

Reliable Data Transport over Wireless Networks

- Problems with TCP
- Snoop Protocol

* Acknowledgment: Slides from Prof. Hari Balakrishnan & Prof. Badri Nath

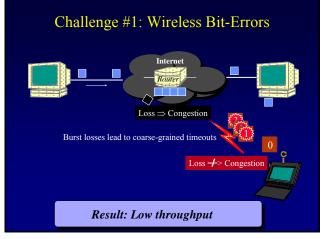
Wireless Heterogeneity

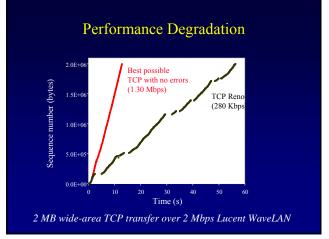
Wireless Performance

Technology	Rated	Typical TCP
	Bandwidth	Throughput
IBM	1 Mbps	100-800 Kbps
Infrared	•	1
Lucent	2 Mbps	50 Kbps-1.5 Mbps
WaveLAN		
Metricom	100 Kbps	10-35 Kbps
Ricochet	1	1
Hybrid	10 Mbps	0.5-3.0 Mbps
wireless cable	.1.	- F -

Goal: To bridge the gap between perceived and rated performance

Data Transport Over Wireless

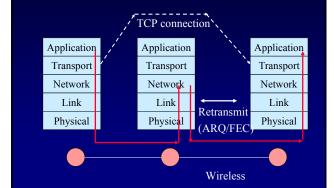

- Packet loss in wireless networks may be due to
 - Bit errors
 - Handoffs
 - Congestion (rarely)
 - Reordering (rarely, except in mobile ad hoc networks)


Poor Interaction with TCP

- TCP assumes loss is due to congestion or reordering
- Wireless loss is not due to congestion
 TCP cannot distinguish between link loss and congestion loss
- result in lower throughputCumulative ACK not good with bursty losses
 - Missing data detected one segment at a time
 - Duplicate ACKs take a while to cause retransmission
 - TCP Reno may suffer coarse time-out -> slow start!
 - TCP New Reno still only retransmit one packet per RTT
- Non-congestion loss indicated by DUP ACKs
 Fast retransmit & recovery (congestion window is halved)
- Non-congestion loss indicated by timeout
 - Enter slow start (Start from CongWin = 1)

Other Problems in Wireless Networks

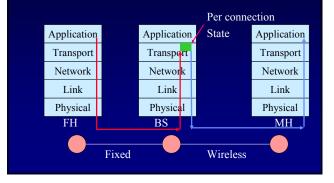
- (#1) Burst errors due to poor signal strength or mobility (handoff)
 - More than one packet lost in TCP window
- (#2) Asymmetric effects
 - Bandwidth asymmetry & latency variability
- (#3) Low channel bandwidth
- (#4) Delay is often very high
 - RTT quite long (tunneling, satellite)
 - True in telephone networks providing data services that
 - deploy fixed gateways (non-optimal routes)



Approaches

Question: how to reconcile between the two in an end-to-end transport mechanism?

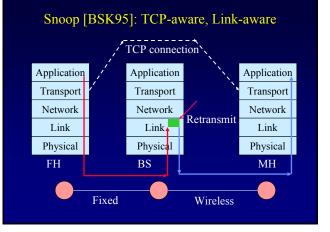
- Link layer enhancement (FEC, retransmission)
- [LR99] R. Ludwig and B. Rathony, "Link Layer Enhancements for TCP/IP over GSM," *IEEE Proc. Infocom*, pp. 415-422, 1999. Transport Layer
- - [BB95] A. Bakre and B. R. Badrinath, "I-TCP: Indirect TCP for mobile hosts," Proc. 15th International Conference on Distributed Computing Systems, Vancouver, Canada, June 1995, pp. 136-143.
- TCP-aware Link-layer aware [BSK95] Snoop protocol
- Explicit Loss Notification Schemes


Link Level Retransmission

Link Level Retransmission: Issues

- How many times to retransmit at the link layer before giving up?
- How much time is required for a link layer retransmission?
 - Only beneficial if TCP timeout large enough to tolerate additional delays due to link level retransmission
- What triggers link level retransmission?
- Adverse interaction with transport layer
 - Timer interaction
 - Interaction with fast retransmit
 - Large variation in RTT

