

EEC173B/ECS152C, Winter 2006

MANET Unicast Routing

- Proactive Protocols
 - OLSR
 - DSDV
- Hybrid Protocols

Acknowledgment: Selected slides from Prof. Nitin Vaidya

Proactive Protocols

- Most of the schemes discussed so far are reactive
- Proactive schemes based on distance-vector and link-state mechanisms have also been proposed

2

Link State Routing [Huitema95]

- · Each node periodically floods status of its links
- Each node re-broadcasts link state information received from its neighbor
- Each node keeps track of link state information received from other nodes
- Each node uses above information to determine next hop to each destination
- Examples: IS-IS, OSPF

Optimized Link State Routing (OLSR)

- RFC 3626
 - http://hipercom.inria.fr/olsr/
- The overhead of flooding link state information is reduced by requiring fewer nodes to forward the information
- A broadcast from node X is only forwarded by its multipoint relays
- Multipoint relays of node X are its neighbors such that each two-hop neighbor of X is a one-hop neighbor of at least one multipoint relay of X
 - Each node transmits its neighbor list in periodic beacons, so that all nodes can know their 2-hop neighbors, in order to choose the multipoint relays

Destination-Sequenced Distance-Vector (DSDV)

- [PB94] C. E. Perkins and P. Bhagwat, "Highly Dynamic Destination-Sequenced Distance-Vector Routing (DSDV) for Mobile Computers, ACM SIGCOMM, 1994.
- Each node maintains a routing table which stores
 - Next hop towards each destination
 - A cost metric for the path to each destination
 - A destination sequence number that is created by the destination itself
 - Sequence numbers used to avoid formation of loops
- Each node periodically forwards the routing table to its neighbors
 - Each node increments and appends its sequence number when sending its local routing table
 - This sequence number will be attached to route entries created for this node

DSDV (1)

 Assume that node X receives routing information from Y about a route to node Z

 Let S(X) and S(Y) denote the destination sequence number for node Z as stored at node X, and as sent by node Y with its routing table to node X, respectively

10

DSDV (2)

• Node X takes the following steps:

- If S(X) > S(Y), then X ignores the routing information received from Y
- If S(X) = S(Y), and cost of going through Y is smaller than the route known to X, then X sets Y as the next hop to Z
- If S(X) < S(Y), then X sets Y as the next hop to Z, and S(X) is updated to equal S(Y)

EEC173B/ECS152C, Winter 2006

MANET Unicats Routing

- ◆ Proactive Protocols
 - ♦ OLSR
 - ♦ DSDV
- Hybrid Protocols

Acknowledgment: Selected slides from Prof. Nitin Vaidya

Zone Routing Protocol (ZRP)

Zone routing protocol combines

- Proactive protocol: which pro-actively updates network state and maintains route regardless of whether any data traffic exists or not
- Reactive protocol: which only determines route to a destination if there is some data to be sent to the destination

[HP98] Z. J. Haas and M. R. Pearlman, "The Performance of Query Control Schemes for the Zone Routing Protocol," ACM SIGCOMM, 1998.

ZRP: Routing Zone vs. Peripheral

- All nodes within hop distance at most d from a node X are said to be in the routing zone of node X
- All nodes at hop distance exactly d are said to be peripheral nodes of node X's routing zone

14

ZRP

- Intra-zone routing: Pro-actively maintain state information for links within a short distance from any given node
 - Routes to nodes within short distance are thus maintained proactively (using, say, link state or distance vector protocol)
- Inter-zone routing: Use a route discovery protocol for determining routes to far away nodes. Route discovery is similar to DSR with the exception that route requests are propagated via peripheral nodes.

