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Capacity Scaling in MIMO Wireless Systems Under
Correlated Fading
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Abstract—Previous studies have shown that single-user systems Foschini and Gans have analyzed the information-theoretic
employing n-element antenna arrays at both the transmitter and  capacity of MEA systems in a narrow-band Rayleigh-fading en-
the receiver can achieve a capacity proportional tor, assuming ironment [3]. They consider independent and identically dis-
independenRayleigh fading between antenna pairs. In this paper, tributed (i.i.d ) fadi t diff t ant | t d
we explore the capacity of dual-antenna-array systems undegor- ributed (i.i.d.) 5_‘ Ing atdiierent antenna eiements, gn assume
related fadingvia theoretical analysis and ray-tracing simulations. that the transmitter does not know the channel. Wittrans-

We derive and compare expressions for the asymptotic growth rate mitting andn receiving antennas, the MEA mutual information
of capacity with » antennas for both independent and correlated with equal-power allocatiof, is reported to grow linearly with
fading cases; the latter is derived under some assumptions aboutn for a given fixed average transmitter power. An MEA system

the scaling of the fading correlation structure. In both cases, the hi Imost bit hertz f 3-dB |
theoretic capacity growth is linear in n but the growth rate is achieves aimost more DItS per hertz for every 5-ab Increase

10-20% smaller in the presence of correlated fading. We analyze in signal-to-noise ratio (SNR) at high SNR, compared to the
our assumption of separable transmit/receive correlations via single-antenna case, which only achieves one additional bit per
simulations based on a ray-tracing propagation model. Results hertz for every 3-dB increase in SNR.
show that empirical capacities converge to the limit capacity | practice, correlation exists between the signals transmitted
predicted from our asymptotic theory even at moderaten = 16. . . )

by or received at different antenna elements. Correlation can

We present results for both the cases when the transmitter does ~7 =" | o
and does not know the channel realization. arise if the elements are not spaced sufficiently far apart. For

| . : . example, Lee pointed out in [5] that in order to obtain a correla-
ndex Terms—Asymptotic capacity growth, correlated fading, . - .
multiantenna arrays, multiple-input-multiple-output (MIMO)  tion coefficient at adjacent elements less thah the elements
systems, ray tracing. must be spaced by about 15-20 wavelengths in the broadside
case and 70 wavelengths in the inline case. The presence of a
dominant line-of-sight component can also affect the MEA ca-
pacities. Itis important to understand the impact of these factors
N response to the demand for higher bit rates in wireless MEA system capacity.
I local-area networks (LANS), researchers have explored theThe goal of this paper is to explore the capacities of single-
use of multiple-element arrays (MEAS) at both the transmittesser MEA systems in a more realistic propagation environment,
and the receiver. Signals propagating through the wirelesbere the fading is correlated. We consider the performance
channel experience path loss and distortion due to multipathtwo scenarios: 1) the transmitter knows the channel, so that
fading and additive noise. These impairments, along with tloptimal transmit power allocation (also known as water filling)
constraints of power and bandwidth, limit the system capacisan be used; 2) the transmitter does not know the channel, so
In the past, multiple antennas have been used at the receivahtt equal power is allocated to each of the transmit antenna
combat multipath fading, e.g., using maximal-ratio combininglements. In both cases, it is assumed that the receiver knows
[1], or to suppress interfering signals, e.g., using optimal cortite channel perfectly. We study the behavior of MEA capacities
bining [2]. Recent studies report that in single-user, point-téhrough analysis and simulation.
point links, using MEAs at both transmitter and receiver The multiple-input—-multiple-output (MIMO) fading channel
increases the capacity significantly over single-antenna systeisisnodeled as a random matri. The water-filling capacity
[3], [4]. C,, and the mutual information under equal power allocafipn
of an by n system are random variables, being functions of the
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compared to the independent fading case, while the growth raté-or the remaining analysis and discussions, we assume that

of C,, is smaller at high SNR but larger at low SNR. the channel is linear and time-invariant and use the following
Our hypothesized fading correlation structure is studiatiscrete-time equivalent model:

carefully via simulation based on a ray-tracing propagation

model. We use the WIiSE (Wireless System Engineering) [6] Y=HX+Z 1)
software tool to model explicitly the channel response between . ‘
a transmitter and a receiver placed inside an office building.X = [z1, z2, ..., 27]"is ann x 1 vector whosgth compo-

