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Abstract Wireless systems using multi-element antenna arrays allocation (water-filling) is used. Also, we compute the mutual
simultaneously at both transmitter and receiver promise a much jnformation leq with equal power allocationof the MEA

higher capacity than conventional systems. Previous studies have system, and we investigate the performance degradation as
shown that single-user systems employing-element transmit and compared t,,.

receive arrays can achieve a capacity proportional tm, assuming We study the behavior of MEA capacities through simula-
independent Rayleigh fading between pairs of antenna elements.

We explore the capacity of dual-antenna-array systems via tlor_1 and analysis. We employ t_he Wireless System Engineering
theoretical analysis and simulation experiments. We present (WISE) [6] software tool to simulate explicitly the channel
expressions for the asymptotic growth rate of capacity withn for ~ '€Sponse between a transmitter and a receiver placed inside an
both independent and correlated fading cases; the latter is derived Office building. We model the multiple-input-multiple-output
under some assumptions about the fading correlation structure. (MIMO) Rayleigh-fading channel as a matiik and study how
We show that the capacity growth is linear inn in both the  C; andleqbehave as grows large. We show almost sure con-
independent and correlated cases, but the growth rate is smaller in  vergence of the asymptotic growth ra@g:/n and'ec{n consid-
the latter case. We compare the predictions of our asymptotic ering two cases: (a) when fadings between different antenna
theory to the capacities of channels simulated using ray tracing, pairs are independent and (b) when these fadings are correlated.
and find good agreement even for moderate, i.e.,1<n <16 . Our . . . .
i The remainder of this paper is organized as follows. In Sec-
results address both the cases when the transmitter does and does . I del the ch | MIMO ith flat f
not know the channel realization. tion ll, we model t e.c anr_le asa . system \_N't aF re-
guency response. Using this mathematical model in Section I,
. INTRODUCTION we present information-theoretic results for the capacity of

Signals propagating through wireless channels experienMEA Systems and analyze its asymptotic growth ratenas
path loss, distortion due to multipath fading, additive noise, ar@fOWs large. In Section IV, we present capacity estimates for
cochannel interference. These impairments, along with the cdit® Simulated channels and discuss the discrepancies between
straints on power and bandwidth, limit the system capacity. [{§€S€ results and the asymptotic capacities predicted by theory.
the past, multiple antennas have been used at the receiver¥g Priefly describe how WIiSE is used to represent the indoor

combat multipath fading of the desired signal, e.g., using mafropagation environment that our study is based on. Conclu-

imal ratio combining [1], or to suppress interfering signals, e.gSiONS are presented in Section V.

using optimal combining [2]. Recent studies report that using L. CHANNEL MODEL
MEAs at both transmitter and receiver increases system i T . )
capacity considerably over single-antenna systems ([3], [4]). In The following notation will be used throughout the paper:
[4], Foschini and Gans consideitransmitting ancdh receiving for vector Franspo_seT, for transpose conjugdtg, for the
antennas, with i.i. d. narrowband Rayleigh fading betweefl X N identity matrix, E[-] for expectation, andinderline for
antenna pairs. Assuming that a fixed power is allocated equalffc©’s-

over all transmitting elements, the MEA mutual informations Basic Channel Model

(leg) is reported to grow linearly witm. An MEA system We consider a single-user, point-to-point communication

achieves almost more bps/Hz for every 3 dB increase in : L . .
: . . . channel withn transmitting anch receiving antennas, with no
signal-to-noise ratio (SNR), compared to a single-antenna :
: : - co-channel interference. We assume that the channel response
system, which only achieves one additional bps/Hz.

. . : . is flat over frequency. This approximation is reasonable if the
In practice, correlation exists between the signals tran

. . . . Tommunication bandwidth), is much less than the coherent
mitted by or received at different antennas. Correlation m

ise if th N | i ; 4 . Handwidth. In our simulated channels, the maximum delay
arise 1t the antenna elements are not spaced lar apar enouﬁyea& is 24 ns. Since the coherence bandwidth is approxi-

e.g., Lee pointed out in [5] that the required antenna spacing ately the reciprocal of the delay spread, the frequency
obtain a correlation coefficient between signals to be less th ponse can be considered flat as longVds m,uch less than
0.7 is approximately 70 wavelengths for the broadside case angd \1Hz

15-20 wavelengths for the inline case. The presence of a domi- We assume that the channel is linear time-invariant and use
nant line-of-sight component can also affect the MEA capac{he following discrete-time equivalent model:

ties.
Here, we explore the MEA capacities in a more realistic Y = HX+ Z. (1)
propagation environment, where the fadings are not necessarily

Rayleigh, nor In_dependent' We determine the capaCify 1. Delay spread here refers to the difference between the arrival times of the
when the transmitter knows the channahd optimum power earliest- and latest-arriving rays having appreciable amplitude.




