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Reliable Data Transport over 
Wireless Networks

Problems with TCP

Snoop Protocol
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Technology Rated 
Bandwidth 

Typical TCP 
Throughput 

IBM  
Infrared 

1 Mbps 100-800 Kbps 

Lucent 
WaveLAN 

2 Mbps 50 Kbps-1.5 Mbps

Metricom 
Ricochet 

100 Kbps 10-35 Kbps 

Hybrid 
wireless cable 

10 Mbps 0.5-3.0 Mbps 

 

Goal: To bridge the gap between perceived and rated performance

Data Transport Over Wireless

 Packet loss in wireless networks may be due to
− Bit errors

− Handoffs

− Congestion (rarely)

− Reordering (rarely, except in mobile ad hoc networks)



Poor Interaction with TCP

 TCP assumes loss is due to congestion or reordering
 Wireless loss is not due to congestion

− TCP cannot distinguish between link loss and congestion loss
=> result in lower throughput

 Cumulative ACK not good with bursty losses
− Missing data detected one segment at a time
− Duplicate ACKs take a while to cause retransmission
− TCP Reno may suffer coarse time-out -> slow start!
− TCP New Reno still only retransmit one packet per RTT

 Non-congestion loss indicated by DUP ACKs
− Fast retransmit & recovery (congestion window is halved)

 Non-congestion loss indicated by timeout
− Enter slow start (Start from CongWin = 1)

Other Problems in Wireless Networks

 (#1) Burst errors due to poor signal strength or 
mobility (handoff)
− More than one packet lost in TCP window

 (#2) Asymmetric effects
− Bandwidth asymmetry & latency variability

 (#3) Low channel bandwidth 

 (#4) Delay is often very high
− RTT quite long (tunneling, satellite)

− True in telephone networks providing data services that 
deploy fixed gateways (non-optimal routes)

Challenge #1: Wireless Bit-Errors
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Burst losses lead to coarse-grained timeouts

Result: Low throughput

Performance Degradation
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Approaches

Question: how to reconcile between the two in an end-to-end 
transport mechanism?

 Link layer enhancement (FEC, retransmission)
− [LR99] R. Ludwig and B. Rathony, "Link Layer Enhancements for 

TCP/IP over GSM," IEEE Proc. Infocom, pp. 415-422, 1999. 

 Transport Layer 
− [BB95] A. Bakre and B. R. Badrinath, “I-TCP: Indirect TCP for 

mobile hosts,” Proc. 15th International Conference on Distributed 
Computing Systems, Vancouver, Canada, June 1995, pp. 136-143. 

 TCP-aware Link-layer aware 
− [BSK95] Snoop protocol

 Explicit Loss Notification Schemes
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Link Level Retransmission: Issues

 How many times to retransmit at the link layer 
before giving up? 

 How much time is required for a link layer 
retransmission? 
− Only beneficial if TCP timeout large enough to tolerate 

additional delays due to link level retransmission

 What triggers link level retransmission?

 Adverse interaction with transport layer
− Timer interaction

− Interaction with fast retransmit

− Large variation in RTT

Transport-level Solution

Application

Transport

Network

Link

Physical

Application

Transport

Network

Link

Physical

Application

Transport

Network

Link

Physical

Per connection

State

WirelessFixed

BSFH MH



I-TCP

 Split end-to-end connection into two independent 
flows
− One connection for the wired part, and another for the 

wireless part

− Wireless part of the TCP can be optimized for wireless
• Different flow/error control

• Local recovery of errors: faster recovery due to shorter RTT on 
wireless link 

− On wireless, loss -> try harder

− On fixed, loss -> backoff

I-TCP Disadvantages

 End-to-end semantics violated
− ACK may be delivered to sender before data delivered to 

receiver

 Base station (BS) retains hard state; its failure can 
result in loss of data (unreliability)

 BS retains per-connection state -> not scalable
− Buffered packets at BS must be transferred to new BS 

