

EEC173B/ECS152C, Spring 2009

Wireless LANs

- Evolution of Technology & Standards
- **♠** IEEE 802 11
 - Design Choices
 - ◆ Architecture & Protocols
 - PHY layer
 - MAC layer design
 - 802.11 Frame format
 - ♦ 802.11 MAC management
 - Synchronization, Handoffs, Power

Acknowledgment: Selected slides from Prof. Schiller & Prof. A. Joseph

hugh Winter 2006

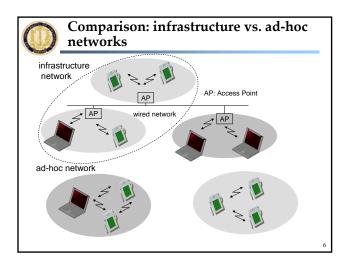
Wireless LANs: Design Requirements

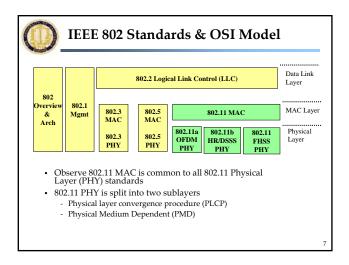
- Global, seamless operation
 - No special permissions or licenses needed to use the LAN
 - Ad hoc networks, no planning, no wiring
- · Simple MAC to support multiple PHY layers
- Mechanism to support multiple overlapping network
 - Provisions to handle interference
 - Mechanisms to handle hidden terminals
- · Robust transmission technology
- Easy to use for everyone, simple management
- · Low power for battery use
- Security (no one should be able to read my data), privacy (no one should be able to collect user profiles), safety (low radiation)
- Transparency concerning applications and higher layer protocols, but also location awareness if necessary

Design Choices

- Q1: Which frequency range to use?
- Q2: PHY layers: IR or RF?
- Q3: MAC: CSMA (random access) or TDMA?
- Q4: Radio Technology: Direct-sequence of frequency-hopping?
- Q5: Peer to peer architecture of Base-station approach?

Evolution


- Early experiences (1970-72): IBM, HP, Motorola
 - Abandoned due to limited performance and unavailability of frequency bands
- Early challenges:


 Complexity as
 - Complexity and cost
 - Bandwidth
 - Coverage
 - Interference
 - Frequency administration
- Emergence of unlicensed bands
 Release of Industrial Scientific and I
 - Release of Industrial, Scientific and Medical (ISM) bands in 1985
- Applications: military, home and enterprise networks, mobile networks, teethe less access



IEEE 802.11

- Standardization group formed in 1990, first standards completed in 1997
 IEEE 802.11 is the first WLAN standard; only one to secure a market
- IEEE 802.11b
 - Also known as wireless Ethernet and Wi-Fi
 - Operates in an unlicensed radio spectrum at 2.4 GHz
 - Wireless Ethernet access at 11 Mbps
- Other standards: 802.11a, 802.11g, 802.11e, ...
- Supports both infrastructure as well as ad hoc modes

Q1: Which frequency range to use?

802.11 Standards and Spectrum

Key Standards	Max Rate	Spectrum (U.S.)	Year
802.11	2 Mbps	2.4 GHz	1997
802.11a	54 Mbps	5 GHz	1999
802.11b (WiFi)	11 Mbps	2.4 GHz	1999
802.11g	54 Mbps	2.4 GHz	2003

- 2.4-2.5 GHz for all above except 802.11a, referred to as C-Band Industrial, Scientific, and Medical (ISM) Band
 - Microwave ovens and some cordless phones operate in the same band
- 802.11a uses Unlicensed National Information Infrastructure bands
 - 5.15-5.25 GHz, 5.25-5.35 GHz, 5.725-5.825 GHz

ISM Bands Trafeoffs

	915 MHz	2.4 GHz	5.8 GHz
Bandwidth	26 MHz	83.5 MHz	125 MHz
Availability	US/Canada	World-wide	US/Canada
Cost	Low	Medium	High
Usage	High	Medium	Low
	(Very crowded)	(Getting busy)	(Empty)

10

Q2: Physical Layer Alternatives (1)

