
## EEC173B/ECS152C

### Wireless Sensor Networks

- ◆ Sensor Nodes: Energy Consumption
- ◆ Routing
- ◆ Localization



## Where does the energy go?



- Processing
  - excluding low-level processing for radio, sensors, actuators
- Radio
  - Transmit, receive, idle
- Sensors & Actuators
- Power supply

2



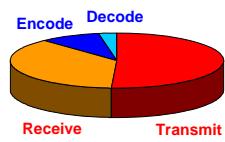
## Processing

- Common sensor node processors:
  - Atmel AVR, Intel 8051, StrongARM, XScale, ARM Thumb, SH Risc
- Power consumption all over the map, e.g.
  - 16.5 mW for ATMega128L @ 4MHz
  - 75 mW for ARM Thumb @ 40 MHz
- But, don't confuse low-power and energy-efficiency!
  - Example
    - 242 MIPS/W for ATMega128L @ 4MHz (4nJ/Instruction)
    - 480 MIPS/W for ARM Thumb @ 40 MHz (2.1 nJ/Instruction)

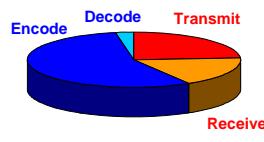
3



## Radio


- Energy per bit in radios is a strong function of desired communication performance and choice of modulation
  - Range and BER for given channel condition (noise, multipath and Doppler fading)
- Watch out: different people count energy differently
  - E.g.
    - Mote's RFM radio is only a transceiver, and a lot of low-level processing takes place in the main CPU
    - While, typical 802.11b radios do everything up to MAC and link level encryption in the "radio"
- Transmit, receive, idle, and sleep modes
- Variable modulation, coding
- Currently around 150 nJ/bit for short ranges

4




## Computation & Communication

Energy breakdown for voice



Energy breakdown for MPEG



Radio: Lucent WaveLAN at 2 Mbps  
Processor: StrongARM SA-1100 at 150 MIPS

- Radios benefit less from technology improvements than processors
- The relative impact of the communication subsystem on the system energy consumption will grow

5



## Sensing

- Several energy consumption sources

- Transducer
- Front-end processing and signal conditioning
  - analog, digital
- ADC conversion

- Diversity of sensors: no general conclusions can be drawn

- Low-power modalities
  - Temperature, light, accelerometer
- Medium-power modalities
  - Acoustic, magnetic
- High-power modalities
  - Image, video, beamforming

6



## Actuation

- Emerging sensor platforms
  - Mounted on mobile robots
  - Antennas or sensors that can be actuated
- Energy trade-offs not yet studied
- Some thoughts:
  - Actuation often done with fuel, which has much higher energy density than batteries
    - E.g. anecdotal evidence that in some UAVs the flight time is longer than the up time of the wireless camera mounted on it
  - Actuation done during boot-up or once in a while may have significant payoffs
    - E.g. mechanically repositioning the antenna once may be better than paying higher communication energy cost for all subsequent packets
    - E.g. moving a few nodes may result in a more uniform distribution of node, and thus longer system lifetime

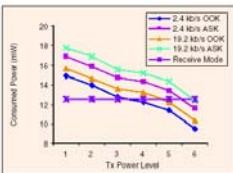
7



## Power Analysis of KSC's WINS Nodes

Table 1. Power Analysis of Rockwell's WINS Nodes.

| MCU Mode | Sensor Mode | Radio Mode          | Power (mW) |
|----------|-------------|---------------------|------------|
| Active   | On          | Tx (Power: 36.3 mW) | 1080.5     |
|          |             | Tx (Power: 19.1 mW) | 986.0      |
|          |             | Tx (Power: 13.8 mW) | 942.6      |
|          |             | Tx (Power: 3.47 mW) | 815.5      |
|          |             | Tx (Power: 2.51 mW) | 807.5      |
|          |             | Tx (Power: 0.96 mW) | 787.5      |
|          |             | Tx (Power: 0.30 mW) | 773.9      |
|          |             | Tx (Power: 0.12 mW) | 771.1      |
| Active   | On          | Rx                  | 751.6      |
| Active   | On          | Idle                | 727.5      |
| Active   | On          | Sleep               | 416.3      |
| Active   | On          | Removed             | 383.3      |
| Sleep    | On          | Removed             | 64.0       |
| Active   | Removed     | Removed             | 360.0      |