ZRP: Example with Zone Radius = d = 2S performs route discovery for D

Denotes route request

Landmark Routing (LANMAR) for MANET with Group Mobility

- [PGH00] G. G. Pei, M. Gerla, and X. Hong, "ANMAR: Landmark Routing for Large Scale Wireless Ad Hoc Networks with Group Mobility," ACM Mobihoc, 2000.
- A landmark node is elected for a group of nodes that are likely to move together
- A scope is defined such that each node would typically be within the scope of its landmark node
- Each node propagates link state information corresponding only to nodes within it scope and distance-vector information for all landmark nodes
 - Combination of link-state and distance-vector
 - Distance-vector used for landmark nodes outside the scope
 - No state information for non-landmark nodes outside scope maintained

LANMAR Routing to Nodes Within Scope

· Assume that node C is within scope of node A

 Routing from A to C: Node A can determine next hop to node C using the available link state information

LANMAR Routing to Nodes Outside Scope

- Routing from node A to F which is outside A's scope
- Let H be the landmark node for node F

- Node A somehow knows that H is the landmark for C
- Node A can determine next hop to node H using the available distance vector information

21

LANMAR Routing to Nodes Outside Scope

• Node D is within scope of node F

- Node D can determine next hop to node F using link state information
- The packet for F may never reach the landmark node H, even though initially node A sends it towards H

22

Routing

- Protocols discussed so far find/maintain a route provided it exists
- Some protocols attempt to ensure that a route exists by
 - Power Control
 - Limiting movement of hosts or forcing them to take detours

MANET Implementation Issues

Where to Implement Ad Hoc Routing

- Link layer
- Network layer
- Application layer

Implementation Issues: Security

- How can I trust you to forward my packets without tampering?
 - Need to be able to detect tampering
- How do I know you are what you claim to be?
 - Authentication issues
 - Hard to guarantee access to a certification authority

Implementation Issues

- Can we make any guarantees on performance?
 - When using a non-licensed band, difficult to provide hard guarantees, since others may be using the same hand
- Must use an licensed channel to attempt to make any guarantees
- Only some issues have been addresses in existing implementations
- · Security issues often ignored
- Address assignment issue also has not received sufficient attention

26

Integrating MANET with the Internet

- Mobile IP + MANET routing
- At least one node in a MANET should act as a gateway to the rest of the world
- Such nodes may be used as foreign agents for Mobile IP
- IP packets would be delivered to the foreign agent of a MANET node using Mobile IP. Then, MANET routing will route the packet from the foreign agent to the mobile host.

Internet Engineering Task Force (IETF)

- IETF manet (Mobile Ad-hoc Networks) working group
- http://www.ietf.org/html.charters/manet-charter.html
- IETF mobileip (IP Routing for Wireless/Mobile Hosts) working group
 - http://www.ietf.org/html.charters/mobileip-charter.htm
- IETF pilc (Performance Implications of Link Characteristics) working group
 - http://www.ietf.org/html.charters/pilc-charter.html
 - http://pilc.grc.nasa.gov
 - Refer [RFC2757] for an overview of related work

MANET Performance

- Studies comparing different routing protocols for MANET typically measure UDP performance
- UDP provides unreliable delivery
- Several performance metrics are often used
 - Routing overhead per data packet
 - Packet loss rate
 - Packet delivery delay

UDP Performance

- Results comparing a specific pair of protocols do not always agree, but some general (and intuitive) conclusions can be drawn
 - Reactive protocols may yield lower routing overhead than proactive protocols when communication density is low
 - Reactive protocols tend to loose more packets (assuming than network layer drops packets if a route is not known)
 - Proactive protocols perform better with high mobility and dense communication graph

30

Many variables affect performance

- Traffic characteristics
 - one-to-many, many-to-one, many-to-many
 - small bursts, large file transfers, real-time, non-real-time
- Mobility characteristics
 - low/high rate of movement
 - do nodes tend to move in groups
- Node capabilities
 - transmission range (fixed, changeable)
 - battery constraints
- Performance metricsdelay
 - throughput
 - latency
 - routing overhead
- Static or dynamic system characteristics (listed above)

UDP Performance

- Difficult to identify a single scheme that will perform well in all environments
- Holy grail: Routing protocol that dynamically adapts to all environments so as to optimize "performance"
 - Performance metrics may differ in different environments

Performance of TCP

Several factors affect TCP performance in MANET:

- Wireless transmission errors
- Multi-hop routes on shared wireless medium
 - For instance, adjacent hops typically cannot transmit simultaneously
- Route failures due to mobility