- Infrared (IR) vs. Radio (RF)
- IR LAN Characteristics
 - Uses IR diodes, infrared light: 850-950 nanometers
 - Range is a function of
 - \bullet Xmit power (received optical power varies as $1/r^2\!)$
 - Background noise (fluorescent lights, sunlight)
 - Type of link: Directed, non-directed, line-of-sight, diffuse
 - Multiple reflections (walls, furniture etc.)
 - No Rayleigh fading (multipath effects)
 - Example Non-directed (15-75 degree capture half angle)
 - IRDA (laptops/cell phones), Rednet (alarm monitoring), ParcTab (Xerox Parc PDA)

Q2: Physical Layer Alternatives (2)

- Radio (RF)
 - Wide area instead of "spot" connectivity
 - More complicated circuitry, regulatory
 - Constraints (ISM bands) in the U.S.,
 - \bullet typically using the license free ISM band at 2.4 GHz
 - Very susceptible to Rayleigh fading and Inter-symbol interference

Comparison: Infrared vs. Radio Transmission

Infrared

Advantages

- Simple circuitry, cheap, available in many mobile devices
- No regulatory constraints (no licenses needed) Simple shielding possible

Disadvantages

- Interference by sunlight, heat sources etc.
- Many things shield or absorb IR light
- Low bandwidth

Example

IrDA (Infrared Data Association) interface available everywhere

Advantages

- Experience from wireless WAN and mobile phones can be used
- Coverage of larger areas possible (radio can penetrate walls, furniture etc.)

Disadvantages

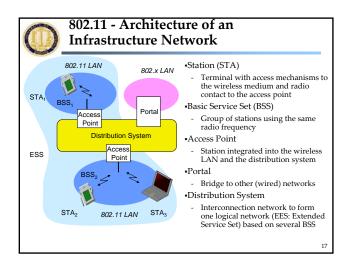
- Very limited license free frequency bands
- Shielding more difficult, interference with other electrical devices

Example

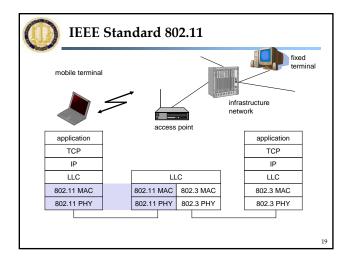
- WaveLAN, HIPERLAN, Bluetooth

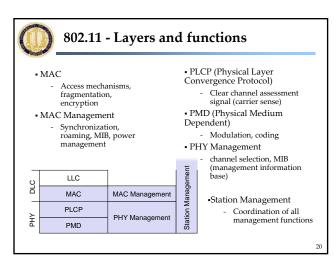
IR vs. RF

	IR	RF
Cost	<\$10	<\$20
Regulation	None	No Licence
		(ISM bands)
Interference	Ambient Light	Radiators
Coverage	Spot	Wide Area
Performance	Moderate	Depends on BW
Coexistence	Limited	Possible


Q3: Media Access


- · Why MAC? Same reason as for wired networks
 - Contention/floor control
- Media in wireless networks is shared and is scarce access must be controlled
- Observations:
 - Contention is at the receiver, not at the sender makes the carrier sense approach inappropriate
 - Unlike Ethernet, congestion is location-dependent
 - The media access protocol should propagate congestion information explicitly rather than having each device learn about congestion independently
 - Media access protocol should propagate synchronization information about contention periods, so that all devices can contend effectively


CSMA vs. TDMA


- TDMA (controlled access)
 - Simple remote stations (unless remotes can be both master/slave)
 - High power saving potential thru scheduling
 - Bluetooth approach
- CSMA (random access)
 - Can be implemented on an Ethernet chipset
 - QoS issues (uneven delays)
 - IEEE 802.11 uses a modified version of this

*** More about this later after we introduce the IEEE 802.11 architecture and protocol stacks

PHY Layer

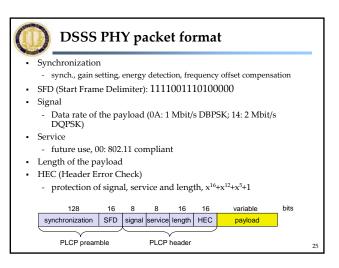
- When the MAC protocol data unit (MPDU) arrive at the PLCP layer, a header is attached that is designed specifically for the PMD
- The PLCP packet is then transmitted by the PMD according to specification of the signaling techniques
- IEEE 802.11 defines three PLCP packet formats: 2 radio (typ. 2.4 GHz), 1 IR
 - FHSS (frequency hopping spread spectrum)
 - DSSS (direct sequence spread spectrum)
 - DFIR (diffused infrared)