- **Summary**
- **Processor**
  - Active = 360 mW
    - doing repeated transmit/receive
  - Sleep = 41 mW
  - Off = 0.9 mW
- **Sensor = 23 mW**
- **Processor : Tx = 1 : 2**
- **Processor : Rx = 1 : 1**
- **Total Tx : Rx = 4 : 3 at maximum range**
  - Comparable at lower Tx

8



## Power Analysis of Mote-Like Node

| Table 2. Power Analysis of Medusa II Nodes. |             |                      |             |           |            |
|---------------------------------------------|-------------|----------------------|-------------|-----------|------------|
| MCU Mode                                    | Sensor Mode | Radio Mode           | Mod. Scheme | Data Rate | Power (mW) |
| Active                                      | On          | Tx(Power: 0.7368 mW) | OOK         | 24 kbps   | 24.58      |
|                                             |             | Tx(Power: 0.0979 mW) | OOK         | 24 kbps   | 19.24      |
|                                             |             | Tx(Power: 0.7368 mW) | OOK         | 19.2 kbps | 25.37      |
|                                             |             | Tx(Power: 0.0979 mW) | OOK         | 19.2 kbps | 20.05      |
|                                             |             | Tx(Power: 0.7368 mW) | ASK         | 24 kbps   | 26.55      |
|                                             |             | Tx(Power: 0.0979 mW) | ASK         | 24 kbps   | 21.26      |
|                                             |             | Tx(Power: 0.7368 mW) | ASK         | 19.2 kbps | 27.46      |
|                                             |             | Tx(Power: 0.0979 mW) | ASK         | 19.2 kbps | 22.06      |
| Active                                      | On          | Rx                   | Any         | Any       | 22.20      |
| Active                                      | On          | Idle                 | Any         | Any       | 22.06      |
| Active                                      | On          | Off                  | Any         | Any       | 9.72       |
| Idle                                        | On          | Off                  | Any         | Any       | 5.92       |
| Sleep                                       | Off         | Off                  | Any         | Any       | 0.02       |



9



## Some Observations (1)

- Using low-power components and trading-off unnecessary performance for power savings can have orders of magnitude impact
- Node power consumption is strongly dependent on the operating mode
  - E.g. WINS consumes only 1/6-th the power when MCU is asleep as opposed to active
- At short ranges, the Rx power consumption > T power consumption
  - Multihop relaying not necessarily desirable
- Idle radio consumes almost as much power as radio in Rx mode
  - Radio needs to be completely shut off to save power as in sensor networks idle time dominates
    - MAC protocols that do not “listen” a lot

10



## Some Observations (2)

- Processor power fairly significant (30-50%) share of overall power
- In WINS node, radio consumes 33 mW in “sleep” vs. “removed”
  - Argues for module level power shutdown
- Sensor transducer power negligible
  - Use sensors to provide wakeup signal for processor and radio
  - Not true for active sensors though...

11



## EEC173B/ECS152C

### Wireless Sensor Networks

- Sensor Nodes: Energy Consumption
- Routing**
- Localization



## Routing in Sensor Networks

- Multihop Routing with the following constraints and features
  - Power efficiency
  - Attribute-based addressing
  - Location awareness
  - Data-centric (communication is for named data)

13



## Routing Protocols

- Flooding
- Directed Diffusion
- SPIN
- Low Energy Adaptive Clustering Hierarchy (LEACH)
- Rumor Routing

