

EEC173B/ECS152C

Research activities in wireless & mobile networks

- Delay Tolerant Networking (DTN)
- Example Applications in Industry
- Vehicular Ad Hoc Networks
- Activities at UC Davis

Delay Tolerant Networking

- DTNRG (http://www.dtnrg.org/)
 - Architectural and protocol design to address the need for interoperable communications in performancechallenged environment with only intermittent connectivity
 - E.g., spacecraft, military/tactical, disaster response, underwater
- Challenges
 - Large delay due to physical link properties or extended periods of network partitioning
 - Routing
 - End-to-end reliability
 - Heterogeneous underlying network technologies
 - Security
 - Application structure



Other DTN-like Projects

- DataMules
 - http://www.cs.washington.edu/homes/sushjain/pubs2/snpa03-mules.abs.html
- DakNet, First Mile Solutions

 - Rethinking Connectivity in Developing Nations
- Interplanetary Internet

 - Define the architecture and protocols necessary to permit interoperation
 of the Internet resident on Earth with other remotely located internets
 resident on other planets or spacecraft in transit.
- ZebraNet
 - http://www.princeton.edu/~mrm/zebranet.html
- MindStream Project

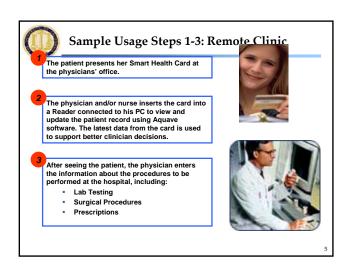
Example Applications in Industry: Smart Patient ID Card

Effective Branding Secure Data Storage

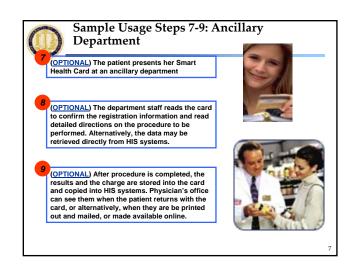
Key Features

- Programmable Chip

Identification Card - Design Choices


- Read & Write Memory
- PIN Based Protection
- System Interfaces
- Physician Office
- ADT / Scheduling
- Hospital Departments
 - Surgery
 - Lab / diagnostics Pharmacy
- Eligibility & 3rd party

Streamlined Service


Replacement of Paper &

Error Detection &

Prevention

Vehicular Ad Hoc Networks

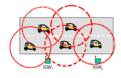
How's it different from other mobile ad hoc networks (MANET)?

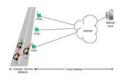
- Ample power/energy supply!
 - Can be equipped with storage, processing, sensing capability
- Travel at high speed => dynamic channels
 - Challenging to sustain communications between stationary sites and moving vehicles
 - Hand-off issues
- · More predictable path
 - Random mobility patterns do not hold!
 - Defined structure depending on transportation grid

Motivation

- Challenges and demands in surface transportation
- Distances between home and workplaces leads to daily commute by millions of people
 - Persistent heavy traffic flow in and out of cities from 5am through 10pm
- Low cost wireless communication devices can be embedded in vehicles
- New applications of wireless ad hoc networks with vehicular traffic

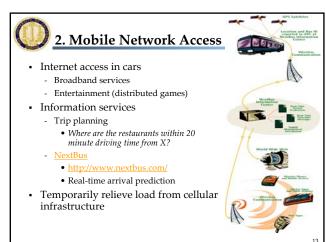
DSRC: Dedicated Short Range Communications


- US FCC allocated a block of spectrum (5.850 to 5.925 GHz) to enhance the safety and the productivity of the transportation system
 - Over roadside-to-vehicle and vehicle-to-vehicle communication channels.
 - Support both public safety and licensed private operations
 - Medium range communication service
 - Very high data transfer rates, minimal latency in relatively small isolated communication zones
 - Complements cellular communications


10

Applications

- Existing work on vehicular communications focused on two broad categories of applications:
 - 1. Automotive telematics
 - 2. Extending Internet access to mobile users



1. Automotive Telematics

- · Vehicle Driver-Safety Applications
 - Collision and congestion avoidance
 - Propagating "brake" alert messages to vehicles behind you
- Vehicular traffic monitoring
- Infotainment
- Remote diagnosis using data from onboard sensors

Related Work

- Intelligent Transportation Systems (ITS)
- PATH Project (UC Berkeley)
 - Traffic modeling and data analysis
 - Communication and road sensor network
- Autonet (UC Irvine)
- Fleetnet, Germany
- VMesh, UCDavis
 - More later ...