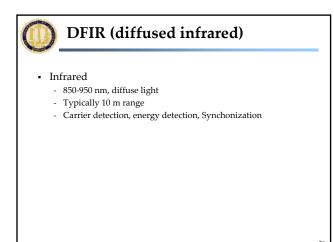
FHSS

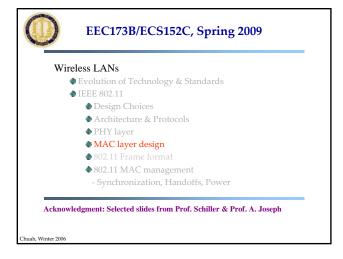
- PMD hops over 78 channels of 1 MHz each in the center of 2.44 GHz ISM bands
- Spreading, d-espreading, typically, 1 Mbit/s
 - Min. 2.5 frequency hops/s (USA), two-level GFSK modulation
- Each BSS can select one of the three patterns of 26 hops:
 - (0, 3, 6, 9, ..., 75)
 - (1, 4, 7, 10, ..., 76)
 - (2, 5, 8, 11, ..., 77)
- IEEE 802.11 specifies specific random hopping pattern for each of these frequency groups that facilitates multivendor interpretability
- Multiple BSS can co-exist in the same area by up to three APs using different frequency groups

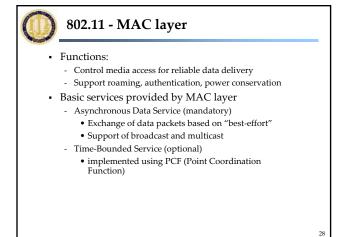
22

FHSS PHY packet format


- Synchronization
 - Synch with 010101... pattern
- SFD (Start Frame Delimiter)
 - 0000110010111101 start pattern
- PLW (PLCP_PDU Length Word)
 - Length of payload incl. $\overline{32}$ bit CRC of payload, PLW < 4096
- PSF (PLCP Signaling Field)
 - Data of payload (1 or 2 Mbit/s)
- HEC (Header Error Check)
 - CRC with $x^{16}+x^{12}+x^5+1$






DSSS

- DSSS communicates using non-overlapping pulses at 11 Mcps
- The ISM band at 2.4 GHz is divided into 11 overlapping channels spaced at 5 MHz
 - A PHY layer managemnet sublayer of AP covering a BSS can select one of the choices
- Because of wider bandwidth, DSSS provides a better coverage and a more stable signal
- DBPSK modulation for 1 Mbit/s (Differential Binary Phase Shift Keying), DQPSK for 2 Mbit/s (Differential Quadrature PSK)
- Preamble and header of a frame is always transmitted with 1 Mbit/s, rest of transmission 1 or 2 Mbit/s
- Chipping sequence: +1, -1, +1, +1, -1, +1, +1, +1, -1, -1 (Barker code)
- Max. radiated power 1 W (USA), 100 mW (EU), min. 1mW

Reliable Data Delivery

- High degree of unreliability and large timers for retransmissions used in higher layers motivates to deal with errors at the MAC layer
- Each transmission is followed by an ACK as an atomic unit. Retransmission is done if the ACK is not received

DFWMAC

- MAC mechanisms are also called distributed foundation wireless medium access control (DFWMAC)
- Three access methods has been defined
 - 1. Mandatory basic method based on CSMA/CA
 - Collision avoidance via randomized "back-off" mechanism
 - · Minimum distance between consecutive packets
 - ACK packet for acknowledgements (not for broadcasts)
 - 2. Optional contention-free method w/ RTS/CTS
 - Avoids hidden terminal problem
 - 3. Optional contention-free method for time-bounded service
 - Access point polls terminals according to a list
- Method 1 + 2: Distributed Coordination Function (DCF)
- Method 3: Point Coordinated Function (PCF) Centralized

-

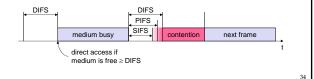
Carrier Sensing

 Carrier sense provides information about potential collision at the sender, but not at the

appropriateness?)

