

EEC173B/ECS152C, Spring 2009

Fundamentals of Wireless Communications

- ◆ #4: Spread Spectrum
- ◆ #5: Multiplexing
- ◆ #6: Frequency Reuse (Cellular Concept)

Case Study: Wireless cellular networks

#7: Handoff

Acknowledgment: Selected slides from Prof. Schiller

How do we overcome limitations imposed by the radio channel?

- Flat fading countermeasures
 - Fade Margin
 - Diversity
 - Coding and Interleaving
 - Adaptive Techniques
- Delay Spread Countermeasures
 - Equalization
 - Multicarrier
 - Spread Spectrum
 - Antenna Solutions

Spread Spectrum

- Spread spectrum increases the transmit signal bandwidth to reduce the effects of flat fading, ISI and interference.
- SS is used in all wireless LAN products in the ISM band
 - Required for operation with reasonable power
 - Minimal performance impact on other systems
 - IEEE 802.11 standard
- There are two SS methods: direct sequence and frequency hopping
 - Direct sequence multiplies the data sequence by a faster chip sequence.
 - Frequency hopping varies the carrier frequency by the same chip sequence

Direct Sequence Spread Spectrum (DSSS)

- XOR of the signal with pseudo-random number (chipping sequence)
 - Many chips per bit (e.g., 128) result in higher bandwidth of the signal
- Advantages
 - Reduces frequency selective fading
 - In cellular networks
 - · Base stations can use the same frequency range
 - Several base stations can detect and recover the signal
- Disadvantages
 - Precise power control necessary

Frequency Hopping Spread Spectrum (FHSS)

- Discrete changes of carrier frequency
 - Sequence of frequency changes determined via pseudo random number sequence
- Two versions

 - Fast Hopping: several frequencies per user bit
 - Slow Hopping: several user bits per frequency
- Advantages
 - Frequency selective fading and interference limited to short period
 - Simple implementation
 - Uses only small portion of spectrum at any time
- Disadvantages
 - Not as robust as DSSS
 - Simpler to detect

Cell structure

- Implements space division multiplex: base station covers a certain transmission area (cell)
- Mobile stations communicate only via the base station
- Cell sizes from some 100 m in cities to, e.g., 35 km on the country side (GSM) - even less for higher frequencies

Cellular Concept

- Advantages of cell structures:
 - Higher capacity, higher number of users
 - Less transmission power needed
 - More robust, decentralized
 - Base station deals with interference, transmission area etc, locally
 - Base stations perform centralized control functions. (call setup, handoff, routing, etc.)
- Problems:
 - Fixed network needed for the base stations
 - Handover (changing from one cell to another)
 - Interference with other cells

Design Considerations

- Reuse distance (D)
 - Distance between two cells using the same frequency (time slot/code)
 - Smaller reuse distance packs more users into a given area, but also increases their co-channel interference
- Cell Radius (R)
 - Decreases the cell size increases the system capacity, but complicates network functions of handoff and routing

Frequency Planning (2)

- *N* cannot be just any number!
- The cluster size (or the number of cells per cluster, or the total number of frequencies per cluster) is given by

thuster) is given by $N = i^2 + ij + j^2$ where *i* and *j* are integers.

 $N = 1, 3, 4, 7, 9, 12, 13, 16, 19, 21, 28, \dots$, etc.

The popular value of N being 4 and 7.

C/I or SIR

(Cont'd) Assuming $D_i = D$ for i = 1, 2,6

$$\frac{C}{I} = \frac{R^{-\alpha}}{6D^{-\alpha}} = \frac{\left(\frac{D}{R}\right)^{\alpha}}{6}$$

General approximation for SIR (in dB), considering only 1st ring of interferers:

$$SIR = 10\log \frac{\left(\frac{D}{R}\right)^{\alpha}}{M}$$

where M = number of interferers (depending on antenna used, etc.)

Example

• If a carrier-to-interference ratio of 15 dB is required for satisfactory forward channel performance of a cellular system, what is the frequency reuse factor and cluster size that should be used for maximum capacity if the path loss exponent is (a) α =4, and (b) α =3? Assume that there are six co-channel cells in the first tier, and all of them are at the same distance from the mobile. Use suitable approximation.

34

Solution

(a). Omni (b

(d). 90° sector

Cell Sectoring by Antenna Design

(b). 120° sector

(c). 120° sector (alternate)

(e). 60° sector

Frequency Assignment

- Fixed frequency (channel) assignment FCA
 - Each cell is assigned a fixed number of channels (frequencies)
 - Channels used for both handoffs and new calls
 - Problem: different traffic load in different cells
- Reservation channels with FCA
 - Each cell reserves some channels for handoff cells
- Channel borrowing
 - A cell may borrow free channels from neighboring cells
- Dynamic frequency (channel) assignment DCA
 - Base station chooses frequencies depending on the frequencies already used in neighbor cells
 - More capacity in cells with more traffic
 - Assignment can also be based on interference measurements

Cell Breathing

- CDM systems: cell size depends on current load
- Additional traffic appears as noise to other users
- If the noise level is too high users drop out of cells

Handoffs: Design Issues (1)

- Optimal BS selection:
 - BS nearest to MT may not necessarily be the best in terms of signal strength, especially new the cell boundaries
- Ping-pong Effect
 - Call gets bounced back and forth between two BS (a series of handoffs)
- - Interruption due to handoff may cause a loss in data
 - Delay in relinquishing channel in old cell and resume in new call may be acceptable for voice, but cause data loss

Handoff: Design Issues (2)

- Detection of handoff requirement
 - Mobile-initiated: MT monitors signal strength from BS and requests a handoff when signal drops below a
 - Network-initiated: BS forces a handoff when signals from an MT weaken, queries neighboring BS about signal strength from the MT and deduce which BS to handoff too
 - Mobile-assisted scheme: combination of mobile- and network-initiated schemes. MT evaluates signal strength, but final handoff decision is made by BS

Handoff Quality

- · Handoff delay:
 - Signaling during a handoff causes delay in transfer
 - If delay is too large, SINR may fall below minimum threshold, causing call to be dropped
- Duration of interruption
 - Hard handoff: channel pair from old BS cancel and then channel pair from next BS is used to continue the call
- Handoff success: probability of successful handoffs
 - Depends on number of available channel pairs, capacity to switch before SINR falls below threshold
- Probability of unnecessary handoff
 - E.g., Ping-Pong effect
 - Increase signaling overhead, leading to unwanted delays and interruptions