Comparing the empirical capacity distribution with the asymgrent represents the signal transmitted by;itheantenna. Simi-
totic theory, reasonable agreement is found even for modert@y. the received signal and received noise are represented by
n < 16. Initial results can be found in [7] and [8]. We alsg® X 1 vectors)Y andZ, respectively, wherg; andz; represent
quantify the capacity improvements achieved by water fillingie signal and noise received at thle antenna. The complex
over the equal power strategy empirically at different SNR&th gain between transmitteand receivef is represented by
levels. {Hij: i, =1,2,...,n}.

An alternative approach to ray-tracing simulations is to use We further assume the following.
scatt.ering mpdels [9],[12] to charapterize the.spatial fading cor- , The total average power (sum over all transmitting an-
relations. In independent work, Stetial.quantify the effect of tennas) isP,., regardless of..
fading correlations on MEA capacity in [13] by employing such
an abstract scattering model.

The remainder of this paper is organized as follows. In Sec-
tion I, we model the channel as a MIMO system with flat fre-
guency response. Using this mathematical model, we define in-
formation-theoretic capacity and mutual information of MEA
systems in Section I, and analyze their asymptotic behavior as
n — oo in Section IV. In Section V, we present capacity esti-
mates for the simulated channels and discuss the discrepancies
between these results and the asymptotic capacities predicte¥e consider the following two cases.

by theory. We briefly describe how WIiSE is used to model the 1) 7 is known only to the receiver but not the transmitter.

indoor propagation environment that our numerical analysis is * pgweris distributed equally over all transmitting antennas
based on. We also include details about placements of transmit- i, this case.

ting and receiving MEAs, arrangement of antennas in an array, . _ .

and basic assumptions about the antenna elements. Conclusior@ His ‘“?OW” atthe ”ar.‘s'.‘”““er and recelver, so thaF power

are presented in Section V. allocation can be optimized to maximize the achievable
To simplify notations, we will focus exclusively on the case rate over the channel.

when the number of transmit antenna is equal to the numbein this work, we treafd as quasi-staticd is considered fixed

of receive antennayby n systems). The extension of the anafor the whole duration of communication, so that the capacity

lytical results to the case with unequal number of transmit afglcomputed for each realization &f without time averaging.

» The noise vectoZ is an additive white complex Gaussian
random vector, whose entrid%;, i = 1, 2, ..., n}are
i.i.d. circularly symmetric complex Gaussian random vari-
ables with variance

E[12]"] = NoW

whereW is the signal bandwidth.

receive antennas is straightforward. On the other handd changes if the receiver is moved from one
place to the other, and we assume this will happen over a time
[I. CHANNEL MODEL scale much longer than the duration of communication. The as-

sociated capacity and mutual informati6k, and,, for each
specific realization ofH can be viewed as random variables.
We are interested in studying the statistics of these random vari-
ables, in particular, the averagés, and, and the values at
5% channel outage;9-*> and72-95.

The following notation is used throughout the papefor
vector transpose, for transpose conjugaté, «,, for the iden-
tity matrix, E[-] for expectation, andnderline for vectors. All
logarithms are with respect to bage

We consider a single-usérpoint-to-point communication
channel withn transmitting anch receiving antenna elements,
denoted as afn, n)-MEA system. We assume that the trans-
mitted signal occupies a bandwidi¥i, over which the channel  Channel capacity is defined as the highest rate at which in-
frequency response is essentially constant. For this assumpfimmmation can be sent with arbitrarily low probability of error.
to be valid,W must be much smaller than the channel cohegince the channdll is considered quasi-static, it is reasonable
ence bandwidth, which is approximately the reciprocal of the associate the capacity to a specific realizatiorHgfgiven
channel delay spre&dSince the maximum delay spread of oun fixed average total powe¥,,; and noise varianc&,W (see
channels is about 25 ns, we require tHabe much less than 40 Section Il for channel model and assumptions). Throughout our
MHz. Assuming zero excess bandwidth, this requires a symlaolalysis, we assume théH,;: ¢, j = 1, 2, ..., n} are iden-
rate much less than 40 Mbaud. tically distributed with the variance normalized to beThere-

fore, the average received SNR is defined as

1, transmitting antennas are colocated, and so are the receiving antennas.