Transport-level Solution



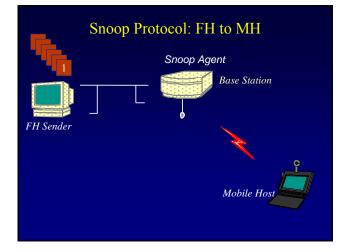
I-TCP

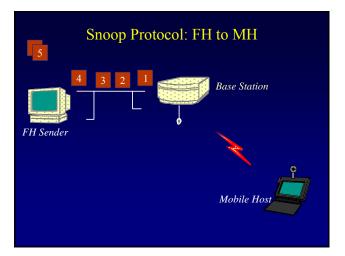
- Split end-to-end connection into two independent flows
 - One connection for the wired part, and another for the wireless part
 - Wireless part of the TCP can be optimized for wireless
 Different flow/error control
 - Local recovery of errors: faster recovery due to shorter RTT on wireless link
 - On wireless, loss -> try harder
 - On fixed, loss -> backoff

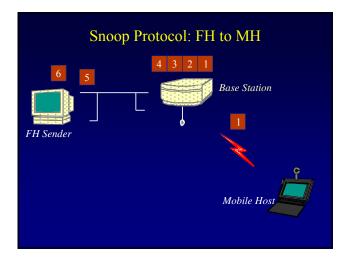
I-TCP Disadvantages

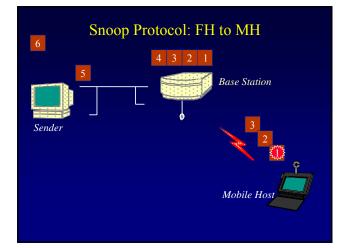
- End-to-end semantics violated
 - ACK may be delivered to sender before data delivered to receiver
- Base station (BS) retains hard state; its failure can result in loss of data (unreliability)
- BS retains per-connection state -> not scalable
 Buffered packets at BS must be transferred to new BS
- Buffer space neededHand-off latency increases due to state transfer
 - Extra copying of data at BS

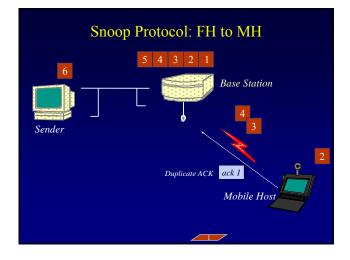
Snoop Protocol

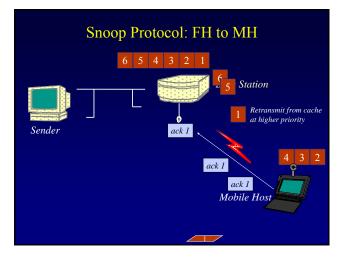

- Uses the same idea of local recovery as I-TCP
- Shield TCP sender from wireless vagaries
 Eliminate adverse interactions between protocol layers
 - Congestion control only when congestion occurs
- Preserve current TCP/IP service model
 - Maintain end-to-end semantics

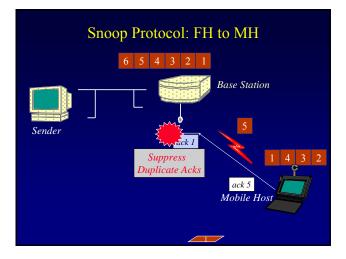

Fixed to mobile: transport-aware link protocol Mobile to fixed: link-aware transport protocol

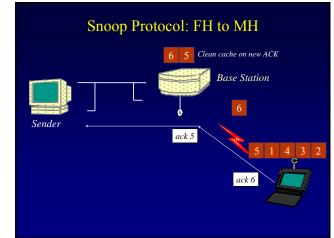

Snoop Features

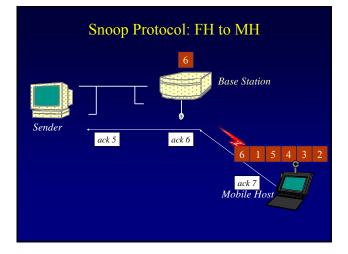

- Snoop monitors every packet that passes through
 - Buffers packets from FH to MH as yet unacknowledged
 - Packets flushed when an ACK is received
 - When DUP ACK is received, retransmit from buffer
- Hide wireless loss from sender
 - Suppress DUP ACKs => prevent fast retransmit
 - Sender can still timeout
- Snoop state is soft state at base station, instead of hard state
 - Handoff -> new snoop state is built at new BS
 - Loss of soft state affects performance, but not correctness

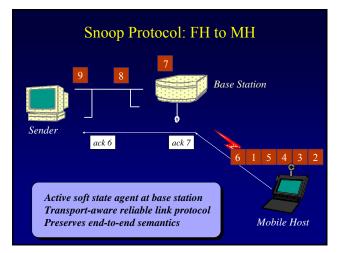

Snoop Protocol: FH to MH 4 3 2 1 Snoop agent Base Station FH Sender Snoop agent: - Snoops on TCP segments and ACKs - Detects losses by duplicate ACKs and timers - Suppresses duplicate ACKs from FH sender Cross-layer protocol design: Snoop agent state is soft Mobile Host