Here, X = [X;, X, ..., X;]' isannx1 vector whogéh com- whereQ is thenx n covariance matrix oX (Q = E[ XX]),
ponent represents the signal transmitted by jtheantenna. and must satisfy the average power constraint:

Similarly, the received signal and received noise are repre- n

sented bynx1 vectorsY and |, respectively, whgre and tr(Q) = z E[ X2] <Py, (4)
z; represent the signal and noise received atitheantenna.

The complex path gain between transmiftend receiver is
represented byl;; , fdr=1,2,...,nandj =1, 2, ...,n. We fur-

i=1

The achievable capacity ([9]) is:

ther assume that: " .
» The total radiated power B regardiess of. Cu(n) = z log, (Aik) (5)
» The noiseZ is an additive white complex Gaussian random i=1
vector. Its components; i~=1, 2,...,n,are i.i. d. circu-

+
larly symmetric complex Gaussian random variables witihere p satisfiesz BJ—/%B = Pyt » and the\'s are the
varianceE[\Zi\z] = NoW . !

We consider the following two cases: eigenvalues oHHT

1.H is known only to the receiver but not the transmitter. The optimal solution that gives the capacity in (5) is analo-
Power is distributed equally over all transmitting antennagous to the water-filling solutions for parallel Gaussian chan-
in this case. nels [8].

2.His known at the transmitter and receiver. Therefore, power

allocation can be optimized to maximize the achievable rafe: Mutual Information With Equal Power Allocation
over the channel. Here, we assume that equal power is radiated from each

In this work, we treatH as quasi-staticH is considered transmitting antenna, which is a natural thing to do when the
fixed for the whole duration of communication, thus capacity i§ransmitter does not know the channel. The MEA mutual infor-
computed for each realization bf without time averaging. On mation is:
the other handH changes if the receiver is moved from one B 0 Pot O ;
place to the other, which happens over a much larger time scale. !eq(N) = l0g, det[l n* Eowo o H } bps/Hz.  (6)
The capacityC,,s and mutual informatiomeqassociated wititi 0
can be viewed as random variables. C. Asymptotic Behavior of Capacity

We investigate the growth dfgandC,s asn grows large

Channel ¢ v is defined the highest rate at h_fortwo cases: (a) when path gaithg;, are independent, and (b)
apacily Is defined as \gnest rate at Whighhen H;'s are correlated. In both cases, we assume it

information can be sent with arbitrarily low probability of error ., identically distributed complex Gaussian with varianée

[8]. S_inceH i; qL_Jasi-static, it is_ reasonable to assoc@fgto a \ys define the average received SNRas U2Ptot/NOW
specific realization oH, for a fixed P andNgW. Throughout

our analysis, we assuntg; for i, j = 1, 2,...,n, are identically 1. Assuming Independence of Path Gains

distributed with the same varianag” = E[|H;; —E[H;]|"] . Fora givenH, the capacity oh-antenna MEA is given by

We assume than? is the same for all fading gail; for all  (5). TheA’'s are random variables that dependténFor each

positions of the transmitting and receiving MEAs within theim, let F,, be the fraction of\\; less than or equal té with n

respective work spaces. antennas:
Whenn antennas are used, we denote the MEA capacity

and mutual information a€,(n) andle(n), respectively. For

the case with = 1, the capacity IS:P Note thatloqandC,s depend orH only through the empirical

- — tot | 4120] distribution of A;, F4(A). The asymptotic properties (n)
Cur(D) = Tegl1) = log, %H NoW‘H‘ gbpsz.(2) depends on how the distributidf, behaves as appg\gches
infinity. Khorunzhy et al, and Yin studied convergencergfin
[10]-[11]. The following almost sure convergence theorem is
due to the work by Silverstein et al in [12].
A. Capacity With Water-filling Power Allocation Theorem 1. Defin&,(A):= F(nA). Then, almost surely,
In this Section' we assume the transmitter has perfe&n converges to a nonrandom distribution G*, which has a den-

knowledge about the channel. Thi, can be allocated most Sity given by:

[ll. ANALYSIS OF MEA CAPACITIES

FolA) = SE(A <A ™)

In the high-SNR regime, each 3-dB increaségf/NoW yields
a capacity increase of 1 bps/Hz.

efficiently over the different transmitters to achieve the highest 011
possible bit rate, which is given by: = [=-= O0<A<4
gidA) = OnA 4 (8)

"
Cui(n) = mgxlog2 det[l nt HN?VF\'/ ] bps/Hz, (3) EO otherwise.