14

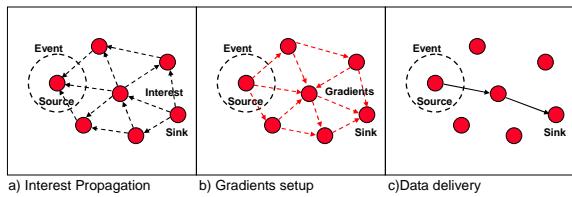


## Flooding

- Flooding is the simplest form of routing
- Each node broadcast the packets to all its neighbors and the process repeat until a maximum number of hops or the packet reaches its destination
- Problems:
  - Implosion (multiple copies of messages are sent to the same node)
  - Overlap (Neighbor nodes receive duplicate messages because of overlap in observing region)
  - Resource Blindness (Unaware of resources, energy)

15




## Directed Diffusion [Intanagonwiwat'00]

- Data-centric routing where sink broadcasts the request
- The sink sends out requirements in terms of attribute-value pairs called as *interest*
- This dissemination sets up gradients within the network designed to draw events
- Events start flowing towards the originators of interests along multiple paths
- The sensor network reinforces one or a small number of these paths.

16



## Directed Diffusion



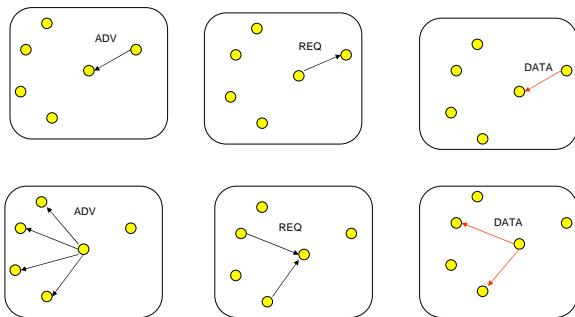
a) Interest Propagation

b) Gradients setup

c) Data delivery

17




## SPIN [Heinzelman99]

- Sensor Protocols for Information via Negotiation (SPIN) uses negotiation and resource adaptation to address the deficiencies of flooding
- Propose a family of routing protocols
- Conserves energy by exchanging metadata during negotiation
- Nodes monitor and adapt to changes in their own energy resources to extend the operating lifetime of the system

18

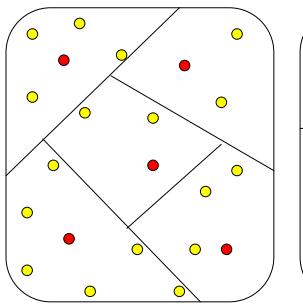


## SPIN Protocol



19




## LEACH [Heinzelman'00]

- LEACH is self-organizing, adaptive clustering protocol
- Randomly selects nodes as cluster-heads to distribute the energy load evenly
- High-energy dissipation in communicating with the base station is distributed among the sensor nodes.
- LEACH performs local data fusion to "compress" the amount of data being sent from the cluster-heads to the base station

20



## Dynamic Clusters in LEACH



21



## Rumor Routing [Braginsky'02]

- A logical compromise between flooding queries and flooding event notifications
- Upon witnessing an event, a node probabilistically generates an agent, which travels the network, propagating information about local events to distant nodes.
- A query generated by a node traverses in a random direction until a TTL value or when it finds a node that has the path to the event
- A query can be retransmitted or flooding can be adopted as a last resort.

22



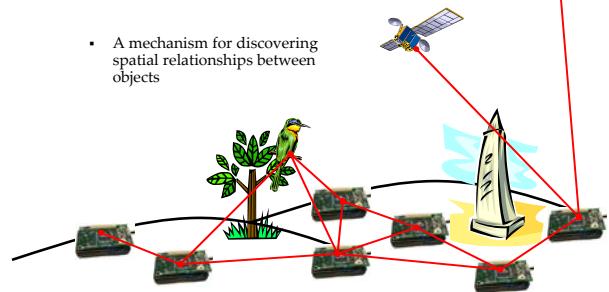
## EEC173B/ECS152C

### Wireless Sensor Networks

- ◆ Sensor Nodes: Energy Consumption
- ◆ Routing
- ◆ **Localization**



## Localization Issues


- What is Localization?
- Why is it important?
- Categorization
- Some Localization Mechanisms
  - GPS
  - Beacon based ranging
  - Range free methods