Random vs. Bursty Errors

- If number of errors is small, they may be corrected by an error correcting code
- Excessive bit errors result in a packet being discarded, possibly before it reaches the transport layer
- Random loss may cause fast retransmit
 - Reducing congestion window in response to errors is unnecessary => reduces the throughput
- Bursty errors may cause time-outs
 - If wireless link remains unavailable for extended duration, a window worth of data may be lost, e.g., driving through a tunnel or passing a truck
 - Timeout results in slow start => reduces the throughput

34

Congestion Response

- Sometimes Congestion Response May be Appropriate in Response to Errors
- On a CDMA channel, errors occur due to interference from other user, and due to noise [Karn99pilc]
 - Interference due to other users is an indication of congestion. If such interference causes transmission errors, it is appropriate to reduce congestion window
 - If noise causes errors, it is not appropriate to reduce window
- When a channel is in a bad state for a long duration, it might be better to let TCP backoff, so that it does not unnecessarily attempt retransmissions while the channel remains in the bad state [Padmanabhan99pilc]

Impact of Random Errors [Vaidya99]

1600000
1200000
1200000
16384 32768 65536 131072
1/error rate (in bytes)

Exponential error model
2 Mbps wireless full duplex link
No congestion losses

TCP Throughput over MANET

- [HV99] G. Holland and N. Vaidya, "Analysis of TCP Performance over Mobile Ad Hoc Networks," ACM Mobicom, 1999.
- [FPL+03] Z. Fu, P. Zerfos, H. Luo, S. Lu, L. Zhang and M. Gerla, "The Impact of Multihop Wireless Channel on TCP Throughput and Loss," *IEEE INFOCOM'03*, San Francisco, March 2003.
 - TCP performance over multi-hop wireless networks that use IEEE 802.11 access methods
- Connections over multiple hops are at a disadvantage compared to shorter connections, because they have to contend for wireless access at each hop

Impact of Multi-Hop Wireless Paths
[HV99]

1600
1400
1200
1000
12 3 4 5 6 7 8 9 10
Number of hops

TCP Throughput using 2 Mbps 802.11 MAC

Throughput Degradations with Increasing Number of Hops

- Packet transmission can occur on at most one hop among three consecutive hops
 - Increasing the number of hops from 1 to 2, 3 results in increased delay, and decreased throughput
- Increasing number of hops beyond 3 allows simultaneous transmissions on more than one link, however, degradation continues due to contention between TCP Data and Acks traveling in opposite directions
- When number of hops is large enough, the throughput stabilizes due to effective pipelining

Impact of Mobility
TCP Throughput

Ideal throughput (Kbps)

TCP Performance

Two factors result in degraded throughput in presence of mobility:

- Loss of throughput that occurs while waiting for TCP sender to timeout (as seen earlier)
 - This factor can be mitigated by using explicit notifications and better route caching mechanisms
- Poor choice of congestion window and RTO values after a new route has been found
 - How to choose *cwnd* and *RTO* after a route change?

Issues Window Size After Route Repair

- Same as before route break: may be too optimistic
- Same as startup: may be too conservative
- Better be conservative than overly optimistic
 - Reset window to small value after route repair
 - Let TCP figure out the suitable window size

- Impact low on paths with small delay-bw product

Tssues RTO After Route Repair

- Same as before route break
 - If new route long, this RTO may be too small, leading to timeouts
- Same as TCP start-up (6 second)
 - May be too large
 - May result in slow response to next packet loss
- Another plausible approach: new RTO = function of old RTO, old route length, and new route length
 - Example: new RTO = old RTO * new route length / old route length
 - Not evaluated yet
 - Pitfall: RTT is not just a function of route length

Out-of-Order Packet Delivery

- Out-of-order (OOO) delivery may occur due to:
 - Route changes
 - Link layer retransmissions schemes that deliver OOO
- Significantly OOO delivery confuses TCP, triggering fast retransmit
- Potential solutions:
 - Deterministically prefer one route over others, even if multiple routes are known
 - Reduce OOO delivery by re-ordering received packets
 - can result in unnecessary delay in presence of packet loss
 - Turn off fast retransmit
 - can result in poor performance in presence of congestion