− Buffer space needed

 Hand-off latency increases due to state transfer
− Extra copying of data at BS

Snoop [BSK95]: TCP-aware, Link-aware
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Snoop Protocol

 Uses the same idea of local recovery as I-TCP

 Shield TCP sender from wireless vagaries
− Eliminate adverse interactions between protocol layers

− Congestion control only when congestion occurs

 Preserve current TCP/IP service model
− Maintain end-to-end semantics

Fixed to mobile: transport-aware link protocol
Mobile to fixed: link-aware transport protocol



Snoop Features

 Snoop monitors every packet that passes through
− Buffers packets from FH to MH as yet unacknowledged

− Packets flushed when an ACK is received

− When DUP ACK is received, retransmit from buffer

 Hide wireless loss from sender
− Suppress DUP ACKs => prevent fast retransmit

− Sender can still timeout

 Snoop state is soft state at base station, instead of 
hard state
− Handoff -> new snoop state is built at new BS

− Loss of soft state affects performance, but not correctness

Snoop Protocol: FH to MH
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Snoop agent:
− Snoops on TCP segments and ACKs

− Detects losses by duplicate ACKs and timers

− Suppresses duplicate ACKs from FH sender

Cross-layer protocol design: Snoop agent 
state is soft
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Snoop Protocol: FH to MH
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Snoop Protocol: FH to MH
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Snoop Protocol: MH to FH
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Caching and retransmission will not work
− Losses occur before packet reaches BS

− Losses should not be hidden

Snoop Protocol: MH to FH

 Solution #1: Negative ACKs (NACKs)
− NACK from BS to MH on wireless loss

 Solution #2: Explicit Loss Notifications (ELN)
− In-band message to TCP sender

− General solution framework
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Snoop Protocol: MH to FH
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Snoop Protocol: MH to FH

Base Station

Sender

Link-aware transport decouples congestion control from loss 
recovery. Technique generalizes nicely to wireless transit links
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End-to-End Enhancements

 Decouple congestion control from loss recovery
− Explicit Loss Notification (ELN)

 Burst losses
− Selective ACKs (SACKs) [FF96,KM96,MMFR96,B96]

 Snoop protocol: no changes to fixed hosts on the 
Internet

ack 0 [sack 2] ack 0 [sack 2,4]

Selective ACKs

0
2

4

0.0E+00

5.0E+05

1.0E+06

1.5E+06

2.0E+06

0 10 20 30 40 50 60

Best
possible 
TCP 
(1.30 
Mbps)

Snoop Performance Improvement

Time (s)Time (s)

S
eq

ue
nc

e 
nu

m
be

r 
(b

yt
es

)

Snoop (1.11 Mbps)

TCP Reno
(280 Kbps)

2 MB wide-area TCP transfer over 2 Mbps Lucent WaveLAN
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• Snoop+SACK and Snoop perform best
• Connection splitting not essential
• TCP SACK performance disappointing

Typical error rates

2 MB local-area TCP transfer over 2 Mbps Lucent WaveLAN



Real-World Web Performance
# of downloads 

in 1000 s

Empirical Web workload
model from real traces

Empirical wireless error
model from real traces
of Reinas wireless network,
UC Santa Cruz

Snoop performance improvement: 
3X-6X over Reno & SACK
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Summary: Wireless Bit-Errors

 Problem: Wireless corruption mistaken for congestion
 Solution: Snoop Protocol
 General lessons

− Lightweight soft-state agent in network infrastructure
• Fully conforms to the IP service model
• Automatic instantiation and cleanup

− Cross-layer protocol design & optimizations
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Snoop Protocol: Disadvantages

 Link layer at base station needs to be TCP-aware

 Not useful if TCP headers are encrypted (IPsec)

 Cannot be used if TCP data and TCP ACKs traverse 
different paths 
− Both do not go through the same base station, e.g., 

satellite links

Other Problems in Wireless Networks

 (#1) Burst errors due to poor signal strength or 
mobility (handoff)
− More than one packet lost in TCP window

 (#2) Asymmetric effects
− Bandwidth asymmetry & latency variability

 (#3) Low channel bandwidth, low throughput

 (#4) Delay is often very high
− RTT quite long (tunneling, satellite)

− True in telephone networks providing data services that 
deploy fixed gateways (non-optimal routes)



Challenge #2: Asymmetric Effects

 Asymmetric access technologies
− ADSL, (wireless) cable modems, DBS, etc.