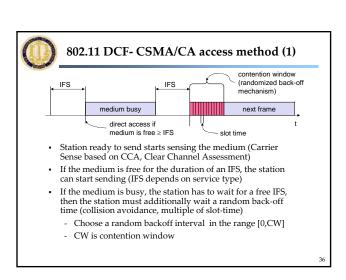
Carrier Sense Multiple Access (CSMA

- Since the receiver and sender are not collocated, carrier sense does not provide adequate information for collision avoidance – interference at the sender does not imply interference at the receiver
- - Carrier sensing in IEEE 802.11 is performed physically or virtually
 - PHY sensing is through the clear channel assignment (CCA) signal produced by PLCP
 - CCA is generated by sensing detected bits or by checking the radio subsystem
 - Virtual carrier sensing is done based on a network allocation vector (NAV)
 - Used in combination of RTS/CTS
 - More later ...


MAC: Time Slots & Inter-Frame Spacing

- All access methods use concept of "slots"
 - Slot time is derived from medium propagation delay, transmitter delay, and other PHY dependent paramters
 - $50~\mu s$ for FHSS and $20~\mu s$ for DSSS
- Medium can be busy or idle (detected by CCA)
- Use different parameters to control the waiting time before medium access, or Inter-Frame Spacing
 - i.e., how long should one wait when the medium is "free" before accessing the channel

Priorities of Medium Access


- Priorities defined through different inter frame spaces
- no guaranteed, hard priorities
- SIFS (Short Inter Frame Spacing)
- Highest priority, for ACK, CTS, polling response
- PIFS (PCF IFS), typically SIFS + 1 slot time
 - Medium priority, for time-bounded service using PCF
- DIFS (DCF IFS), typically SIFS + 2 slot time
 - Lowest priority, for asynchronous data service

IEEE 802.11 DCF

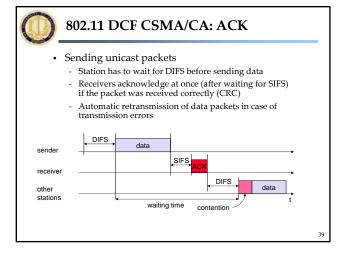
- DCF sublayer makes use CSMA/CA
 - Contention-based random access
 - Collision detection not possible while a node is transmitting
 - Collision avoidance
 - Nodes stay silent when carrier sensed busy (physical/virtual)
 - · Backoff intervals used to reduce collision probability
- Uses RTS-CTS exchange to avoid hidden terminal problem
 - Any node overhearing a CTS cannot transmit for the duration of the transfer
 - Any node receiving the RTS cannot transmit for the duration of the transfer
- To prevent collision with ACK when it arrives at the sender
- · Uses ACK to achieve reliability

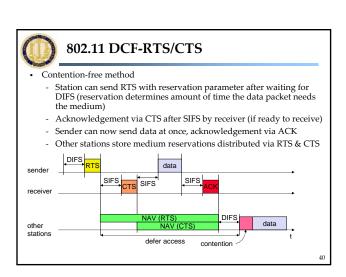
Backoff Timer for Fairness

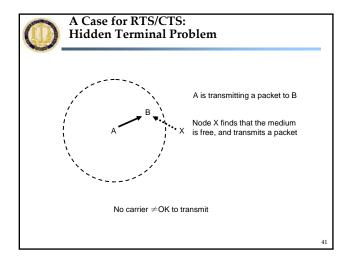
- Basic CSMA/CA is not fair
 - Independent of the overall time a node has already waited for transmission, each node has to choose a random timer in the next cycle, and has the same chances of transmitting data
- Backoff Timer
 - Choose a random backoff interval between [0,CW]
 - Count down the backoff interval when medium is idle
 - Count-down is suspended if medium becomes busy
 - When channel is idle, continue to count down
 - When backoff interval reaches 0, transmit data
 - => Stations waiting longer have advantage over stations that just entered

