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Abstract The first goal of this paper is to explore the MEA
capacities in a more realistic propagation environments
where the fadings are not necessarily Rayleigh nor inde-
pendent. Our work seeks to determine the capaCjy
when the transmitter knows the channahd optimum

Studies show that multiple-element antenna arrays
(MEA) with n transmitters and receivers can achieve
more bits/Hz than single-antenna systems in an inde-
pendent Rayleigh fading environment. In this paper, we ) oV '
explore the behavior of MEA capacities in a more realis- POWer allocation(waterfilling) is used. Secondly, we
tic propagation environment simulated via the WiSE ray cOmMpute the mutual informatiofyq with equal power
tracing tool. We impose an average power constraint angallocationof the MEA system and investigate the perfor-

collect statistics of the capacit,; and mutual informa- ~ Mance degradation when compare@yg.
tion lgq In addition, we derive mathematically the We study the behavior of MEA capacities through

asymptotic growth rate€,,/n andleo(n as n o o for simulation and analysis. For simulation, we use the
two cases: (a) independent fadings and (b) spatially cor- WISE (Wireless System Engineerifidp] software tool
related fadings between antenn@,/n and le¢fn con- to model explicitly the channel response between a trans-
verge to constantS,* and o, respectively iﬁ case (a) mitter and a receiver placed inside an office building. For
and t0C,° and |er in casgq(,b).cwfo and quo predict " analysis, we model the multiple-input-multiple-output

very closely the slope observed in simulations, even at (MIMO) Rayleigh-fading channel as a matrid. We
moderatan = 16. study howC,; andlggbehave as grows large. We show

almost sure convergence of the asymptotic growth rate
I. Introduction Cwt/n andlgqn considering two cases: (a) when fadings

The signals propagating through the wireless channelbetween different antenna pairs are independent and (b)
experience path loss and distortion due to multipath When these fadings are correlated.
fading and additive noise. These impairments, along with ~ The remainder of this paper is organized as follows.
the constraints of power and bandwidth, limit the system N Section Il, we model the channel as a MIMO system
capacity. In the past, multiple antennas are used at theWith flat frequency response. Using this mathematical
receiver to combat multipath fading of the desired signal, model in Section IIl, we present information-theoretic
e.g. maximal ratio combining mentioned in [1], or to results for the capacity of MEA systems and analyze its
suppress interfering signals, e.g. optimal combining in @Symptotic growth rate as grows large. In Section 1V,
[2]. Recent studies report that using MEAs at both ends We present capacity estimates for the simulated channels
delivers significantly higher bit-rates than single-antenna a@nd discuss the discrepancies between these results and
systems ([3], [4]). In [4], Foschini and Gans consider the asymptotic capacities predicted by theory. We briefly
transmitting andh receiving antennas, with i.i. d. nar- describe how WIiSE is used to represent the indoor propa-
rowband Rayleigh fading between antenna pairs. gation environment that our study is based on. Conclu-
Assume that power is allocated equally over all transmit- SIONs are presented in Section V.
ters, t_he MEA_mutuaI |nformgt|onléo) is reported _to Il. Channel Model
grow linearly withn for a given fixed average transmitter . i )
power. An MEA system achieves almasmore bits/Hz The following notation will be used throughou_t the
for every 3 dB increase in signal-to-noise ratio (SNR), Paper:’ for vector transposé, for transpose conjugate,
compared to the single antenna case, which only I, for 'Fhenx n identity matrixF[-] for expectation, and
achieves one additional bit/Hz. underline for vectors.

In practice, correlation exists between the signals A. Basic Channel Model
transmitted by or received at different antennas. Correla-
tion may arise if the antenna elements are not spaced far
apart enough, e.g., Lee pointed out in [5] that the

We consider a single-user, point-to-point communi-
ation channel withn transmitting andn receiving

. - " . ~ "% antennas, with no co-channel interference. We assume
required antenna spacing to obtain correlation coefﬂuentthat the channel response is flat over frequency. This

between signals to be less than 0.7 is approximately 70,,5r0ximation is reasonable if the communication band-
wavelengths for broadside case and 15-20 wavelengths

for inline case. The presence of a dominant line-of-sight
component can also affect the MEA capacities.