2Here, delay spread refers to the difference in arrival times of the earliest and _ Prot

latest strong rays. p NW-

I1l. MEA CAPACITY AND MUTUAL INFORMATION
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Whenn antennas are used, we denote the MEA capacity withApplying singular-value decomposition #, we can write
water filling and mutual information with equal-power alloca{7) as
tion asC,, andI,, respectively. For the case with = 1, the

Shannon capacity is I — Z log <1 n p)\i> .
C) = I, =log (14 p|Hy|?) bisiHz. @) i=1 K
In the high-SNR regime, each 3-dB increasepofields a
capacity increase of 1 b/s/Hz. IV.  ASYMPTOTIC ANALYSIS
The capacityC,, and mutual informatior?,, depend onH,
A. Capacity With Water-Filling Power Allocation which is random in a fading environment. We analyze the

In this subsection, we derive the MEA capadity assuming asymptotic behavior of,, andC,, asn — oc for two cases:
the transmitter has perfect knowledge about the channel. Withwhen theH;; are independent, and b) when t#&; are
this knowledge of the channel, the total transmit power can gerrelated. Our analysis is based on the channel model and
allocated in the most efficient way over the different transmiproperties described in Sections Il and Ill. In all cases, we
ters to achieve the highest possible bit rate. Based on the mou@imalize E[|H;;|?] = 1 for all 4, j. For clarity, let us use
in Section Il and definitions in [14], the MEA capacity with op-I.(H) andC,,(H) to explicitly denote the dependency éh
timal power allocation is

A. Independent Fading

- . i
n = X logdet [Lxn +pHQH'] bisiHz - (3) We first assume that the path gaiHs; are i.i.d. for alli and

4. We scale up the size of the MEA by lettinggrow large. For

where( is then x » covariance matrix o and@ must satisfty e4chy, et ;, be the empirical distribution of the eigenvalues

the average power constraint of HH' ie. for each\
tr(Q) = E[|z:]’] < Pios. 4) Fa()) = 1 HL A < )\}‘
=1 n
The optimal solution is the fraction of squared singular valuestbiess than or equal to
. A. Note that since the singular values are random, so is the em-
_ loe( X )+ pirical d!StI’IbUtIOI’]. An important obs_ervanon is that, frqm the
Cn ; og( i) ®) expressions (5)—(7), both the capacity and the mutual informa-
B tion under equal-power allocation dependsironly through
wherey, satisfies the empirical distribution of the eigenvalues. The asymptotic
+ properties of the random variablé$ (H) and{,,(H) hinge on
Z <u _ i) _ (6) how the (random) empirical distribution of the singular values
- Ai behaves as — oo. We have the following theorem (see, e.g.,
[15)).

and the); are the eigenvalues ¢f H'. ) .
The optimal solutions given in (5) and (6) are analo- Theorem IV.1:Define G(A) := Fy(nA). Then almost

gous to the optimal power allocation calculated through t%rely,Gn converges in distribution to a limi*, which has a

water-filling algorithm for parallel Gaussian channels [14 density given by
Intuitively, (5) and (6) suggest that the original MIMO channel
can be decomposed into parallel independent subchannels, () = { 13-4 0<A<4 ®)
and we allocate more power to the subchannels with higher

SNR pA;. Here,u is the “water level” that marks the height

of the power that is poured into the “water vessel” formed byigreover, if \ax(HHT) is the largest eigenvalue df H'

the function{1/A;, ¢ = 1, 2, ..., n}. Each of these subchan-inen aimost surely

nels contributes to the total capacity througlg 2(\;z)*. If

Aip > 1, we say that this subchannel provides an effective C Nma(HHY)
mode of transmission and is calledtong eigenmode nh—1>go -, =