The scaling bynin the definition ofF, means that thé; are  We verify the validity of this assumption through WiSE simula-
growing as orden. After rescaling, the distribution convergestion. We estimate correlation dfy's empirically from 1000
to a deterministic limiting distribution, i.e. for largg F,,(n\)  realizations oH for n = 2. Comparing the product GI?le and
looks similar for almost all realizations ¢4. Using this the- WR;,with the actual estimate d&[ H,,H ,,[] , close agreement
orem, we derive the asymptotic growth rate Gf(n) as is found consistently between the two over the range of antenna

n - o while keeping the average received SplBonstant. spacings that we consider.
Proposition 1. With almost sure convergence, The asymptotic results in previous section can be extended
Coi(N) to the case when thie;'s are correlated, under certain assump-
i CuiH(p) , where tions on the covariance matricé&X andW. In particular, we

assume that the empirical distributions of the eigenvaluggof

and W' converge to some limiting distributionsg and Fr,

respectively. This will be true if:

 The correlation between the fading at two antennas depends

only on the relative and not absolute positions of the anten-
If we assume the transmitter always allocates an equal nas; and

powerP,/n to each transmitting antenna, the mutual informa- « The antennas are arranged on a regular lattice, such as in

tion is given by (6). Using Theorem 1, we can prove the fol- square grids or linear arrays, and as we scale up the number

4
Cup) = J’O(Iogzw\))* CoHA)dA ©)

- 1
andpu satlsﬁesJ’o _/_(E OUAYAA = p .

lowing proposition. of antennas, the relative positions of adjacent antennas are
Proposition 2. With almost sure convergence, fixed.
l (D) Under the above conditions, it can be shown that almost
—I— _ I{p), where surely, asn - o ,
n
Cui(n)
4 wf o
lf (p) = [ (logy (1+aA)" [GHA)IA.  (10) n ~ CwlFr Frp) (142)
0
With the ab'ove two propositions, we find t.I"@&,f(n) apd andleq(n) ~ ng(FR, Frp) | (14b)
len) scale like nCy* and nlgg", respectively. Using n

L-Hopital's rule, it can be shown that at low SNR, whereC,* andl 4’ are constants that depend only on the SNR

jim S = 4 and the limiting eigenvalues distributions #f andWT. While
p -0 |qu ' these limits can be computed for arbitrary SNR [13], we shall
focus here only on the case when the SNR is high. In this
while at high SNRplirrl Cul-leP=0 . regime, particularly simple expressions can be obtained. It can

be shown that at high SNR,
2. Considering Correlation between Path Gains

o 0
Let WT be annx n matrix whose entr‘y’Tjk is the correla- Cui(Fr Fr. P) = leg(Fr. Fr. P) (15)
tion coefficient between signals transmittedjtilyantenna and 1 R
kth antenna, = log,p +J' log,n " (x)dx
1 0
T 2 2 _
Wik = E[H,H O/ JE[HPIENHT. (A1) +I0|092FT1(X)dX

In our model, we assume thsuTjk does not depend on the

Ry i - L
index of the receiving antenna, ifgcan be arbitrary as long as Where for eack, n(x) is the unique solution to:

pO{1, 2 ...,n}. Similarly, letWR be annx n matrix whose 1 F;l(y)
entry R, is the correlation between signals at recepend IOW y = 1. (16)
receiverq, n (X) X R (y)
R _ 2 2 The approximation in (15) is in the sense that the difference
¥ pa = E[HijQiq/JE[‘HPJ" 1E[[Hg| T (12) goes to zero ag — o . Itis shown in [13] that

and it is also assumed to be independent of the index of the 3 R
transmitting antenna, Iobgzrl (x)dx<-1, (17)

To simplify our analysis, we assume that correlation o equality if and only if fadings are independent at the

Hj’'s when both transmitting and receiving antennas are dify qiver Hence this term quantifies the capacity penalty due to

ferent is the product of the two one-dimensional CorrelatiOEorrelation at the receiver. It can also be shown that
functions mentioned above:

1
log,FT(x)dx <0, 18
ELH o Hod/ JELH ) ZIEL|Hod®] = WRoa k. (13) f logFr(¥) (18)
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Fig. 1. The CCDFs ofC,s (achieved via water -filling) andi, . - ) o
(with equal power allocation) fon = 1, 4, 9, 16, 25 & 36 at Fig. 2. Water-filling gainC,*-%° / lej°'°5 (solid lines) over
receivedp = 18 dB. MEA antennas are arranged in square grids ~ Varying average received SNRfor n =4, 9 and 16. Antennas at
with d = 0.5)\. both the transmitter and the receiver are arranged in square grids

in this case.