+ WISE is a ray tracing tool that predicts RF propagation in a
specific  building, based on off-line experimental
measurements.
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our simulated channels, the maximum delay sptdad

24 ns. The coherence bandwidth is approximately the
reciprocal of the delay spread, which is 42 MHz. There-

fore the frequency response can be considered flat as C, (1) = l,4(1) = log, EH

long asW is much less than 40 MHz.
We assume that the channel is linear time-invariant
and use the following discrete-time equivalent model:

@)

X = [Xq, Xy ..., X7]" is@annx 1 vector whos@h com-
ponent represents the signal transmitted by jtie
antenna. Similarly, the received signal and received noise
are represented byx 1  vectods, and |, respectively,
wherey, andz represent the signal and noise received
at theith antenna. The complex path gain between trans-
mitter j and receivef is represented byd;; , far=1, 2,
...,nhandj=1, 2, ...n. We further assume that:

* The total radiated power B regardless of.

* The noiseZ, is an additive white complex Gaussian

random vector. Its componentg; i1, 2, ...,n,
are i.i. d. circularly symmetric complex Gaussian
random variables with varianEe{\Zi\z] = NoW

We consider the following two cases:

1. H is known only to the receiver but not the trans-
mitter. Power is distributed equally over all trans-
mitting antennas in this case.

2. H is known at the transmitter and receiver. There-
fore, power allocation can be optimized to maxi-
mize the achievable rate over the channel.

In this work, we treaH as quasi-statidd is consid-
ered fixed for the whole duration of communication, thus
capacity is computed for each realization Hfwithout
time averaging. On the other hanH, changes if the
receiver is moved from one place to the other, which hap-
pens over a much larger time scale. The capdgjyand
mutual informationl ¢, associated with can be viewed
as random variables.

Y = HX+Z

lll. Analysis of MEA Capacities

Channel capacity is defined as the highest rate at
which information can be sent with arbitrarily low proba-
bility of error [8]. SinceH is quasi-static, it is reasonable
to associaté€,,; to a specific realization dfl, for a fixed
Piot and NgW. Throughout our analysis, we assuid
fori, j =1, 2,...,n, are identically distributed with the
same variance” = E[|H;; —El Hij]\z] . We assume that
v2is the same for all fading gaiR;; for all positions of
the transmitting and receiving MEAs within their respec-
tive work spaces.

vviicit 11 alitcliiias alc uoscu, VWwce Jucliulc uic wvieA
capacity and mutual information a,(n) and lg(n),
respectively. For the case with= 1, the capacity is:
Ptot
N W

HI’H bps/Hz. (2)

In the high-SNR regime, each 3-dB increaségf/NoW
yields a capacity increase of 1 bps/Hz.

A. Capacity With Water-filling Power Allocation

In this section, we assume the transmitter has perfect
knowledge about the channel. Thi#,; can be allocated
most efficiently over the different transmitters to achieve
the highest possible bit rate, which is given by:

HQH!
NoW

max

Q

Cyi(n) = |ogzdet[|n+ } bps/Hz, (3)
where Q is the nxn covariance matrix ofX
(Q = E[ XX), and must satisfy the average power con-

straint:

Q=3 E[XF] <Py )
The achievable capacity ([9]) is:
Curln) = 3 log, (Am) . (5)

. 1 _
wherep SatISerSZ B,l “AO T Pt >
andA;'s are the eigenvalues &fH"
The optimal solution that gives the capacity in (5) is
analogous to the water-filling solutions for parallel Gaus-
sian channels [8].