24



## What is Localization?

- A mechanism for discovering spatial relationships between objects



25



## Why is Localization Important?

- Sensor Network Data is typically interpreted based on a sensor's location
  - Report event origins
  - Giving raw sensor readings a physical context
    - Temperature readings  $\Rightarrow$  temperature map
  - Objects tracking
- Enables data-centric network design
  - Assist with routing
  - Evaluate network coverage

26



## Categorization

- Coarse-grained Localization
  - Proximity to a given reference point
  - E.g., Active Badge
- Fine-grained Localization
  - Coordinates estimation
    - E.g., Distance to a given reference point

27



## Fine-Grained Localization

- Ranging based methods
  - Timing, e.g., GPS
  - Signal Strength, e.g., Beacon based ranging
  - Directionality Based, e.g., Angle of Arrival (AoA) measured with directional antennas or arrays
- Ranging free methods
  - E.g.: Centroid based, DV-hop

28



## Timing

- Time-based Method
  - Time of Arrival (ToA), TDoA  
Time of flight of communication signal
  - Used with radio, IR, acoustic, ultrasound
- Signal Pattern
  - Global Positioning System
  - Local Positioning System
  - Pinpoint's 3D-iD

29



## Signal Strength

- Uses received signal strength indicator (RSSI) readings and wireless propagation model
- Attenuation of radio signal increases with increasing distance
- RADAR
  - Wall Attenuation Factor based Signal Propagation Model
  - RF mapping

30

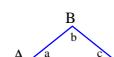
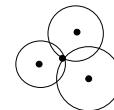


## Directionality Based Fine-Grained Localization

- Small Aperture Direction Finding
  - Used in cellular networks
  - Requires complex antenna array
- Disadvantages
  - Costly
  - Not a receiver based approach

31



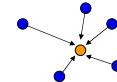


## Basic Concepts in Ranging

Trilateration

Triangulation

Multi-lateration

- Considers all available beacons




Sines Rule  $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$

Cosines Rule  $C^2 = A^2 + B^2 - 2AB \cos(C)$

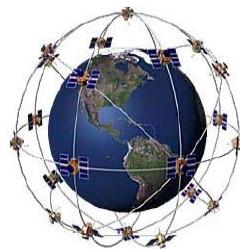
$B^2 = A^2 + C^2 - 2AC \cos(B)$

$C^2 = B^2 + A^2 - 2BA \cos(A)$



32




## Global Positioning System (GPS) [Getting'93]

- Started in 1973, built in 1993
- Wide-area radio positioning system
- Ranging-based method
  - Using Timing of Arrival (ToA)

33



## GPS System Architecture



- Constellation of 24 NAVSTAR satellites made by Rockwell
  - Altitude: 10,900 nautical miles
  - Orbital Period: 12 hours
- At least five satellites in view from every point in the Globe

34



## How GPS Works

- The basis of GPS is "trilateration" from satellites
- Distance measuring based on ToA
  - Accurate timing is important
- Along with distance, you need to know exactly where the satellites are in space
  - High orbits and careful monitoring are the secret
- Finally you must correct for any delays the signal experiences as it travels through the atmosphere
  - A Fourth satellite used for correction purpose

35

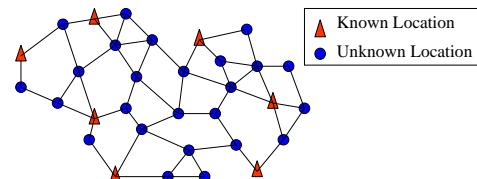


## Differential GPS

- Ground-based Station with known location information can estimate the GPS measure errors
- These error estimations are made available to other GPS users in the area
  - Allow them to mitigate errors in their measurements
  - Such "differential corrections" are transmitted in real time over a FM radio link

36




## GPS Not Always Applicable

- Many contexts you cannot have GPS on every node
  - Form factor
  - Energy
  - Cost
  - Obstructions
- Beacon based approaches for sensor networks
  - Ranging based v.s. ranging free