B. Mutual Information With Equal-Power Allocation . . : . . .
This result says several interesting things. First, the scaling by

Inthis case, we assume that equal power is radiated from eaGfj the definition ofc,, means that the eigenvalues are growing
transmitting antenna, which is a natural thing to do when thg the order ofn. After rescaling, the random distribution con-
transmitter does not know the channel. The mutual im‘ormati%rges to aleterministidimiting distribution, i.e., for largen,
of (n, n)-MEAs with equal-power allocation is the empirical distribution of the eigenvalues looks similar for al-

p most all realizations off. Moreover, the limit does not depend
I, = logdet [Ian + gHHq b/s/Hz (7)  on the distribution of the entrie&,,.
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The asymptotic behavior of the mutual informatiép(H) for all ¢ > 0. This is because almost-sure convergence implies

follows directly from this proposition convergence in probability. This means that for lang¢he ca-
N . pacity becomes insensitive to the realizatiodbfSimilar com-

I,(H) _ lz log (1 + B&) _>/ log(1+ pA)g*(A) dA ments apply to the scaling df,(H). .

n n i n 0 We now comparel*(p) and C*(p) in both the low- and

high-SNR regimes.

where the convergence is almost surely. This observation wa\g g3 first-order approximation, at low SNR
previously made by Foschini [3]. The integral can actually be .
computed in closed form, as was done in [16] in the context of w0\ ) *
a related capacity analysis problem for randomly spread code- o) = /0 log(1 +pA))g"(A) dA
division multiple-access (CDMA) systems.

4
~ p/o Ag*(N) dA
=p. (12)

3 2
=2log (1+ Vidp+1 ) - l(;g ¢ (« /4p+1— 1) . (9) We observe that at Iow SNR; (p) dgpgndg only on the average
o SNR and not on the eigenvalue distributigh

We now turn to the water-filling capacity. By relabeling the For the capacity, we calculate

4
I"(p)= /0 log(14pA)g*(A) dA

parametey. as,, /n we can rewrite (5) and (6) as dC*(p) 1 a3
C.(H) 1 2"21 ey + dp W
noon ~ B\ b wherep* is the water-filling level. As approaches, p* ap-

proaches}I. To first order, at low SNR
wherey,, satisfies

. . C*(p) = 4p
1 n
- > (- v = (10) and we conclude that
i=1 ¢
. o lim o) _ 4
Asn — oo, the empirical distribution ok; /n converges almost p—0 I*(p)

surely to a limit with densityg*. From (10), we see that,,

converges tg.* satisfying the equation Hence, the water-filling strategy affords a significant perfor-

mance gain over the constant-power strategy at low SNR. The

A + . intuition is that when there is little transmit power, it is much
/0 <“ - X) g\ dr=p more effective to expend it on the strongest eigenmode of the
system (with gainl) rather than spread the power evenly across

andC,,(H)/n converges almost surely to all modes.
4 Next we consider the high-SNR regime. Using the explicit
C*(p) = / log(Ap" ) g* () dA. (11) expression (9), we see thatas— oo
0

Thus, when both the transmitter and the receiver have per- o) =log(p/e) +o(1)
fect knowledge of the fading channel, the capacity scales likeresult already noted in [3].
nC*(p), whereC*(p) can be interpreted as the capacity of a At high SNR, it is well known that the water-filling and the
fading channel with fading distributiog® when water filling constant power strategies yield almost the same performance
over the fading state is performed [17]. Similarly, when only the
receiver has knowledge of the channel and the transmitter allo- Jim [€7(p) = I (p)] = 0
cates an equal amount of power to each transmit antenna, the
achievable mutual information scales liké*(p), wherel*(p) and henceC*(p) has the same high-SNR approximation of
can be interpreted as the mutual information achieved by usih)@?(p/@)-
constant transmit power in a fading channel with the gain dis-Although water filling does not always give significant ca-
tributed asy*. We conclude that bott?,, (H) and.,,(H) scale Pacity improvements over the equal-power strategy, the perfect
linearly withn but the rate of growth is larger fa¥,, than is for channel knowledge at the transmitter often leads to easier and
I,,. Moreover, if we letC< be thec-outage capacity, i.e., suchmore reliable implementations of the receiver, since the receiver
that can now be dealing with decoupled channels instead of having
to perform cancellation and nulling.
P(C(H) S Cp)=c
B. Correlated Fading

then the above results implies that 1) Correlation Model: In the previous subsection, we as-

