure
  - OS, routing algorithms, application(s)
  - Tasking, collection, management software

UCDAVIS

# Technology of a WSN

- The Node
  - Energy/Power sources
  - Sensors / Actuators
  - Radio
  - Processor
  - Memory
  - Enclosure
  - Operating system

- The Network
  - Management
  - Data Storage
  - Data Analysis
  - Infrastructure
  - Multi-User
  - Deployment
  - Maintenance

UCDAVIS

UCDAVIS











- Small RAM (4 kB typ.) for run-time
- Flash for code
- Flash for nonvolatile data storage (4 Mb typ.)
  - cost of storing versus transmitting
- With many nodes, that's a significant amount of storage



- Needs to be lightweight (small memory footprint)
- · Allows for cross-layer optimization
  - TinyOS [UCB] is the current champ
    - nesC language
    - Restricted C syntax designed to save RAM (no malloc)
    - Modular component architecture (code reuse, save RAM)
  - Memory use is deterministic, except for stack
    Mantis MOS [http://mantis.cs.colorado.edu]
  - UCLA SOS [http://nesl.ee.ucla.edu/projects/SOS]

UCDAVIS



9













- Partial listing!
  - UCLA/CENS (SW)
  - UCLA/SOS (SW)
  - UCB/Intel/BWRC (HW, SW)
  - MIT (HW, SW)
  - JPL (HW, ?)
  - MANTIS @ UC Boulder (HW, SW)

UCDAVIS





- Collaborative (in-network) Signal Processing (CSP)
- Routing
  - Broadcast
  - Rooted tree
  - Point-to-point
  - Geographic
  - Gradient (e.g. directed diffusion)
  - Random walk (e.g. rumor routing)

UCDAVIS



- Reducing cost, power (always)
- How to program?
  - Monolithic, Reconfigurable parameters, Scripting, Macroprogramming, Agents, Communication primitives
- What should the architecture be?
  - TinyOS 2.0 (UCB)
  - Tenet (UCLA)
- . How to secure the networks

UCDAVIS

# What Needs More Attention

- · Heterogeneous networks
- Multiple users per network
- MEMS sensors
- How to program

UCDAVIS

# Summary - Basic Foundations - Motivation - State of the Art - Energy - Cross-Layer Optimization - Scalability