

EEC173B/ECS152C, Spring 2009

Review of last week's material

Wireless Channel Access

- Challenges: Hidden/Exposed Terminals
- Access Methods: SDMA, FDMA, TDMA, CDMA
- Random Access: Aloha, CSMA/CD, Reservation

Review - Wireless Communications

- What is multiplexing? Which 4 dimensions can we use for multiplexing?
- What is frequency reuse?
- What is the relationship between cluster size, *N*, frequency reuse distance, *D*, and cell radius, *R*?
 - Can *N* be any number? What equation must *N* satisfy?
- How do you calculate co-channel interference?
- What is handoff?

2

Remarks on MAC Sublayer

- MAC is not important on point-to-point links
- MAC is only used in broadcast or shared channel networks
 - Only one can send successfully at a time
 - Two or more simultaneous transmissions => interference
 - How to share a broadcast channel?
 - Communication about "sharing" must use the channel itself!
- Examples:
 - Packet-switched Radio Network (Aloha)
 - Ethernet IEEE 802.3 (CSMA/CD)
 - Token Ring IEEE 802.5, FDDI (Token Passing)
 - Cellular, Satellite, Wireless LAN (MACAW)

Motivation

- Can we apply media access methods from fixed networks?
- Example CSMA/CD
 - Carrier Sense Multiple Access with Collision Detection
 - Send as soon as the medium is free, listen into the medium if a collision occurs (original method in IEEE 802.3)

Problems in wireless networks

- Signal strength decreases proportional to the square of the distance
- The sender would apply CS and CD, but the collisions happen at the receiver
- It might be the case that a sender cannot "hear" the collision, i.e., CD does not work
- Furthermore, CS might not work if, e.g., a terminal is "hidden"

Controlled Access methods

- SDMA (Space Division Multiple Access)
 - Segment space into sectors, use directed antennas
 - Cell structure
- FDMA (Frequency Division Multiple Access)
 - Assign a certain frequency to a transmission channel between a sender and a receiver
 - Permanent (e.g., radio broadcast), slow hopping (e.g., GSM), fast hopping (FHSS, Frequency Hopping Spread Spectrum)
- TDMA (Time Division Multiple Access)
 - Assign the fixed sending frequency to a transmission channel between a sender and a receiver for a certain amount of time
- => The multiplexing schemes presented before are now used to control medium access!

CDMA (Code Division Multiple Access)

- All terminals send on the same frequency probably at the same time and can use the whole bandwidth of the transmission channel
 - Each sender has a unique random number, the sender XORs the signal with this random number
 - The receiver can "tune" into this signal if it knows the pseudo random number, tuning is done via a correlation function

14

CDMA - Cont'd

- Disadvantages:
 - Higher complexity of a receiver (receiver cannot just listen into the medium and start receiving if there is a signal)
 - All signals should have the same strength at a receiver
- Advantages:
 - All terminals can use the same frequency, no planning needed
 - Huge code space (e.g. 232) compared to frequency space
 - Interferences (e.g. white noise) is not coded
 - Forward error correction and encryption can be easily integrated

CDMA: An Example

- Sender A
 - Sends $A_d = 1$, key $A_k = 010011$ (assign: "0"= -1, ",1"= +1)
 - Sending signal $A_s = A_d * A_k = (-1, +1, -1, -1, +1, +1)$
- Sender B
 - Sends B_d = 0, key B_k = 110101 (assign: "0"= -1, ,,1"= +1)
 - Sending signal $B_s = B_d * B_k = (-1, -1, +1, -1, +1, -1)$
- Both signals superimpose in space
 - Interference neglected (noise etc.)
 A_s + B_s = (-2, 0, 0, -2, +2, 0)
- Receiver wants to receive signal from sender \boldsymbol{A}
 - Apply key A_k bitwise (inner product)
 - $A_e = (-2, 0, 0, -2, +2, 0)$ $A_k = 2 + 0 + 0 + 2 + 2 + 0 = 6$
 - Result greater than 0, therefore, original bit was "1"
 - Receiving B
 - $B_e = (-2, 0, 0, -2, +2, 0) \cdot B_k = -2 + 0 + 0 2 2 + 0 = -6$, i.e. "0"

Implications for High-Speed Wireless Data

- Controlled multiple access performs well with continuous stream traffic but inefficient for bursty traffic
- Complexity: frequency division < time division < code division
- Multiple data rates
 - Multiple frequency bands
 - Multiple time slots
 - Multiple codes

Random Access Techniques

- Design Goals
 - Fully decentralized
 - Fairness among users
 - High efficiency
 - Low delay
 - Fault tolerance
- Techniques
 - Aloha
 - Carrier Sense Techniques
 - Reservation Protocols

Pure Aloha

- Originally developed for packet radio communications at the campuses of U. of Hawaii in 1970
 - between a central computer & various data terminals
- All nodes transmit on one frequency, f_0
- Central node relays packets on the other frequency, f_1

2

Pure Aloha Algorithm

- Data is packetized and users transmit whenever they have something to send
 - Random, distributed (no central arbiter), time-multiplex

If more than one node transmits at the same time => *Collision!*

If there is a collision, both nodes need to retransmit

Pure Aloha Algorithm (cont'd)