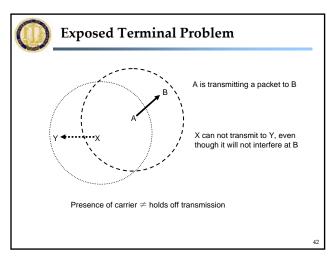
CSMA/CA Example - competing stations

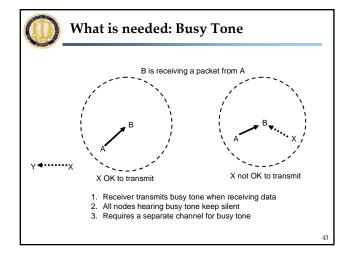
station,

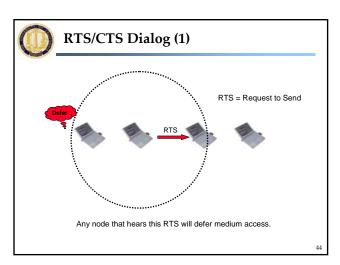

station,

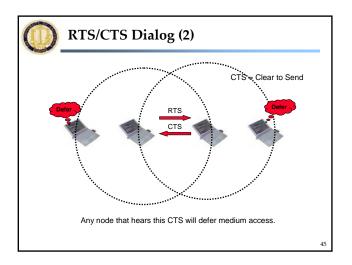

busy

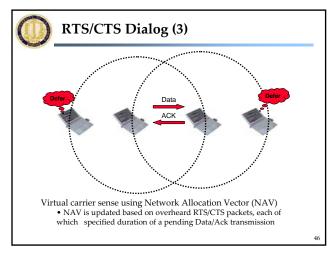

medium not idle (frame, ack etc.)

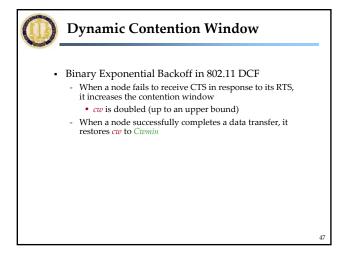

packet arrival at MAC

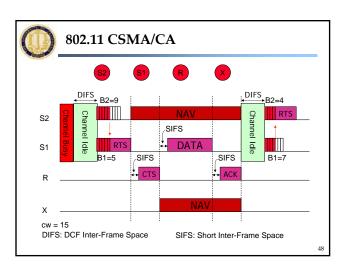

bo, bo, bo, residual backoff time

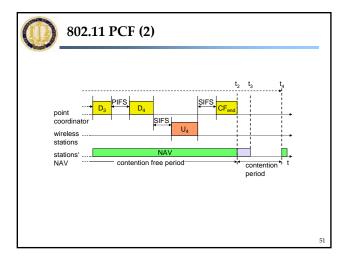


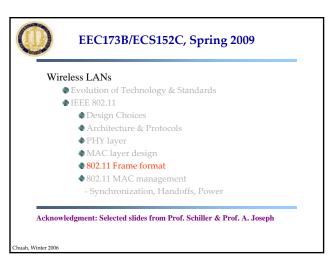








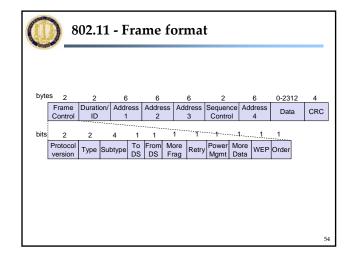

802.11 Point Coordination Function (PCF)

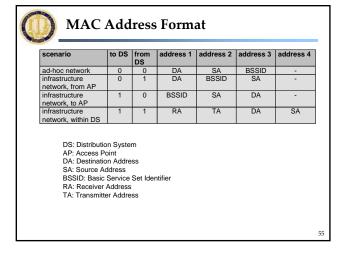

- · PCF is implemented on top of DCF
- The time sensitive traffic are controlled by the PCF and the remaining traffic contend for access using CSMA/CA
- The centralized polling master (point coordinator) issues polls using PIFS
- The poll responses use SIFS
- The point coordinator could issue polls in a round robin fashion
- Seizing of the medium by the PCF is avoided by using superframes where the point coordinator is allowed to poll for a fixed duration and then idle for the rest of the superframe period to allow the asynchronous traffic to contend for the medium.

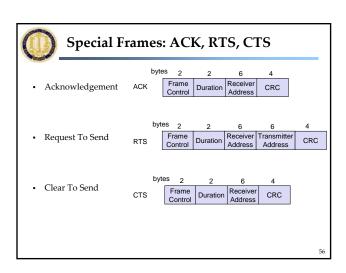
802.11 PCF Example (1)

SuperFrame

medium busy pips D₁ SIFS D₂ SIFS SIFS Stations Statio







802.11 - Frame format

- Frame Types
 - Data: unicast (ACKed); broadcast/multicast (not ACKed)
 - Control: RTS/CTS, ACKs
 - Management (beacon, probe request/response, authentication, association, etc)
- Sequence numbers
 - Important against duplicated frames due to lost ACKs
- Addresses
 - Receiver, transmitter (physical), BSS identifier, sender (logical)
- Miscellaneous
 - Sending time, checksum, frame control, data