14

Related Activities at UC Davis (1)

- UC Davis Networks Lab <u>http://networks.cs.ucdavis.edu/people.html</u>
 - B. Mukherjee (CS)
 - C-N. Chuah (ECE)
 - D. Ghosal (CS)
 - D. Aksoy (CS)
 - P. Mohapatra (CS)
 - X. Liu (CS)
- · Topics include:
 - Sensor network tracking/localization (Yick, Ghosal)
 - Opportunistic Networking (J. LeBrun, Chuah)
 - Virtual patrol and target tracking (C. Gui, Mohapatra)
 - Energy-aware node placement (Liu, Chuah)

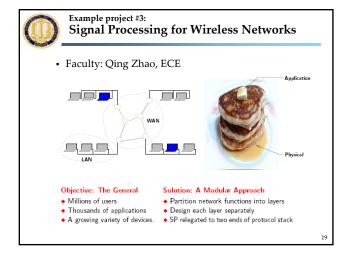
Related Activities at UC Davis (2)

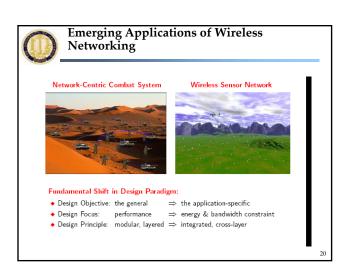
- Electrical & Computer Engineering
 - L. Szumel & J. Owens: Mobile Agent Framework
 - Q. Zhao: MAC-layer design, fundamental limits of large-scale sensor and ad hoc networks
- Computer Science
 - R. Pandey: Software Environment for Networks of Sensors and Embedded Systems (SENSES)

Example Project#1: PLASMA

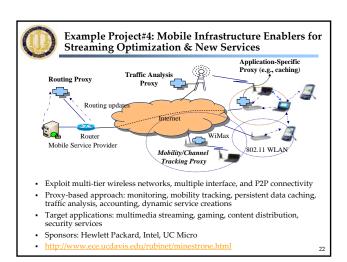
- PLAnetary Scale Monitoring Architecture (Prof. Demet Aksoy and her students)

 - Study novel integrated data management and networking architectures for planetary-scale monitoring
 - Hierarchical distributed network with heterogenous reachability, power and processing capabilities.
 - Cross layer optimization. Traditional layered approach is not suited for sensor communication. We study light-weight protocols for energy efficiency.
 - · Scheduled communication: Sensors should not compete with each other for the shared wireless communication channel. We apply an application-aware scheduling to organize data communications.
 - In-network data aggregation: Sensor nodes cooperate with each other to verify/filter their own readings before forwarding the data long distances.




Example Project#2: Resource Management in Wireless Networks

- Xin Liu (http://www.cs.ucdavis.edu/~liu/), CS
- · Multi-hop wireless networks


 - Robust topology control Efficient broadcasting Multi-radio Multi-channel allocation
- Spectrum-agile wireless networks
- Fundamental properties of spectrum-agile networks Fast dissemination of critical information
- Sensing-based opportunistic channel access
- · Wireless sensor networks
 - Dynamic information query and discovery Energy-based network deployment

 - Information-theoretical connectivity
- Graduate students
 Wei Wang, Ranjan Pal, Haiping Liu, Seokman Paul Han

Example Project#5: VMesh, VGrid, VSense

- Collaborative project
 - Chen-Nee Chuah, Electrical & Computer Engineering
 - Dipak Ghosal, Computer Science
 - Michael Zhang, Civil Engineering
- Vehicular wireless mesh networks can provide powerful networking, computing, and sensing primitives
 - A single store-and-forward mobile router, or collectively as a self-organized, mobile transit networks
 - Distributed grid computing platforms
 - Large density of nodes for grid computing in front of bay bridge every morning! [©]
 - Mobile sensors network
 - Collecting data and tracking mobile targets

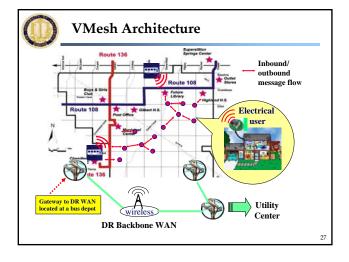
VMESH as Mobile Transit Networks

Inter-connect static patches of sensors or info. kiosks
Dissemination and retrieval of information

Example Applications
Precision Agriculture
Cal Energy Demand
Response (DR)

Enabling Utility Demand Response (DR)

- California Energy Commission (CEC) initiative
 - Goal: Monitor "demand/load" on electricity grid in real-time and adapt energy prices as "feedback" to influence consumer behavior
- Utility meters (electricity, water, gas) at user premise
 - Wireless sensors transmit usage information (inbound message) and receive/process pricing information (outbound message)
- DR backbone: wide area network (WAN) connected to the central utility center
- How to connect the end-users to the DR backbone using a LOW COST, SCALABLE, and FAULT-TOLERANT network?



