

EEC173B/ECS152C, Spring 2009

IEEE 802.11 (Cont'd)

- ♦ 802.11 Frame format
- 802.11 MAC management
 - Synchronization, Handoffs, Power
- Advanced Topics
 - Security
 - QoS
 - Throughput

Acknowledgment: Selected slides from Prof. Schiller & Prof. A. Joseph

802.11 - Frame format

- Frame Types
 - Data: unicast (ACKed); broadcast/multicast (not ACKed)
 - Control: RTS/CTS, ACKs
 - Management (beacon, probe request/response, authentication, association, etc)
- Sequence numbers
 - Important against duplicated frames due to lost ACKs
- Addresses
 - Receiver, transmitter (physical), BSS identifier, sender (logical)
- Miscellaneous
 - Sending time, checksum, frame control, data

MAC Address Format

scenario	to DS	from DS	address 1	address 2	address 3	address 4
ad-hoc network	0	0	DA	SA	BSSID	-
infrastructure network, from AP	0	1	DA	BSSID	SA	-
infrastructure network, to AP	1	0	BSSID	SA	DA	-
infrastructure network, within DS	1	1	RA	TA	DA	SA

DS: Distribution System

AP: Access Point
DA: Destination Address

SA: Source Address BSSID: Basic Service Set Identifier RA: Receiver Address

TA: Transmitter Address

802.11 - MAC Management Sublayer

- Registration/Synchronization
 - Try to find a LAN, try to stay within a LAN
 - Timer, etc.
- Handoff: Association/Reassociation
 - Integration into a LAN
 - Roaming, i.e. change networks by changing access points
 - Scanning, i.e. active search for a network
- Power management
 - Sleep-mode without missing a message
 - Periodic sleep, frame buffering, traffic measurements
- Security
- MIB Management Information Base
 - Managing, read, write

Registration

- A management frame called beacon is transmitted periodically by the AP to establish the timing synchronization function (TSF)
- TSF contains: BSS id, timestamp, traffic indication map (TIM), power management, and roaming information
- RSS measurements are done on the beacon message
- Association: process by which an MS registers with an AP

Handoff

- Mobility Types:
 - No transition MS is static or moving within a BSA
 - BSS transition MS moves from one BSS to another within the same ESS (extended service set)
 - ESS transition MS moves from one BSS to another BSS which belong to a different ESS (not supported)
- BSSs in an ESS communicate via Distribution System
- Reassociation service is used when an MS moves from one BSS to another within the same ESS

802.11 - Roaming

- No or bad connection? Then perform:
- Scanning
 - Scan the environment, i.e., listen into the medium for beacon signals or send probes into the medium and wait for an answer
- Reassociation Request
 - Station sends a request to one or several AP(s)
- Reassociation Response
 - Success: AP has answered, station can now participate
 - Failure: continue scanning
- AP accepts Reassociation Request
 - Signal the new station to the distribution system
 - The distribution system updates its data base (i.e., location information)
 - Typically, the distribution system now informs the old AP so it can release resources

Management Operations: Scanning

- Passive scanning
 - Listen to BS beacons
- Active scanning
 - MS sends probe request
 - BS responds to probe

Power Management (1)

- How to power-off during idle periods?
- Idea: switch the transceiver off if not needed
- States of a station: sleep and awake
- IEEE 802.11 buffers data at the AP, and sends the data when the MS is awakened
- Timing Synchronization Function (TSF)
 - Using TSF, all MSs are synchronized they wake up at the same time to listen to beacon
- With every beacon a Traffic Indication Map (TIM) is sent that has a list of stations having buffered data
- An MS learns that it has buffered data by checking beacon and TIM

13

Power Management (2)

- Infrastructure
 - Traffic Indication Map (TIM)
 - · List of unicast receivers transmitted by AP
 - Delivery Traffic Indication Map (DTIM)
 - List of broadcast/multicast receivers transmitted by AP
- Ad-hoc
 - Ad-hoc Traffic Indication Map (ATIM)
 - Announcement of receivers by stations buffering frames
 - More complicated no central AP
 - Collision of ATIMs possible (scalability?)

Power saving with wake-up patterns (infrastructure)

TIM interval

DTIM interval

IEEE 802.11a (1)

- Data rate

 - 6, 9, 12, 18, 24, 36, 48, 54 Mbit/s, depending on SNR User throughput (1500 byte packets): 5.3 (6), 18 (24), 24 (36), 32 (54)
- 6, 12, 24 Mbit/s mandatory
- Transmission range
 100m outdoor, 10m indoor
 E.g., 54 Mbit/s up to 5 m, 48 up to 12 m, 36 up to 25 m, 24 up to 30m, 18 up to 40 m, 12 up to 60 m
- Frequency
- Free 5.15-5.25, 5.25-5.35, 5.725-5.825 GHz ISM-band
- Security
- Limited, WEP insecure, SSID
- Cost
- \$100
- Availability
 - Some products, some vendors

IEEE 802.11a (2)