37



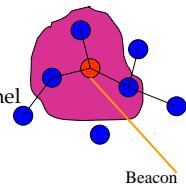
## Beacon Based Location Discovery [Savvides'01]



38



## Beacon Based Location Discovery

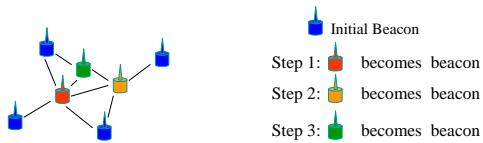

- No need of GPS
- No infrastructure support
  - Ad hoc deployable
- Use RSSI for measuring node separation
  - But how should the beacons be placed?
- Distributed Localization
  - Iterative multilateration

39



## Localization Approach

- Single hop beacons
- Iterative multilateration
- Dynamic estimate the wireless channel parameters
- Can be done in conjunction with routing




40



## Iterative Multilateration

- Start with a small number of beacons
- Number of beacons increases as more nodes estimate their positions



41



## Advantages

- Data packets also act as beacon signals
  - Location discovery is almost free
- Distributed
  - relies on neighborhood information
- Fault tolerant



42

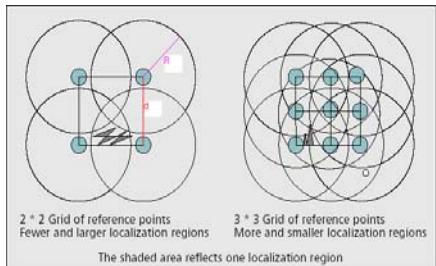


## Range Free Methods

- Centroid approach [Bulusu'00]
  - Adaptive beacon placement [Bulusu'01]
  - Self-configuring localization [Bulusu'03]
- DV-hop [Niculescu'01]
  - AoA approach [Niculescu'03]

43




## Centroid Based Approach [Bulusu'00]

- Multiple nodes serve as reference points (Beacons)
- Reference points transmit periodic beacon signals containing their positions
- Receiver node finds reference points in its range and localizes to the intersection of connectivity regions of these points

44



## Model



45

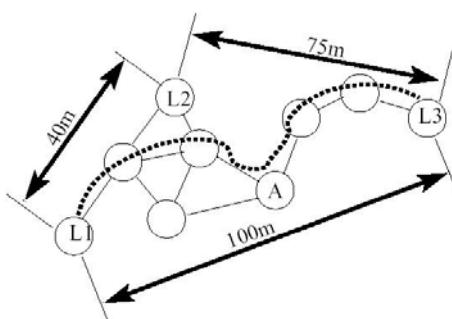


## DV-Hop [Niculescu'01]

- Standard DV propagation
- Never measures node distance
  - Insensitive to signal strength errors
- Basic idea
  - Range = hop\_count \* hop\_size

46




## DV-Hop: How It Works

- Each node maintains a table  $\{X_i, Y_i, h_i\}$  by running classic DV
- Each Landmark  $\{X_i, Y_i\}$ 
  - Compute a correction  $C_i$  and flood into the network
- Each node
  - Use the correction from the closest landmark
  - Multiply its hop distance by the correction

47



## DV-Hop: Example



48



## DV-Hop: Example (contd.)

- Landmarks compute corrections
  - $L_1$  computes the correction  $(100 + 40)/(6 + 2) = 17.5$
  - $L_2$  computes a correction of  $(40 + 75)/(2 + 5) = 16.42$
  - $L_3$  computes correction of  $(75 + 100)/(6 + 5) = 15.90$
- Assume A gets its correction from  $L_2$
- A estimates its ranges to the landmarks
  - $L_1: 3*16.42, L_2: 2*16.42, L_3: 3*16.42$
- A performs trilateration with the above ranges

49



## Localization: Wrap up...

- Localization is important in sensor networks
- GPS is useful, but not always applicable
- Beacons (aka, anchors, landmarks) can help
  - Range based methods
  - Range free methods

50