VMesh – A Potential Solution for DR

- Distributed, low cost, vehicular mesh network to interconnect end-users to the DR backbone WAN
- Combine static concentration points and mobile routers (MRs)
- Leverage various types of vehicles to participate as MRs and form the VMesh
 - buses, light rail, postal vans, utility/garbage trucks
 - FEDEX, UPS, and other vendor trucks
 - police cars and personal automobiles

26

Architecture and Component (1)

- Sensor-transceiver units at end-users (STUs)
 - Unique ID Number
 - Geographical location of aggregation point (APs)
- User-side aggregation points (APs)
 - Each AP collect data from a set of STUs and relay the data to the vehicular based mobile routers (MRs)
 - E.g., bus stops, light poles (more about placement problem later)

Architecture and Component (2)

- Mobile Routers (MRs)
 - Vehicles equipped with storage, processing power (intelligence) and wireless communication capabilities
 - Can form ad hoc networks with other mobile routers or static roadside gateways
 - E.g., buses
- Utility-side gateways (UGs)
 - These are gateways to the DR backbone network
 - E.g., main bus station

Design Rationale (1)

- · Leverage diversity in spatial and temporal coverage to perform multi-resolution adjustment
- Example: Bus as primary MR
 - Schedule offers multiple temporal granularity
 - Fixed schedule: Predictable message delivery time/delay
 - More frequent during peak hours: coincide with peak usage
 - More frequent and dense in urban areas (where energy consumption is high) than rural area.
 - Natural clustering
 - Bus routes are designed to provide efficient coverage of residential, especially areas with heavy concentration of buildings, where DR matters

Design Rationale (2)

- Scalable to large deployment
 - Minimize the number of concentration points
 - Minimize maintenance cost MRs (e.g., buses) can drive to a station for repairs and software upgrades
 - Leverage the vehicular mesh network for other applications -> amortize cost

 - · Vehicular traffic flow control and management
 - Enhanced amber alert

Design Rationale (3)

- Vehicles equipped with GPS and intelligence to support dynamic tariffs and other DR strategies
 - Computing/storage resources
 - MRs can enable local marginal pricing (LMP)
 - Make local decisions in a distributed manner at a faster time-scale, and rely on the utility center to do global adjustment at a slower time-scale

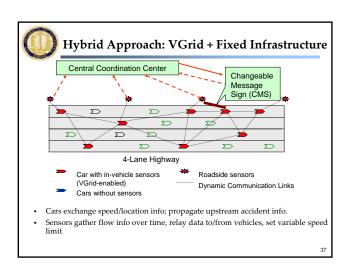
Design Rationale (4)

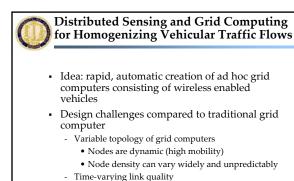
- · Survivability and Redundancy
 - Leverage overlapping bus routes to provide multiple paths for routing DR messages
 - Primary/secondary MRs
 - When the primary MRs fail (e.g., buses running late, accidents), leverage other vehicles, e.g., FEDEX/UPS trucks or vendor vehicles, as backup "information collector/disseminator" to form a secondary VMesh
 - Deflection routing algorithms to forward messages around trouble spots towards the destinations

Routing in DTN

- Flooding
 - Gets the message out to everyone
 - Lots of control overhead
- Probabilistic Routing
 - Needs non-random mobility
 - Decision based on likelihood of encounter
- Attentive Routing
 - Pay attention to physical attributes
 - Needs information location