B. Mutual Information With Equal Power Allocation

Here, we assume that equal power is radiated from
each transmitting antenna, which is a natural thing to do
when the transmitter does not know the channel. The
MEA mutual information is:

1 Prot Oyt

et prs/Hz. (6)

leg(n) = Iog2 det[l nt

C. Asymptotic Behavior of Capacity

We investigate the growth dfqandC, asn grows
large for two cases: (a) when path gaiHg, are indepen-
dent, and (b) whehiij 's are correlated. In both cases, we
assume that;'s are iderzltically distributed complex
Gaussian with variancew™ . We define the average
received SNR ap = uthot/ NoW

1. Assuming Independence of Path Gains
For a givenH, the capacity ofn-antenna MEA is

I Delay spread here refers to the difference between the 91Ve€N Dy (5). The\;'s are random variables that depend
arrival time of the earliest strong ray and the last strong ray that On H. For each, let F, be the fraction of\; less than or
arrive at the receiver. equal toA with n antennas:
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Note thatlgq and Cy depend onH only through the
empirical distribution of\;, F(A). The asymptotic prop-
erties of C,s(n) depends on how the distributioR,
behaves a& approaches infinity. Khorunzhy et al, and
Yin studied convergence df, in [10]-[11]. The fol-
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Let WT be annx n matrix whose entry'” is the
correlation coefficient between signals transmittegthy
antenna an#éith antenna,

¥k = E[HyH 07 JE[H,“TEl Hol )

In our model, we assume tha{Tjk does not depend on

(11

lowing almost sure convergence theorem is due to thethe index of the receiving antenna, ipecan be arbitrary

work by Silverstein et al in [12].

Theorem 1. DefineGy(A):= F,(nA\). Then, almost
surely,G,, converges to a nonrandom distribution G*,
which has a density given by:

Op 1 1
= |=—=
gE(/\):ET[ A 4

00

0<A<4
®)

otherwise.

The scaling by in the definition ofF, means that the
N; are growing as orden. After rescaling, the distribu-
tion converges to a deterministic limiting distribution, i.e.
for largen, F(nA\) looks similar for almost all realization
of H. Using this theorem, we derive the asymptotic
growth rate of Cy¢(n) as n — o while keeping the
average received SNRconstant.

Proposition 1.With almost sure convergence,

wa(n)

- C.:L(p) , where

Cullp) = [ (logy (A) EIMAA  (©)

.4 17
andu satlsflesj'0 —/—\E HA)IA = p .

as long aspO0{1,2 ..,n} . Similarly, letR be an
nxn matrix whose entryWRpq is the correlation
between signals at receiyeand receiveg,

WRoa = E[HpHg O/ JEL|H, 1ELHg) ]

and it is also assumed to be independent of the index of
the transmitting antennp,

To simplify our analysis, we assume that correlation
for Hjj's when both transmitting and receiving antennas
are different is the product of the two one-dimensional
correlation function mentioned above:

=[H pHq O/ JE Hp TEl Hed 1 = WRoq W 1. (13)

We verify the validity of this assumption through WIiSE
simulation. We estimate correlation bfj's empirically
from 1000 realizations oH for n = 2. Comparing the
product of WT;, and WR;, with the actual estimate of
E[H;H,,[, close agreement is found consistently
between the two over the rangedahat we consider.

The asymptotic results in previous section can be
extended to the case when tHg's are correlated, under
certain assumptions on the covariance matri&sand
W' In particular, we assume that the empirical distribu-
tions of the eigenvalues &< and¥' converge to some
limiting distributionsFg and F+, respectively. This will

(12)

If we assume the transmitter always allocates an pg trye if:

equal powerPy/n to each transmitting antenna, the
mutual information is given by (6). Using Theorem 1, we
can prove the following proposition.