EEC173B/ECS152C, Spring 2009

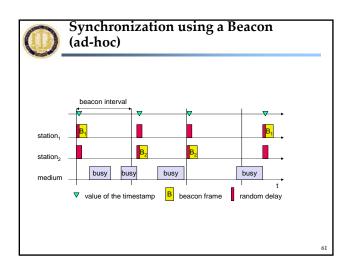
Wireless LANs

- Evolution of Technology & Standards
- **♦** IEEE 802.11
 - Design Choices
 - lacktriangle Architecture & Protocols
 - PHY layer
 - MAC layer design
 - 802.11 Frame format
 - ♦ 802.11 MAC management
 - Synchronization, Handoffs, Power

Acknowledgment: Selected slides from Prof. Schiller & Prof. A. Joseph

hugh Winter 2006

802.11 - MAC Management Sublayer


- Registration/Synchronization
 - Try to find a LAN, try to stay within a LAN
 - Timer, etc.
- Handoff: Association/Reassociation
 - Integration into a LAN
 - Roaming, i.e. change networks by changing access points
 - Scanning, i.e. active search for a network
- Power management
 - Sleep-mode without missing a message
 - Periodic sleep, frame buffering, traffic measurements
- Security
- MIB Management Information Base
 - Managing, read, write

58

Registration

- A management frame called beacon is transmitted periodically by the AP to establish the timing synchronization function (TSF)
- TSF contains: BSS id, timestamp, traffic indication map (TIM), power management, and roaming information
- RSS measurements are done on the beacon message
- Association: process by which an MS registers with an AP

Handoff

- Mobility Types:
- No transition MS is static or moving within a BSA
 - BSS transition MS moves from one BSS to another within the same ESS (extended service set)
 - ESS transition MS moves from one BSS to another BSS which belong to a different ESS (not supported)
- BSSs in an ESS communicate via Distribution System
- Reassociation service is used when an MS moves from one BSS to another within the same ESS

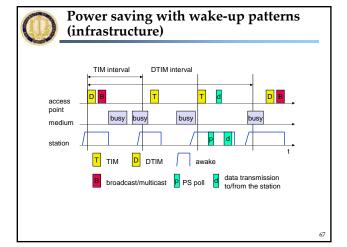
62

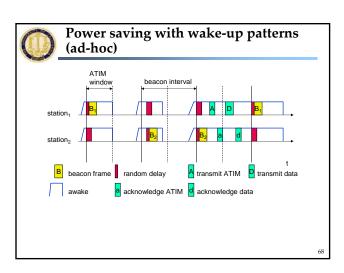
802.11 - Roaming

- No or bad connection? Then perform:
- Scanning
 - Scan the environment, i.e., listen into the medium for beacon signals or send probes into the medium and wait for an answer
- Reassociation Request
 - Station sends a request to one or several AP(s)
- Reassociation Response
 - Success: AP has answered, station can now participate
 - Failure: continue scanning
- AP accepts Reassociation Request
 - Signal the new station to the distribution system
 - The distribution system updates its data base (i.e., location information)
 - Typically, the distribution system now informs the old AP so it can release resources

Management Operations: Scanning

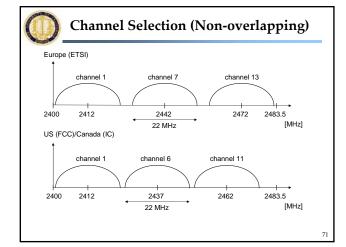
- Passive scanning
 - Listen to BS beacons
- Active scanning
 - MS sends probe request
 - BS responds to probe


Power Management (1)


- · How to power-off during idle periods?
- Idea: switch the transceiver off if not needed
- States of a station: sleep and awake
- IEEE 802.11 buffers data at the AP, and sends the data when the MS is awakened
- Timing Synchronization Function (TSF)
 - Using TSF, all MSs are synchronized they wake up at the same time to listen to beacon
- With every beacon a Traffic Indication Map (TIM) is sent that has a list of stations having buffered data
- An MS learns that it has buffered data by checking beacon and TIM

Power management (2)