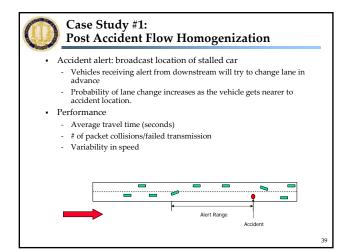
34

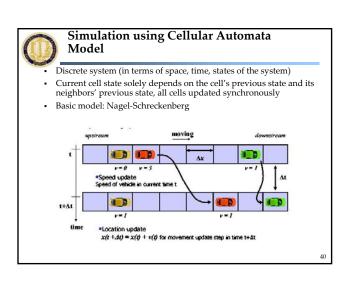


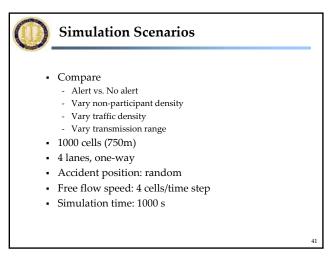

VGrid: What causes congestion?

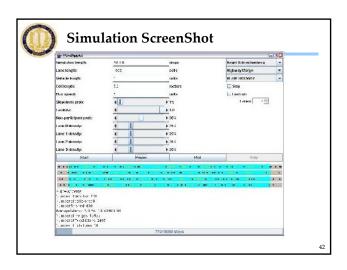
- On/off-ramps, lane changing, accidents, random slowdowns
- How can we mitigate congestion?
 - Let drivers see further ahead
 - More time to react
 - Gradually decrease speed rather than slamming on brakes
 - Change lanes early to avoid accident
 - Give room to merging traffic
 - Set variable speed limit
 - Prevent oscillations
 - Decrease average speed but increase flow

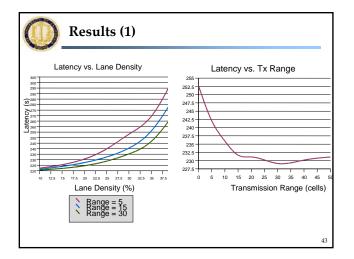
Transportation System TrafficTraffic VGrid In-Vehicle Central Data Data **◆** Roadside Sensors Control Sensors (speed/distance) Data Fusion, Estimation Emergency Metering In-Vehicle Lights Centralized Traffic Processor ControlAdvisory Decisions Changeable In-Vehicle Traffic Dynamic Message Sign (CMS) Control Monitoring Speed Detour Service Control Ad hoc. Transportation System Elements Distribute ···· Information flow → Control flow Proposed VGRID components

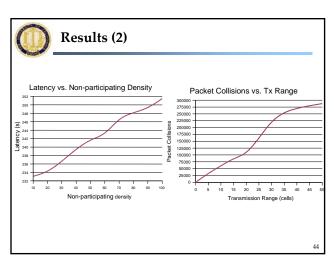

Changing the landscape of Intelligent






- Security and privacy issues


• Built upon wireless & pervasive network



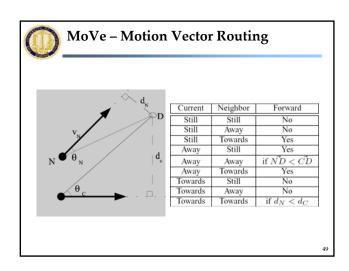
Summary

- This is just the beginning, we have a lot more to do ...
- Adaptive resource control: distributed MAC
- · Mobile agents: keeping data/computation localized
- Security
 - Access control
 - Only authorized users can participate in the system
 - Authenticity and integrity of information
 - Denial-of-Service
- · Economic Models
 - Incentive mechanism for user to participate

Opportunistic Networking

- Emerging wireless personal area networks (WPANs) & heterogeneous wireless connectivity (WiFi/WiMax)
- Capitalize on open wireless connectivity from both infrastructure & peers to support new delay-tolerant applications
 - E.g., RSS publishing, web blogging, etc.
- Sponsors: Intel Research, Sprint
- Recent UniTran Bus experiments to track user 'mobility/connectivity'
 - Installed i-MOTES on 37 campus buses to track ad hoc wireless connectivity of bluetooth-enabled devices

...


Opportunistic Forwarding

- When a contact occurs, a decision must be made.
- · How do we evaluate our neighbor?
- Does mobility information help more than location information alone?
- MoVe Algorithm
 - When two nodes meet, make a decision
 - Decision based on speed and direction
 - Use mobility to our advantage

MoVe - Motion Vector Routing

- Periodic HELLO beacons for detection
- RESPONSE message establishes contact
- Decision made on *per-contact* basis
- At contact, exchange mobility information
 - Location
 - Heading
 - Speed
- Will neighboring node get closer?