− Low-bandwidth ACK channel [LM97, KVR98]

 Packet radio networks
− Metricom’s Ricochet, CDPD, etc.

− Adverse interactions between data and ACK flow

Problem: Imperfect ACK feedback degrades TCP performance

The Character of Asymmetry

Bandwidth: 10-1000 times more in the forward direction

Latency: Variability due to MAC protocol interactions 

Packet loss: Higher loss- or error-rate in one direction

The network and traffic characteristics in one 
direction significantly affect performance in the other
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Data

Packet Radio Networks
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Problem: Large and variable communication latency

Problem: Large Round-Trip Time Variations
Example: Metricom Ricochet Wireless Network
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• Mean rtt = 2.45s, std deviation = 1.5s  long timeout! 

• Long idle periods after multiple losses (~ 20 Kbps)

• In contrast, UDP throughput = 50-64 Kbps

• ACK flow affects data latency
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Solutions

 Problems arise because of imperfections in the ACK 
feedback

 Reduce frequency of acks
− ACK Filtering (AF)

− ACK Congestion Control (ACC)

 Handle infrequent acks
− Sender Adaptation (SA)

− ACK Reconstruction (AR)

General solution approach for asymmetric situations

ACK Filtering (AF)
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 Purge all redundant, cumulative ACKs from 
constrained reverse queue

 Used in conjunction with sender adaptation or ACK 
reconstruction
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Adaptive extension of TCP delayed ACKs based on 
congestion feedback from router or sender
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 Infrequent ACKs cause slow window growth

 Sender tends to be bursty
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 Regenerates ACKs at other end of reverse channel

 Shields sender from large gaps in ack sequence

 AR rate determined by 

− input ACK rate

− target ACK spacing

1

Bandwidth Asymmetry Performance
− TCP transfers in the forward direction alone

− Maximum window size 100 KB; no losses on forward path

– Header compression helps

– Large reverse channel buffer hurts for Reno and ACC

– Fairness greatly improves using AF and ACC for multiple transfers
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Summary: Asymmetric Effects
 General definition of asymmetry

− Problem: ACK channel impacts TCP performance

 Classification of types of asymmetry
− Bandwidth asymmetry due to technologies

− Latency asymmetry due to MAC interactions

 General solutions: Two-pronged approach
− Reduce frequency of ACKs (AF, ACC)

− Handle infrequent ACKs (SA, AR)

 Status
− BSD/OS 3.0 implementation

− Soon-to-be Internet RFC

Multihop Wireless Simulations

− 1 to 3 wireless hops on path

− Radio turnaround time = 3-12 ms

− Radio queue size = 10 packets

− Exponential backoff in multiples of 20 ms slots

ER
PT

Client

Server

100 Kbps, 
10 ms

10 Mbps
1 ms

PT

PT

Performance: Single Transfer
 AF reduces chances that peer radio is busy

− MAC backoffs less frequent

 Round-trip std deviation reduces from 1.5 s to 0.6 s
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AF: 20-35% throughput improvement compared to Reno

Performance: Concurrent Transfers
 Metrics: utilization and fairness
 Simultaneous connections over 2-hop network

− Performance more predictable and consistent with AF

 Unpredictable performance caused by long timeouts
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Combining Technologies

Internet
server

Internet

Hybrid PoP Client

10 Mbps, 2 ms

Wireless 
transmitter

PTER

Requests & acks

Web data

Wireless cable forward channel with packet radio reverse channel

Workload: Multiple concurrent Web-like transfers

Issues: both bandwidth and latency asymmetries

Main result: Ack filtering tremendously improves scaling behavior 
(average completion time vs. # of concurrent transactions)