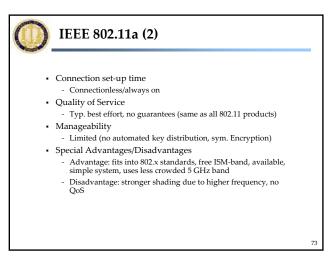
- Infrastructure
 - Traffic Indication Map (TIM)
 - List of unicast receivers transmitted by AP
 - Delivery Traffic Indication Map (DTIM)
 - List of broadcast/multicast receivers transmitted by AP
- Ad-hoc
 - Ad-hoc Traffic Indication Map (ATIM)
 - Announcement of receivers by stations buffering frames
 - More complicated no central AP
 - Collision of ATIMs possible (scalability?)

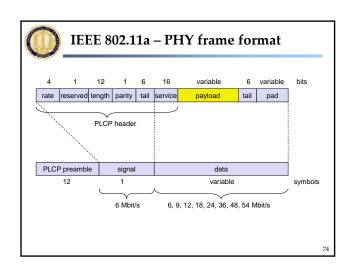

Wifi - IEEE 802.11b (1)

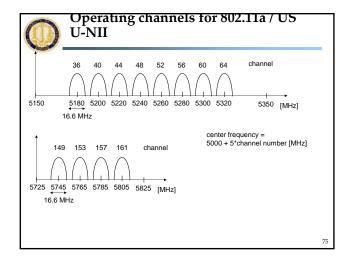
- Data rate
 - 1, 2, 5.5, 11 Mbit/s, depending on SNR
 - User data rate max. approx. 6 Mbit/s
- Transmission range
 - 300m outdoor, 30m indoor
 - Max. data rate ~10m indoor
- Frequency
 - Free 2.4 GHz ISM-band
- Security
 - Limited, WEP insecure, SSID
- Cost
- \$20-\$100 base station, dropping
- Availability
 - Many products, many vendors

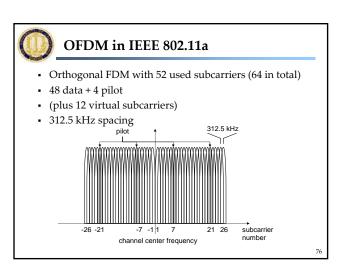
Wifi - IEEE 802.11b (2)

- · Connection set-up time
 - Connectionless/always on
- Typ. Best effort, no guarantees (unless polling is used, limited support in products)
 Quality of Service
- Manageability
 - Limited (no automated key distribution, sym. Encryption)
- Special Advantages
 - Many installed systems, lot of experience, available worldwide, free ISM-band, many vendors, integrated in laptops, simple system
- Disadvantages
 - Heavy interference on ISM-band, no service guarantees, slow relative speed only






IEEE 802.11a (1)


- · Data rate

 - 6, 9, 12, 18, 24, 36, 48, 54 Mbit/s, depending on SNR
 User throughput (1500 byte packets): 5.3 (6), 18 (24), 24 (36), 32 (54)
 6, 12, 24 Mbit/s mandatory
- Transmission range
 100m outdoor, 10m indoor
 - E.g., 54 Mbit/s up to 5 m, 48 up to 12 m, 36 up to 25 m, 24 up to 30m, 18 up to 40 m, 12 up to 60 m
- Frequency
 Free 5.15-5.25, 5.25-5.35, 5.725-5.825 GHz ISM-band Security
- Limited, WEP insecure, SSID
- Cost - \$100
- Availability
 - Some products, some vendors

Concluding Remarks

- IEEE 802.11 WLAN is becoming real popular these days
- There is still a big room to improve the current 802.11 systems
- Important to consider how any improved system co-exists with legacy systems

Characteristics of Wireless LANs

- Advantages
 - Very flexible within the reception area
 - Ad-hoc networks without previous planning possible
 - (Almost) no wiring difficulties (e.g. historic buildings, firewalls)
 - More robust against disasters like, e.g., earthquakes, fire or users pulling a plug...

Characteristics of Wireless LANs

- Disadvantages
 - Typically very low bandwidth compared to wired networks (1-10 Mbit/s)
 - Many proprietary solutions, especially for higher bitrates, standards take their time (e.g. IEEE 802.11)
 - Products have to follow many national restrictions if working wireless, it takes a vary long time to establish global solutions like, e.g., IMT-2000