EEC173B/ECS152C

Review: TCP

Review: Internet Protocol Stack

[remet] [Fre] el

Application

Transport

Network

Packet

Transport Layer Services

= Underlying best-effort network

- drops messages

- re-orders messages

- delivers duplicate copies of a given message

- delivers messages after an arbitrarily long delay
= Common end-to-end services

- guarantee message delivery

- deliver messages in the same order they are sent

- deliver at most one copy of each message

- allow the receiver to flow control the sender

- support multiple application processes on each host

Goal of Transport Layer: data transfer between end systems

Design Issue

= At what rate do you send data?
- What is max useful sending rate for different apps?
= Two components
- Flow control
¢ make sure that the receiver can receive
¢ sliding-window based flow control:
o receiver reports window size to sender
o higher window = higher throughput
o throughput = window/RTT
- Congestion control
* make sure that the network can deliver

Page 1

Transport Layer

= Connectionless Service: UDP
- Unreliable (unordered) data transfer
- No flow control
- No congestion control
= Connection-Oriented Service: TCP
- Point-to-Point: One sender one receiver

- Connection Management: handshaking (exchange of
control
messages) initialize sender, receiver state before data
exchange

- Reliable, in-order byte-stream data transfer (ACK &
retransmission)

- Flow control: sender won’t overwhelm receiver

- Congestion control: senders “slow down sending rate”
when network congested so sender won’t overwhelm
network)

Some Flow Control Algorithms

= Flow control for noisy channels
- Packets may be lost
= Typically combined with error control

- Reminder: data link layer also deals with encoding,
framing, error detection like parity & polynomial code
(CRQC) ...

= ARQ protocols
- Stop and Wait

- Go-Back-N
- Selective Repeat Sliding Window protocols

Flow Control: Quick overview

= What are common among them?
- Basic concept: ask for retransmission to correct errors
- Both data and ACK packets have sequence numbers
- Receiver informs sender via ACK or NACK packets
- Time-out period

= What make them different?
- Sender window size
- Receiver window size
- How do they recover from errors?
- Is a buffer required at the receiver

Stop And Wait

S Prod
PO
Nodea P2 |
Node B
;] ACK
Prop Proc Prop

= Stop-and-wait is not very efficient
- Can we do something else while waiting for an ACK?
= Sliding window protocol idea:
- Allow Sender to keep transmitting a “window” of
packets while waiting for ACKs

Remember how to compute efficiency?

Page 2

Go-Back-N: Example

* Rule 1: can send up to s_wnd packets without acks

* Rule 2: when error occurs, retransmit packet plus all
subsequent packets

3 Timeout :
S_wnd= sender window =4

0
Dlscard‘
= Receiver does not need to buffer packets

wWN PO
=
wWN PO

Node B

Selective Repeat: Example

WN PO
WN RO

= Packet n must not be sent until packet n- W has been
Node A ﬂ I I I I ﬂ ﬂ e
Node B \M \
O]

acknowledged (to avoid overloading receiver buffer)
3 Timeout
.K Ol]< OIK

W

Receiver Buffer

Release packet 0,1,2,3 to upper layer

10

Why do You Care About Congestion
Control?

= Otherwise you get to congestion collapse
= How might this happen?

- Assume network is congested (a router drops packets)
- You learn the receiver didn’t get the packet
¢ either by ACK, NACK, or Timeout
- What do you do? retransmit packet
- Still receiver didn’t get the packet
- Retransmit again
-andsoon...
- And now assume that everyone is doing the same!
= Network will become more and more congested

- And this with duplicate packets rather than new
packets!

Solutions?

= Slow down

- If you know that your packets are not delivered because
network congestion, slow down

= Questions:
- How do you detect network congestion?
- By how much do you slow down?

12

Page 3

What's Really Happening? Goals
. . _, knee cliff . — pﬁ;l(set = Goal: Operate near the knee point and remain in
= Knee - point after which E— /—‘*_‘ equilibrium
- Throughput increases very slow =9) - Don’t put a packet into network until another packet leaves.
- Delay increases fast g conﬁestlon Maintain number of packets in network “constant”
. 5 5 collapse .
= Cliff - point after which = P = Detect when network approaches/reaches knee point and
- Throughput starts to decrease Stay there
Zgl?; fzzt) to zero (congestion Load - How do you get there?
P o E‘ - What if you overshoot (i.e., go over knee point) ?
- Delay approaches infinity [} . i
o = Possible solution:
- Increase window size until you notice congestion
- Decrease window size if network congested
Load
13 14
Detecting Congestion-1 Detecting Congestion-2
= Implicit network signal = Explicit network signal
- Loss (e.g. TCP Tahoe, Reno, New Reno, SACK) - Send packet back to source (e.g. ICMP Source Quench)
e +relatively robust, -no avoidance ¢ Control traffic congestion collapse
* [FF96] compared Tahoe, Reno, and SACK TCP - Set bit in header
- Delay (e.g. TCP Vegas) ¢ e.g, DEC DNA/OSI Layer 4 [CJ89], ECN [RFC2481]
e +avoidance, -difficult to make robust ¢ Can be subverted by selfish receiver
- Easily deployable - Unless on every router, still need end-to-end signal
- Robust enough? Wireless? - Could be be robust, if deployed
15 16

