

Driving Forces for Multihop Wireless Networks

- Battery technology has lagged behind processor/memory/radio technology.
 - Now on critical path on success of mobile and pervasive computing.
- More power needed for longer range
 - Fundamental physical limitation -- path loss
- Use short range radios. Use multiple hops for communication.

Various Type of Multihop Wireless Networks

- Definitions:
 - Host network node that is an end user device, also called clients.
 - Router network node that participates in relaying.
- Ad Hoc Networks
 - Hosts are also routers. Hosts could be mobile.
- Sensor Networks
 - Ad hoc network where hosts are actually sensor devices. Hosts are not usually mobile.
- Mesh Networks
 - Hosts and routers are different entities. Usually hosts are mobile, routers are not

What are mesh networks?

- Wireless Mesh Networks are composed of wireless access points (routers) that facilitate the connectivity and intercommunication of wireless clients through multi-hop wireless paths
- The mesh may be connected to the Internet through gateway routers
- The access points are considered as the nodes of mesh; they may be heterogeneous and connected in a hierarchical fashion
- Unlike MANETs, end hosts and routing nodes are distinct. Routers are usually stationary.

Why Wireless Mesh?

- · Low up-front costs
- Ease of incremental deployment
- Ease of maintenance
- Provide NLOS coverage
- Advantages of Wireless APs (over MANETs)
 - Wireless AP backbone provides connectivity and robustness which is not always achieved with selfish and roaming users in ad-hoc networks
 - Take load off of end-users
 - Stationary APs provide consistent coverage

10

History of Research in Wireless Multihop Networks

• Some timeline

1972: Packet Radio NETwork (PRNET)
1980s: SURvivable Adaptive Radio Network (SURAN)
Early 1990s: GLObal MObile Information System (& NTDR)
Research agenda mostly set by Department of Defense in US.
Applications military centric.

History of Research in Wireless Multihop Networks (contd.)

- Mid 1990s: IETF MANET (Mobile Ad Hoc Networks) Working group formed.
- Goal standardize a set of IP-based routing protocols.
- Driving force: IEEE WLAN Standard 802.11 being developed. Laptops are already common.
- Extensive research in routing. Several protocols developed and made into RFCs.

History of Research in Wireless Multihop Networks (contd.)

- Late 1990s: New focus on low-power micro sensor networks.
 - Driving force: understanding of ad hoc networks, availability of inexpensive low-power radios, microcontrollers, sensors.
- Early 2000s: Interest in Mesh networks.
 - Driving force: Availability of low-cost laptop/plamtop with WLAN interface. Need for ubiquitous broadband connectivity.

Digital Gangetic Plane Project (India)

- Long range wifi links (several Km).
- Range extension using directional antennas.

[Courtesy: Vishnu Pradha, Media Lab, Asia]

• Tremendous opportunities in developing countries.

Many Service Models for Outdoor Mesh

- Private ISP (paid service)
- City/county/municipality efforts
- Grassroots community efforts
- May be shared infrastructure for multiple uses
 - Internet access
 - Government, public safety, law enforcement
 - Education, community peer-to-peer

EEC173B/ECS152C, Spring 2009

Wireless Mesh Networks

- Introduction
- Flow Control Issues
- Rate Adaptation

Motivation

- "Exposed Terminal Interference" is known to cause constant route breakages, which leads to reduction in the throughput of ad hoc and sensor networks based on CSMA/CA MAC
- Another problem that causes severe throughput and energy degradation is due to CONGESTION!
- The current state of the art:
 - Packet transmission are regulated at higher layers (e.g. transport layer)
 - MAC only regulates the transmission based on probability of medium contention
 - MAC is isolated from the upper layers and just performs its function (it is unaware
 of the states in the upper layer); buffer overflow is transparent to MAC!!

Metrics considered in this work..

- End-to-end Throughput
- Transmission Cost
 - measures the amount of bits expended by the nodes in the system to transmit a single data bit from the source to the destination

Single TCP flow

- Distance between link = 200m;
 Simulation time 40 seconds
- Packet inter-arrival time for CBR =
- 0.001sec
- Packet size 1500 bytes

TCP Reno

0-	-0-	-0-	0	 0

Throughput (S) in Kbps	Normal 802.11; With NAV;		
	S		
TCP - 10 nodes	91.104		
TCP - 8 nodes	107.016		
TCP - 5 nodes	128.232		
TCP – 3 nodes	384.072		

EEC173B/ECS152C, Spring 2009

Wireless Mesh Networks

- Introduction
- Flow Control Issues
- Rate Adaptation

Multiple Transmission Rates

- IEEE 802.11 specifications mandate multiple transmission rates at the PHY layer that use different modulation and coding schemes
 - 802.11b : 1, 2, 5.5, 11 Mbps
 - 802.11a : 6, 9, 12, 18, 24, 36, 48, 54 Mbps
 - 802.11g: 1, 2, 5.5, 6, 9, 11, 12, 18, 24, 36, 48, 54 Mbps

34

Rate Adaptation

- · Exploits the multi-rate capability
- A sender must select the best transmission rate and dynamically adapt its decision to the time-varying and location-dependent channel quality
- Plays a critical role in the overall performance in 802.11based mesh networks
- Goal: Select the rate that will give the optimum throughput for given channel conditions
- Unspecified by the standards

Two Aspects

- Channel quality estimation
 - Measure the time-varying state of the wireless channel and generate predictions for future
 - Metrics: SNR, signal strength, symbol error rate, bit error rate, short-term and long-term predictors
- Rate selection
 - Select an appropriate rate based on the prediction
 - Common approach threshold selection
 - Effectiveness depends on accuracy of estimation

Auto Rate Fallback (ARF)

Adaptive ARF (AARF)

better reflect the channel conditions

· Exploits the inability of ARF to stabilize for long periods

Uses the concept of binary exponential backoff (BEB)

AARF continuously changes the threshold at runtime to

When the transmission of a probing packet fails, the number of required successful transmission is doubled.

- Each sender attempts to use a higher transmission rate after a fixed number of successful transmission at a given rate and switches back to a lower rate after 1 or 2 consecutive failures
- Drawbacks:
 - Cannot adapt effectively for fast varying channel conditions
 - For very slow varying channel conditions, the number of retransmissions attempts would decrease the application throughput

Receiver-Based Auto Rate (RBAR)

- Mandates an RTS/CTS exchange; the receiver compares the SNR of the received RTS frame to threshold values calculated a priori and selects a rate for the upcoming transmission
- · The transmission rate is sent back through CTS packet
- The RTS, CTS, and data frames are modified, and the NAV is updated accordingly
- Drawbacks
 - Needs changes in the 802.11 standards
 - SNR variations make the rate estimations inaccurate
 - Requires RTS/CTS exchange performance hit!

Robust Rate Adaptation Algorithm (RRAA)

- Goals:
 - Should maintain stable rate behavior and throughput performance in the presence of mild, random channel variations
 - Should respond quickly to significant channel changes
- Ideas:
 - Uses short-term loss ratio to assess the channel and opportunistically adapt the transmission rate to dynamic channel variations
 - Leverages the RTS option in an adaptive manner to filter out collision losses with small overhead

40

RRAA Modules

- - Assess channel condition by keeping track of frame loss ratio within a short time window
- Rate Change

 Achieved through the use of estimation window size, maximum tolerable loss threshold, opportunistic rate increase threshold
- Adaptive RTS Filter
 - Turn RTS on or off based on the previous successful or unsuccessful frame transmission
 - Suppresses collision losses when it estimates the loss ration