- 2. Listen to the broadcast
 - Assume the receiver rebroadcasts the received signal, so the sender can find out if its packet was destroyed just by listening to downward broadcast one round-trip time after sending it
- 3. If packet was destroyed, wait a random amount of time, and send it again
 - prevent the same packet from colliding over and over again

Performance of Aloha

 Channel efficiency only 18% for Aloha, 36% for Slotted Aloha (assuming Poisson distribution for packet arrival and packet length)

- Comments
 - Inefficient for heavily loaded system
 - Capture effect improves efficiency
 - Combining SS with ALOHA reduces collisions

Demand Assigned Multiple Access (DAMA)

- Use a common reservation channel to assign bandwidth on demand
 - A sender *reserves* a future time-slot => Sending within this reserved time-slot is possible without collision
 - Typical scheme for satellite links
- Reservation can increase efficiency to 80%
 - Very efficient if overhead traffic is a small percentage of the message traffic

34

DAMA (2)

- Issues
 - Reservation also causes higher delays
 - Reservation channel requires extra bandwidth
- Example reservation algorithms:
 - DAMA w/ Explicit Reservation: Reservation-ALOHA
 - DAMA w/ Implicit Reservation: PRMA (Packet Reservation MA)
 - Reservation-TDMA (Time-Division MA)

DAMA w/ Explicit Reservation

- Explicit Reservation (Reservation Aloha)
 - Two modes:
 - ALOHA mode for reservation: competition for small reservation slots, collisions possible
 - Reserved mode for data transmission within successful reserved slots (no collisions possible)
 - It is important for all stations to keep the reservation list consistent at any point in time and, therefore, all stations have to synchronize from time to time

36

DAMA w/ Implicit Reservation (PRMA)

- PRMA Packet Reservation MA:
 - A certain number of slots form a frame, frames are repeated
 - Stations compete for empty slots according to the slotted aloha principle
 - Once a station reserves a slot successfully, this slot is automatically assigned to this station in all following frames as long as the station has data to send
 - Competition for this slots starts again as soon as the slot was empty in the last frame

Carrier-Sense Techniques

- Channel is sensed before transmission to determine if it is occupied
- More efficient than ALOHA
 - Fewer retransmissions
- Carrier sensing is often combined with collision detection in wired networks (e.g., Ethernet)
 - NOT POSSIBLE in a radio environment
- Collision avoidance is used in current wireless LANs.
 - WLAN, Spectral Etiquette

MACA - Collision Avoidance

- MACA (Multiple Access with Collision Avoidance) uses short signaling packets for collision avoidance
 - RTS (request to send): a sender request the right to send from a receiver with a short RTS packet before it sends a data packet
 - CTS (clear to send): the receiver grants the right to send as soon as it is ready to receive
- Signaling packets contain
 - Sender address
 - Receiver address
 - Packet size
- Variants of this method can be found in IEEE802.11 as DFWMAC (Distributed Foundation Wireless MAC)

MACA examples • MACA avoids the problem of hidden terminals - A and C want to send to B - A sends RTS first RTS C waits after receiving CTS CTS from B MACA avoids the problem of exposed terminals B wants to send to A, C to another terminal Now C does not have to wait for it cannot receive CTS from A CTS

Polling mechanisms

- If one terminal can be heard by all others, this "central" terminal (a.k.a. base station) can poll all other terminals according to a certain scheme
 - Now all schemes known from fixed networks can be used (typical mainframe terminal scenario)

Example: Randomly Addressed Polling

- Base station signals readiness to all mobile terminals
- Terminals ready to send can now transmit a random number without collision with the help of CDMA or FDMA (the random number can be seen as dynamic address)
- The base station now chooses one address for polling from the list of all random numbers (collision if two terminals choose the same address)
- The base station acknowledges correct packets and continues polling the next terminal
- This cycle starts again after polling all terminals of the list

44

ISMA (Inhibit Sense Multiple Access)

- Current state of the medium is signaled via a "busy tope"
 - the base station signals on the downlink (base station to terminals) if the medium is free or not
 - terminals must not send if the medium is busy
 - terminals can access the medium as soon as the busy tone stops
 - the base station signals collisions and successful transmissions via the busy tone and acknowledgements, respectively (media access is not coordinated within this approach)
 - mechanism used, e.g., for CDPD (USA, integrated into AMPS)

Example Wireless Packet Data Services

- ARDIS (Advanced Radio Data Integrated System)
 - Joint venture of Motorola/IBM
- Slotted CSMA
- RAM Mobile Data (Mobitex)
 - Joint venture of Ericsson/BellSouth
 - Provides communication link between base and mobile
 - Typical applications: host access and dispatch
 - Slotted CSMA
- CDPD
 - DSMA/CD Digital Sense Multiple Access
 - Collisions detected at receiver and transmitted back
- WaveLAN
 - CSMA/CA

46

Implications for High-Speed Wireless Data

- Retransmissions are power and spectrally inefficient.
- ALOHA cannot satisfy high-speed data throughput requirements.
- Reservation protocols are also ineffective for short messaging.
- Delay constraints impose throughput limitations.