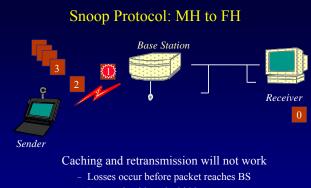


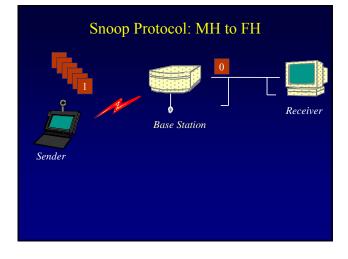


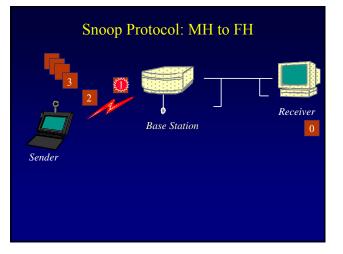


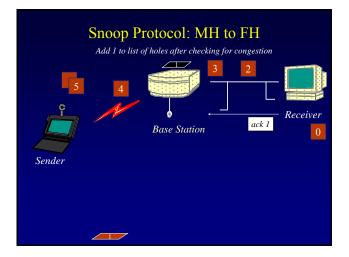


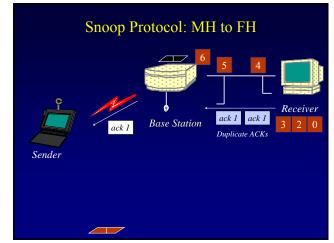


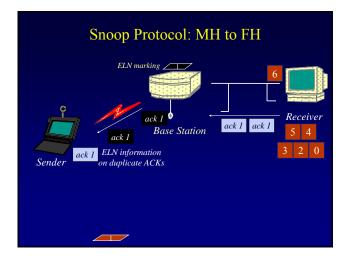


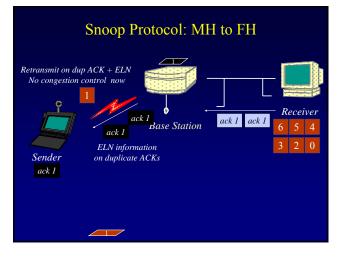


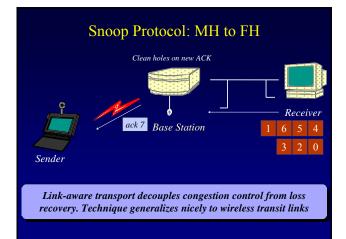


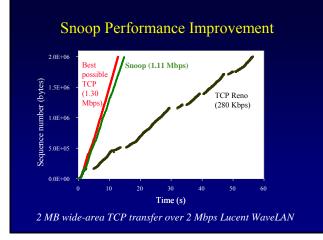

- Losses should not be hidden

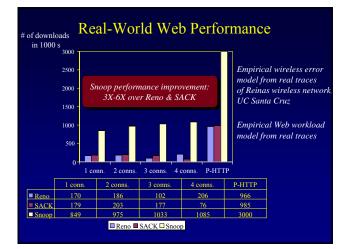


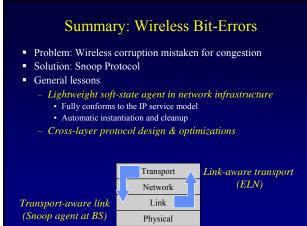

- Solution #1: Negative ACKs (NACKs)
 NACK from BS to MH on wireless loss
- Solution #2: Explicit Loss Notifications (ELN)
 - In-band message to TCP senderGeneral solution framework










End-to-End Enhancements

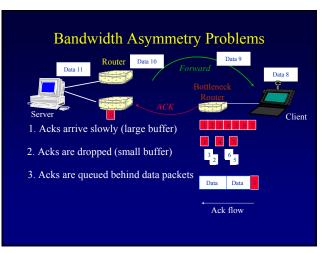
- Burst losses
 Selective ACKs (SACKs) [FF96,KM96,MMFR96,B96]
- Snoop protocol: no changes to fixed hosts on the Internet

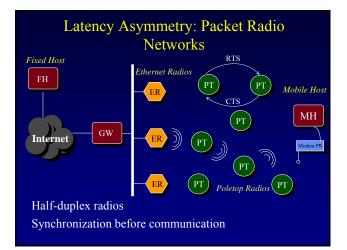
Snoop Protocol: Disadvantages

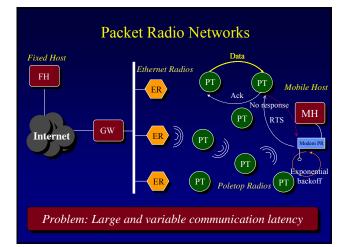
- Link layer at base station needs to be TCP-aware
- Not useful if TCP headers are encrypted (IPsec)
- Cannot be used if TCP data and TCP ACKs traverse different paths
 - Both do not go through the same base station, e.g., satellite links