with equality if and only if fadings are independent at the trans- . . ]
mitter. This term thus quantifies the capacity penalty due to co- Simulation Results and Discussion
relation at the transmitter. 1. Capacity and Mutual Information of MEAs

In this section, we consider square arrays for compactness.
We considen=1, 4, 9, 16, 25 and 3@,= 0.5A, andp = 18 dB.
A. WIiSE System Model The CCDFs forC,(n) are plotted in Fig. 1 (solid lines). The

We use the experimentally based WIiSE ray-tracinfghtward shift of the curves shows th@,(n) increases with
simulator [6] to generate the channel matkixfor the indoor M because spatial cﬁvgrsﬂy provides addltlonall d(_egrees of
wireless environment of a two-floor office building in Newfreedom for transmission. One performance indicator of
Jersey. We place the transmitting MEA on the first floor ceilingterest is the capacity that can be supported 95% of the time,
near the middle of the office building throughout our study.€-the 5% channel outage. Using a single antenna yields
Receiving MEAs are placed with random rotations at 1000 raffewt " (1) To29 bps/Hz while MEAs with four antennas
domly chosen positions in a room located at intermediate didchieveCy”Y4) = 20 bps/Hz, which is almost three and a
tance from the transmitter. We consider a carrier frequency 8flf times larger. Fon = 36, we can get as high as 106 bps/Hz.
5.2 GHz (wavelength) = 5.8 cm). The MEASs consist of mul- ~ The CDDFs oflg{n) are also plotted in Fig. 1 (dashed
tiple omnidirectional antennas, arranged either in square griiges). The advantage of having channel knowledge at the trans-
or linear arrays within horizontal planes. The separatioRitter for water-filling to be employed is illustrated by the hori-
between antenna elementss the same for both the transmit- zontal gap between the CCDFs@f+(n) andlg(n). For small
ting and receiving MEAs. nsuch as = 4, the difference betweeR,;*°4) andl,*4)

SinceH varies for different receiver locations, we estimatdS only about 1 bps/Hz (about 058/; difference). This gap
the channel variance?, by averaging over 1000 realizations Ofmcr%gses witn, e.g. forn = 36, Cys~"is 11.3 % larger than
H, and over all possible antenna pajr® i. We assume that the leq™
average received SNR as defined in Section I1I-C, should be ~ The relative capacity gain df,(n) overlgn) is sensitive
high enough for low-error-rate communication. If the SNR ig0 P and n Cy,1%9n)/ I,>9n) are plotted in Fig. 2. The gain
too low, we need excessively long codes to achieve a low erréecreases ag increases, and it decreases at a slower rate for
probability. Practical constraints on current A/D convertergrgern. Whenp is small, knowing the channel allows us to
limit the maximum SNR that can be exploited effectively. Thus@llocate power more efficiently to stronger subchannels and
we consider SNRs in the 18-22 dB range. For all our simuldherefore achieve higher capacity as compared to equal power
tions, we assum@ to be 10 MHz, and\, to be -170 dBm/Hz, distribution over all subchannels. Wheris large, there is suffi-
giving a total noise varianddgW of -100.8 dBm. The capacity cient power to be distributed over all sub-channels, therefore
and mutual informationC,(n) and l{n), are computed for the relative strength of the subchannels become less important.
differentn. Forn =4, the ratio decreases from 3@t -10 dB to 1 ap =50

dB for Cyt®OXn)/lgg 2AN).
2. Asymptotic Behavior of MEA Capacities

We study how MEA capacity behaves magrows large in
simulated channels. We only focus on the high-SNR regjne,

IV. RAY-TRACING CHANNEL SIMULATION



_ 120 the number of antennasin the limit of largen. However, in a

I — _ more realistic propagation environment, correlation does exist
3100 1 | — Gu(n) Broadside between antenna pairs and causes a smaller rate of growth in
;8 80 + , capacity. Our simulation results show that for G.Zantenna

C)é spacing, the simulated average capaCify is only 79% of the

€ 60 predicted valuaC,,° for a broadside system with= 16 atp =

f 40 L 22 dB. When the antenna spacing is increased, we see more
2 agreement betwee®,; andnC,°. Indeed withd = 5\, C,s(n)/

< 20 NCy° = 98% whem = 16.
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