Page 4

TCP: Basic idea

knee cliff

5
i Turn more
When a connection starts, % .
" — conservative
want to quickly approach knee: 3 - .
= ongestion
Slow Start phase = .g
avoidance
Load

C. Avoidance Sicul

= Congestion control goal: stay left of cliff
= Congestion avoidance goal: stay left of knee

TCP: Slow Start & Congestion Avoidance

= Slow start
- Goal: discover congestion quickly

- How: Quickly increase CongWin until network
congested = get a rough estimate of the optimal of
CongWin

* Set CongWin =1

e Each time a segment is acknowledged, double
CongWin

- Slow Start is not actually slow
® CongWin increases exponentially
= Congestion avoidance: slow down “Slow Start”

- If CongWin > Threshold then
each time a segment is acknowledged
increment CongWin by 1.

17 18
Ilustration TCP Congestion Control
&8 . . .
= Maintains three variables:

8w - CongWin - congestion window
; 0 - FlowWin - flow window; receiver advertised window
82 - Threshold - threshold size (used to update cwnd)
g é | — = For sending use: win = min(FlowWin, CongWin)
52 , = Timeout
22 7/ \ T - When timer expires, TCP sender reduces rate
qg)v 4 Threshold - Set Threshold 1/2 of CongWin just before the loss event
5] TCP Tah - Set CongWin =1

24 lce * Window then grows exponentially until it hits Threshold,

and then grows linearly
o T T T T T T T T T T T T T T 1
12 3 45 6 7 8 9 10 11 12 13 14 15 Recover?l can be slow if we wait for timeout
- => Don’t wait for window to drain
Transmission round => Look for duplicate ACKs
19

20

Page 5

Refinement: Fast Retransmit

= Don’t wait for window CengWwin =

to drain

* Resend a segment
after 3 duplicate ACKs

- Remember a duplicate
ACK means that an out-
of sequence segment
was received

Refinement: Fast Recovery

—— seamenty |

_ak2 ——— |
CongWin=3—— segment2 |
T

_AKa ——— |
CongWin =4 A

segment 4

—— seamems |

3 duplicate { M
ACKs

= After a fast-retransmit,
- Set Threshold -> 2 of CongWin just before the loss event
- Set CongWin to the new Threshold
e i.e, don’t reset CongWin to 1
e Start growing linearly, don’t need slow start again

Philosophy:

® 3 dup ACKs indicates network capable of
delivering some segments
=>less aggressive congestion control

¢ Timeout before 3 dup ACKs is “more alarming”

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Transmission round

23

Action: after 3 duplicate ACKs, go ahead and => Cut back aggressively
retransmit 4 without waiting for timeout
21 22
Illustration Reflections on TCP
14
Assumes that all sources cooperate

3 12 g .
K4 Assumes that congestion occurs on time scales greater than
2 _ 1 1RTT
h=g]
c
E é R e Only useful for reliable, in order delivery, non-real time
,§ el /N e e . applications
gé-’a 4 Threshold Vulnerable to non-congestion related loss (e.g. wireless)
3 5 TCP Tahoe Can be unfair to long RTT flows

0 TCP cannot distinguish between link loss and congestion

loss (e.g., wireless environment)

24

Page 6

Does TPC work in wireless

environment?

Efficient Allocation

= Too slow
- Fail to take advantage of
available bandwidth —
underload
= Too fast
- Overshoot knee — overload,
high delay, loss
= Everyone’s doing it
- May all under/over shoot —
large oscillations

= Optimal:
- z:Xi:XgoaI
= Efficiency =1 - distance from
efficiency line

User 2: x,

2 user example

overload

underload Efficiency
line

User 1: x;

26

Fair Allocation

= Maxmin fairness
- Flows which share the 2 user example
same bottleneck get the ,
same amount of //
bandwidth 2 getting .
N too much /7 falfness
2 & // line
F(x)= (z x) o ’
- /
n(d x? 3
// 1 getting
= Assumes no knowledge , too much
of priorities
P User 1: x;

= Fairness = 1 - distance
from fairness line

27

Page 7