. © . sumed that the fades between different antenna pairs are inde-
nlggo o C*(p) pendent of each other. We will now consider the situation when
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the fading between antenna pairs is correlated. While the restsst at all frequencies, then the limiting eigenvalue distributions
we obtained for the independent fading case holdsifyrdis- F; and Fr of 7 and U# exist. For a givene > 0, Fr(x)
tribution of the individual #;;, the results we present here foiis the fraction of frequencies in the power spectral density of
the correlated case are only for the case of a Rayleigh-fadififf1: £ = 1, 2, ...} with power less than or equal to Moti-
model. Each of thé{;; are assumed to be complex, zero-meanated by this example, we will in general define

circular symmetric Gaussian random variables with variance L L

E[|H;;|?] = 1. The H;; are jointly Gaussian with the following  Sr(w) := F~(w), Sr(w):=I; (v),  we[0, 1]

covariance structure: ) o . .
Sr and St defined in this way is always nondecreasing from

. IR to 1. One can think oz andST as power spectral densities ex-
E[HpiHy] = V¥, cept that the frequencies are reordered such that they are always
nondecreasing functions af In the results to be presented, the

where¥" and " aren by n covariance matrices. This fadingordering is immaterial and only the distribution of powers is rel-
model embodies three assumptions. evant. We also observe that

» The correlation between the fading from transmit antennas 1 1

p andq to the same receive antennali§, and does not / Sp(w)dw = / Sp(w)dw =1

depend on the receive antende describes th&ransmit 0 0

correlation becauser[|H;;|?] = 1 forall 4, j.
It should be noted that the power spectral densities of some
ding correlation models may not exist at all frequencies. An
example is Jakes’ model [1], with the “U-shaped” power spec-
tral density which is bounded over only a finite interval. The
reason is that the autocorrelation function decays slowly as a
 The correlation between the fading of two distinct antenrfanction of distance, like } The results below do not apply to

pairs is the product of the corresponding transmit correlatich models.

tion and receive correlation. 2) Analysis: The starting point of the analysis is thitcan

. . _ RyL T\ _
The first two assumptions are usually quite accurate when bne— factorized in the fornil = (W)= W (W")2, where the en

tenna elements are colocated in the same physical unit at e of W are i.I.d. complex circular symmetric Gaussian with

transmitter and also at the receiver. The product-form assumrrl.])(-a"’mO and variancd. Hence,

tion is made for analytical tractability and can be thought of as a HH' = (\PR)%W\PTWT(\I/R)%.
first-order approximation of the correlation structure when the
fading from two transmit antennas to the same receive anterfa capacity analysis, we are interested in the eigenvalue dis-
and the fading from two receive antennas to the same transmillution of HH", or equivalentlyUEWvT Wt Now W is
antenna is much more highly correlated than that between tiotropic, i.e.,UW and WU have the same distribution &&
distinct antenna pairs. This product form assumption is studigst any deterministic unitary matri&. We can factorizel” =
through simulations in Section V. UD7yUt andU®R = VDRVT, whereU andV are unitary and
To consider the scaling of capacity and mutual informatiop,-, Dy are diagonal. The fact th&t is isotropic allows us to
with the number of antennas, we need to make further assurgpnclude that the matrig W ¥*' W has the same eigenvalue
tions on the covariance matricds® and ¥7 as the system distribution asD W D W . It should be noted that as— oo,
scales. In particular, we assume that the empirical eigenvattie eigenvalue distributions @z and D converge taFr and
distributions of U® and ¥'" converge in distribution to some £, respectively.
limiting distributionsf’r andf, respectively. This willbe true  Theorem IV.1 tells us that the distribution of the eigenvalues
if of WWT, scaled byl/n, converges for large. It turns out