- · Connection set-up time
 - Connectionless/always on
- Quality of Service
 - Typ. best effort, no guarantees (same as all 802.11 products)
- Manageability
 - Limited (no automated key distribution, sym. Encryption)
- Special Advantages/Disadvantages
 - Advantage: fits into 802.x standards, free ISM-band, available, simple system, uses less crowded 5 GHz band
 - Disadvantage: stronger shading due to higher frequency, no QoS

Concluding Remarks

- IEEE 802.11 WLAN is becoming real popular these days
- There is still a big room to improve the current 802.11 systems
- Important to consider how any improved system co-exists with legacy systems

26

Characteristics of Wireless LANs

- Advantages
 - Very flexible within the reception area
 - Ad-hoc networks without previous planning possible
 - (Almost) no wiring difficulties (e.g. historic buildings, firewalls)
 - More robust against disasters like, e.g., earthquakes, fire or users pulling a plug...

Characteristics of Wireless LANs

- Disadvantages
 - Typically very low bandwidth compared to wired networks (1-10 Mbit/s)
 - Many proprietary solutions, especially for higher bitrates, standards take their time (e.g. IEEE 802.11)
 - Products have to follow many national restrictions if working wireless, it takes a vary long time to establish global solutions like, e.g., IMT-2000

Advanced Topics

IEEE 802.11 Future Development

- Security
- QoS
- Throughput

IEEE 802.11 – Ongoing/Future Developments

- 802.11d: Regulatory Domain Update
- 802.11e: MAC Enhancements QoS
 - Enhance the current 802.11 MAC to expand support for applications with Quality of Service requirements, and in the capabilities and efficiency of the protocol.
- 802.11f: Inter-Access Point Protocol
 - For data exchange via the distribution system.
- 802.11g: Data Rates > 20 Mbit/s at 2.4 GHz; 54 Mbit/s, OFDM
- 802.11h: Spectrum Managed 802.11a (DCS, TPC)
- 802.11i: Enhanced Security Mechanisms
- Stronger encryption/authentication than WEP
- · Study Groups
 - 5 GHz (harmonization ETSI/IEEE)
 - Radio Resource Measurements
 - High Throughput

. .

Security in Wireless Networks

- Wireless networks are inherently insecure compared to their wired counterparts
- The broadcast nature of the channel makes it easier to be tapped
- The widely varying features and capabilities of wireless communication devices introduces several security concerns

Security Requirements

- In addition to the voice or data, a variety of control information (call set-up information, user id, user location, etc.) that are carried over the air should be secured
- Calling patterns should be hidden
- It is desirable to have at the least wireline equivalent privacy for all voice conversations
- Secret key algorithms with key sizes larger than 80 bits are appropriate for maintaining privacy in wireless networks
- Need for identifying and authenticating wireless devices

Security Services

- · Confidentiality or privacy
 - Provides resistance to the security attack known as interception
- Message Authentication & Integrity
 - Provides integrity of the message and authenticates sender; guards against message modification and impersonation
- Non-repudiation
 - Guards against denial by either party of creating or acknowledging a message
- Access control
 - Authorizes access; avoids masquerading
- Availability
 - Avoids denial of service attacks

Security Mechanisms

- Encryption can provide
 - Confidentiality
 - Message authentication
 - Nonrepudiation
 - Access control
 - Identification
- Availability cannot be guaranteed by encryption as it is powerless against signal jams, DoS, and faults
- Requirement: Maintain processing to "reasonable" levels

34

802.11 Wired Equivalent Privacy (WEP)

- WEP uses 40 bit RC4 secret key and 24 bit initialization vector (IV)
- Crucial aspect is how to create keystream using Pseudorandom Number Generator
 - Use IV and secret key to generate a pseudorandom key stream. The data is then simply XORed with the key stream to create the ciphertext
 - Receiver XOR ciphertext with keystream to recover data
- Initialization vector is sent in clear text
- Framebody and Integrity Check Value (ICV) are encrypted

WEP Flaws

- · Need secret key distribution
- Cipher stream creation needs to be based on true random generator
- ICV collisions allows attacker to decipher
- A weak class of keys and known first byte of payload

QoS Issues

- Current 802.11: Lack of QoS support
 - Best-effort service with contention-based MAC
- PCF falls short of guaranteeing desired QoS due to
 - Beacon frame delays beyond target Beacon transition time (TBTT)
 - Unpredictable demand from the polled station
- Low throughput due to large overhead
 - < 5 Mbps throughput at 11 Mbps 802.11b link
- 802.11e proposes an enhanced MAC protocol

IEEE 802.11n Initiative

- A new standardization effort to achieve over 100 Mbps throughput over WLAN
 - Via both PHY and MAC enhancement
- Frame Size Affects Throughput
 - 802.11 MAC/PHY have big fixed overheads
 - · MAC header, IFSs, ACK, and Backoff
 - PLCP preamble & header

Frame Aggregation

- Aggregation of multiple frames in order to reduce the fixed overheads relatively!
- Multiple frames are aggregated above the MAC SAP
 - The aggregated frame is transmitted via a data frame