Proposition 2. With almost sure convergence,

I oo(N)
% — legHp) , where

4
ledp) = [ (log, (1+an) HA)IA.  (10)
With the above two propositions, we find th@y(n)
andln) scale likenC,s* and nleg", respectively. Using
L'Hopital’s rule, it can be shown that at low SNR,

while at high SNRJim C,l-1.1=0
p — 00

« the correlation between the fading at two antennas
depends only on the relative and not absolute posi-
tions of the antennas; and

« the antennas are arranged on a regular lattice, such as
in square grids or linear arrays, and as we scale up the
number of antennas, the relative positions of adjacent
antennas are fixed.

Under the above conditions, it can be shown that
almost surely, ag - o

wa(n)
n

- Cos(Fr: F1. P) (14a)

and

- leg(Fr Fr.0) (14b)

l eg()
n
where C,:° and quo are constants that depend only on
the SNR and the limiting eigenvalues distributionskst
and¥". While these limits can be computed for arbitrary
SNR [13], we shall focus here only on the case when the
SNR is high. In this regime, particular simple expres-
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limit the maximum SNR that can be exploited effec-

Cui(Fri Fr.P) = lgo(Fr. Fr. P) (15) tively. Thus, we consider SNRs in the 18-22 dB range.
1 R For all our simulations, we assuriéto be 10 MHz, and
=|0929+I0|092fl (x)dx No to be -170 dBm/H%, giving a total noise variance
1 a NgW of -100.8 dBm. The capacity and mutual informa-
* [, 109zFr (x)dx tion, C,y¢(n) andle(n), are computed for different

B. Simulation Results and Discussion

Ry i ; ; .
where for eaclt, "(x) is the unique solution to: 1. Capacity and Mutual Information of MEAS

1 Fgl(y) In this section, we consider square arrays for com-
Ioﬁ =1 (16) pactness. The receivers are placed in room A. We con-
n"(x) +xFe (y) sidern =1, 4, 9, 16, 25 and 3@ = 0.5\, andp = 18 dB.

The approximation in (15) is in the sense that the dif- 1he CCDFs foiC(n) are plotted in Fig. 2 (solid lines).

ference goes to zero @s— o . Itis shown in [13] that The rightward shift of the curves shows th&(n)
increases witm, because space diversity provides addi-
_[1|092rl R(x)dxs—l, (17) tional spatial _degrees of _freedom_ for transmi_ssion. One
0 performance indicator of interest is the capacity that can

be supported 95% of the time, i.e. 5 % channel outage.
Using a single antenna yield3,;*°X1) = 5.9 bps/Hz
while MEAs with four antennas achie,;%-°4) = 20
bps/Hz, which is almost three and a half times larger. For
n = 36, we can get as high as 106 bps/Hz.

The CDDFs ofl(n) are also plotted in Fig. 2
(dashed lines). The advantage of having channel knowl-
. . i ) ) edge at the transmitter for water-filling to be employed is
with eqyal'tﬁ';_and Onliq'f fadlngs_fgre |rr11depend_ent at thle illustrated by the horizontal gap between the CCDFs of
transmitter. This term thus quantifies the capacity penalty - -
due to correlation at the transmitter. gr\q,é?)baeTvt\ille%ﬁ;&r(%mﬂlg Iijoggﬁi?is gﬁl?igcl)f{ft)rl

; ; ; bps/Hz (about 5% difference). This gap increases w;jth
IV. Ray-Tracing Channel Simulation Ps (_ P ?) 9ap Increas
e.g. forn=36,Cy;~is 11.3 % larger thahyy

with equality if and only if fadings are independent at the
receiver. Hence this term quantifies the capacity penalty
due to correlation at the receiver. It can also be shown
that

J’(l)long}l(x)dx <0, (18)