. . i istributi i
1) the correlation between the fading at two antennas C}Qf"t the eigenvalue distribution &P W Dr W' converges as

pends only on the relative and not absolute positions }%ell under the same scaling. However, in this case, no explicit
the antennas: expression for the limiting distribution is available. Instead, it

) is given in terms of itsSteltjes’ transforn{18]. The Steltjes’
2) the antennas are arranged in some regular arrays, syehstorm of a distributiont is defined by

as square or linear grids, and as we scale up the number

of antennas, the relative position of adjacent antennas are 1

. ' 2) = dG(\
fixed; and me(z) /)\— z )

3) the correlation decays sufficiently fast over space.

» The correlation between the fading from a transmit a?é
tenna to receive antennaand to receive antenna is
w1, and does not depend on the transmit antefirfade-
scribes theeceive correlation.

for z € C with S(z) > 0. It can be shown by an inversion

For example, if the antennas are arranged in a linear arrijeorem that the Steltjes’ transform uniquely specifies a distri-
TR andv? are Toep"tz_ If the power Spectra| densities of thbution. The fOIIOWing result yleldS a characterization of the lim-
Stationary processes Itlng eigenvalue distribution ODTWDRWT

Theorem IV.2: Let F, be the empirical eigenvalue distribu-
{Hj1:5=1,2,...} and {Hu:k=1,2,...} tion of Dy W DrW . DefineG,,()\) := F,(n)\). Then almost
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surely, G,, converges in distribution to a limiz°, whose The proof of this result exploits the fact that the mutual in-

Steltjes’ transform is given by formationI,, can be achieved by a combination of successive
1 decoding and linear minimum mean-square error (MMSE) de-

mae(z) = / w(f, ) do modulation. A sketch of this proof can be found in Appendix lII.
0 Does correlation always reduce capacity? Let us fix the

whereu(f, z) is the unique solution to the functional fixed-transmit correlationSy and compare the performance when
point equation there is correlation at the receiver and when there is none. Since

the functioni(y) = y/(a + by) is concave for, b > 0, it

w(, z) = . 1 follows from Jensen’s inequality that in Theorem 1V.3
—2+ S7(6) f, Seleo) dw
L+5g(w) [ (e, 2)S1(e) do fe(B) £ fina(B)
The proof of this result, which is based on random matrifor all 3 > 0. Hence, for a giverz, if 5. = f.(3.) and
results in Girko [18], is given in Appendix II. Bind = find(Bina), thens. < fina(B:). By monotonicity of
Using this result, it can now be shown, exactly as in the indere fixed-point equatio = fi,a(3), this impliess. < Bina-
pendent fading case, that almost surely.as oo Hence, correlation at the receiver always decre#8eBy the
I(H) reciprocity property (see Appendix 1), it can be seen that cor-
—=2 —1I°(Sg, ST, p) relation at the transmit antenna always redute$or a fixed
n receive correlatior$ z.
Cn(H) — C°(Sg, S7, p) A more general statement can be made to compare the per-
n T formance under two different power spectra. A nondecreasing
where spectrums; is defined to bemore spread outhan a nonde-
oo creasings; if
I'(Sk, Sr. )= [ los(14pN G (14) 1 1
0
and /0 S1(w)dw = /0 Sa(w)dw =1
o _ N *\ 4 o
with p* satisfyin 1 1
g ving / S1(w) dw > / Sa(w) dw.
/1 + 6 6
/ <u - —) dG°(X\) = p. . .
0 A Note that the flat spectrum corresponding to independent

The important conclusion is that even with correlation, the C‘fiqdlng Is the least spread out according to th.|s deﬁrymon:.there
Is the same amount of power at all frequencies. This notion of

pacity and mutual information still scale linearly with How- di ¢ (al lethaiorization(19 be tak
ever, the rate of growth is different from the independent fadin preading out” (also calletajoriza |on_[ 1) can be taken as
easure of the strength of correlation: the more spread out

case. It should be emphasized that this conclusion is valid o ;
the spectrum, the stronger the correlation.