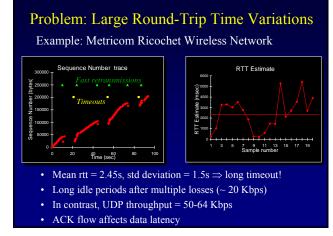
Other Problems in Wireless Networks

- (#1) Burst errors due to poor signal strength or mobility (handoff)
 - More than one packet lost in TCP window
- (#2) Asymmetric effects
 - Bandwidth asymmetry & latency variability
- (#3) Low channel bandwidth, low throughput
- (#4) Delay is often very high
 - RTT quite long (tunneling, satellite)
 - True in telephone networks providing data services that
 - deploy fixed gateways (non-optimal foules

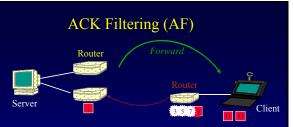

Challenge #2: Asymmetric Effects

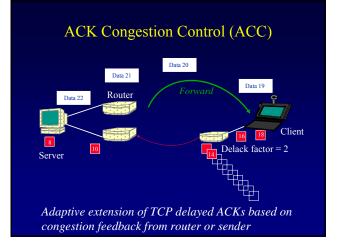

- Asymmetric access technologies
 - ADSL, (wireless) cable modems, DBS, etc.
 - Low-bandwidth ACK channel [LM97, KVR98]
- Packet radio networks
 - Metricom's Ricochet, CDPD, etc.
 - Adverse interactions between data and ACK flow

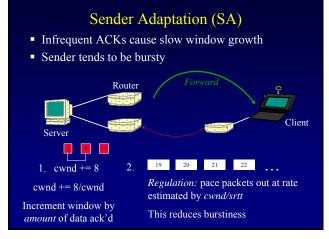

Problem: Imperfect ACK feedback degrades TCP performance

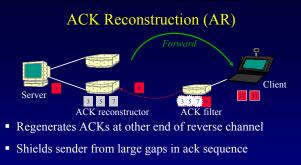

The Character of Asymmetry Router Forward Server Server Router ACK Client The network and traffic characteristics in one direction significantly affect performance in the other

Bandwidth: 10-1000 times more in the forward direction *Latency:* Variability due to MAC protocol interactions *Packet loss:* Higher loss- or error-rate in one direction

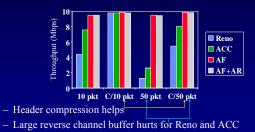



Solutions


- Problems arise because of imperfections in the ACK feedback
- Reduce frequency of acks
 - ACK Filtering (AF)
 - ACK Congestion Control (ACC)
- Handle infrequent acks
 - Sender Adaptation (SA)
 - ACK Reconstruction (AR)


General solution approach for asymmetric situations

- Purge all redundant, cumulative ACKs from constrained reverse queue
- Used in conjunction with sender adaptation or ACK reconstruction



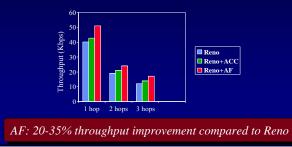
- AR rate determined by
 - input ACK rate
 - target ACK spacing

- TCP transfers in the forward direction alone
- Maximum window size 100 KB; no losses on forward path

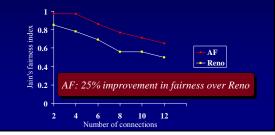
- Fairness greatly improves using AF and ACC for multiple transfers

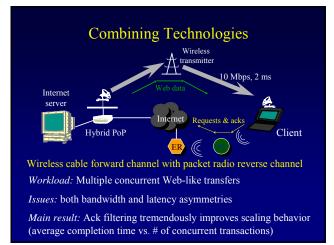
Summary: Asymmetric Effects

- General definition of asymmetry
 Problem: ACK channel impacts TCP performance
- Classification of types of asymmetry
 Bandwidth asymmetry due to technologies
 - Latency asymmetry due to MAC interactions
- General solutions: Two-pronged approach
 Reduce frequency of ACKs (AF, ACC)
 Handle infrequent ACKs (SA, AR)
- Status
 - BSD/OS 3.0 implementation
 - Soon-to-be Internet RFC


Multihop Wireless Simulations

- 1 to 3 wireless hops on path
- Radio turnaround time = 3-12 ms
- Radio queue size = 10 packets
- Exponential backoff in multiples of 20 ms slots


Performance: Single Transfer


- AF reduces chances that peer radio is busy
 MAC backoffs less frequent
- Round-trip std deviation reduces from 1.5 s to 0.6 s

Performance: Concurrent Transfers

- Metrics: *utilization* and *fairness*
- Simultaneous connections over 2-hop network
 Performance more predictable and consistent with AF
- Unpredictable performance caused by long timeouts