A. WISE System Model The relative capacity gain (ﬁwg(n) over lgn) is
We use the experimentally based WISE ray tracing sensitive top andn. C,®%Xn)/ I,>*n) are plotted in
simulator [6] to generate the channel matkixfor the Fig. 3. The gain decreases@sicreases, and it decreases

indoor wireless environment of a two-floor office at a slower rate for largar. Whenp is small, knowing
building in New Jersey (see Fig. 1). We place the trans- the channel allows us to allocate power more efficiently
mitting MEA on the first floor ceiling near the middle of to stronger subchannels and therefore achieve higher
the office building throughout our study. Receiving capacity as compared to equal power distribution over all
MEAs are placed with random rotations at 1000 ran- subchannels. Whemis large, there is sufficient power to
domly chosen positions in Room A, which is at interme- be distributed over all sub-channels, therefore the relative
diate distance from the transmitter. We consider a carrier strength of the subchannels become less importanin For
frequency of 5.2 GHz (wavelength, = 0.58 cm). The = 4, the ratio decreases from 3@t -10 dB to 1 atp =
MEAs consist of multiple omnidirectional antennas, 50 dB forC%%n)/leq>-"Xn).

arranged either in square grids or linear arrays within 2. Asymptotic Behavior of MEA Capacities

horizonta! planes. The separation between antenna ele We study how MEA capacity behave agrows large
men_ts_d is the same for both the transmitting and in simulated channels. We only focus on the high SNR
receving MEAS.' . . . regime,p = 22 dB. SinceC,(n)/len) is close to 1 for
_SlnceH varies for dl_fferent recelver_locatlons, we high SNR, we only consider water-filling capady; .
estimate the channel variancg by averaging over 1000 For simplicity, we consider linear arrays where the

_re\l';\\lllzatlons O':H atrl[ﬂ over all pOSS|bI_e adntenna dp&:‘]i:lm d antenna-elements of MEA are equally spaced with two
I. We assume that the average received SN&S define antenna spacingst = 0.5\ and 5A. The transmitting

in Section IlI-C, should be high enough for low-error- -, placed orthogonal to the long dimension of the
rate communication. If SNR is too low, we need long

codes to provide enough redundancy to combat the noise + Typical two sided power spectral density of thermal noise at

so that we can recover the desired signal with low error 300 k (room temperature) for a receiver that is modeled as a 50
probability at the receiver. The practical constraints on o resistance is -170.8dBm/Hz.




Haliwway \ Diuauosiuc  dliallyclliclit as 1l [J]). vWC CTol= pPdllo dllu LAaustTo a SiialiCl TalC Ul gliovwi i i capatity. Uul

mate the variance®  and eigenvalues of the covariancesimulation results show that for 0% antenna spacing,

matrix to computeC,* andC,° using (9) and (15). the simulated average capaci®y; is only 79% of the
The average capacii§,s(n) for differentn is com- predicted valueC,;° for n = 16 in the case of broadside

puted using 1000 realizations Bf and is plotted in Fig.  with p = 22 dB. When the antenna spacing is increased,

4 for d = 0.5A and5 A. The lighter dashed lines are we see more agreement betwe®gy andnC,:°. Indeed

capacity approximated using the asymptotic growth rateswith d= 5\, C+(n)/nC,° = 98% whem = 16.

for correlated case, i.e. straight lines with sloBg;°.
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Fig. 1. Floor Plan for the office building modeled in WIiSE.
The transmitting MEA is placed with its adjacent sides
parallel to x-axis and y-axis, respectively. The receiving
MEA is placed with random orientation at each of the
sample location in room A.
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Fig. 3. Water-filling gain Cy%%/1eq%% (solid lines) over
varying average received SNR, p, in room L147 for n = 4,
9 and 16. Antennas at both the transmitter and the
receiver are arranged in square grids in this case.
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Fig. 4. The average capacity C,(n) is plotted against n.
We consider linear arrays with the transmitting MEA
placed parallel to the y-axis (broadside case). nC, and
nC, are asymptotic results for correlated and
independent Hj;, respectively (Section III-C).
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theory considering correlated Hjjs.
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