under the specific scaling assumptions we made. Inthe th f maiorizai l-valued functiéiris said
The constant§’ andZ® depend on the limiting distribution nthe theory ol majorization, a real-valuediunctians sai
to beSchur-concavéresp., Schur-convex) §; is more (resp.,

G°, which is only indirectly characterized via its Steltjes’ trans- o
form in Theorem IV.2. The following result gives a more di_lbess_) sprealltd out t:\ha‘ﬁ’tbtlhmallestt_hat.H(Sl(-)) < H(S:()- A
rect characterization of the constaftt without involving the asic resuft says that the function.

Steltjes’ transform of7°.

Theorem IV.3: H(5:()) :/0 h[S1(w)]dw

1

I°(Sg, Sz, p) :/ log[l + Sr(2)8(z)]d = = is Schur-concave (resp., Schur-convex) if the functios con-
0

cave (resp., convex). Applying this result to our problem, it fol-
lows that the right-hand side of (16) is a Schur-concave function
of St. It then follows thatZ° is, in fact, a Schur-concave func-
tion of St, i.e., stronger correlation always decreases

and for eachr € [0, 1], A(z) is the unique solutior? to the
fixed-point equation

! Sgr(w) The above discussion focuses on the effect of fading corre-
3 :/0 1.9 (w)fl Sr(@)__ g dw = fc(B).-  (16) Jation on the mutual informatiod®. But, in fact, something
p TR e 1450 (9)8 more basic is going on. It is shown in Appendix IV that the

For the special case of no correlation at the receiver (i.820re spread out are the power specfiaand Sg, the more
Sr(w) = 1 for all w € [0, 1]), the fixed-point equation that Spread out iz, the limiting spectrum o)W Dy W1, The

must satisfy is simplified to mutual information/° (14), being a Schur-concave function of
1 G°, therefore, decreases with stronger correlation. However, the
8= e = fima(B). (17) water-filling capacity isiota Schur-concave function 6, and
T

1 _ .
% + fl—mm d¢ hence similar conclusions cannot be drawn.
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We now focus on the low-SNR and high-SNR regimes. At
low SNR, it follows from (12) thatf® depends only on the av-
erage received SNR and does not depend on the eigenvalue dit
tribution G°. Hence, at low SNR, fading correlation has no ef-
fect on the mutual information achieved by the equal transmit
power strategy. On the other hand, the water-filling capacity at
low SNR is approximately the average received SNR amplified
by the upper limit of the eigenvalue distributi@#f. Since the
stronger the correlation, the mof& is spread out, this upper

14 meters

y

L.

Transmitting
MEA

643

—{}—
LN
Receiving
LN
ces MEA

s\
\Room A

limit increases and hence the water-filling capacity at low SNR L I—-u

actually increases as the correlation becomes stronger.

At high SNR, the differencé€’® — I approache8 and hence
both are reduced by fading. To calculatg, let us make the
substitution(z) = nr(z)p + €(z, p). Taking the limit as
p — oo in (16), we see that(z, p) — 0 andnr(z) satisfies
the fixed-point equation

ot Sr(w) "
1= | o s (18)

for eache € [0, 1]. The high-SNR approximation @f is there-
fore,

1
1°(Sr, Sr, p) = [ loell+ pSr(o)n(a))do -+ o(1)
0
1
:logp+/ log St(w) dw
0

1
—|—/ lognr(z) dx + o(1). (19)
0

118 meters

Fig. 1. Floor plan for the first floor of an office building at Crawford Hill, NJ.
Receivers with antennas positioned in linear or square grids are placed randomly
at 1000 locations in Room A. The transmitting MEA is placed with its adjacent
sides parallel to:-axis andy-axis, respectively. The receiving MEA is placed

in a random orientation at each of the sample locations.

receive sides, respectively. The fact that they are not positive
follows directly from Jensen’s inequality.

V. SIMULATION EXPERIMENTS
A. Methodology and Assumptions

We use the WISE ray-tracing simulator [6] to construct
random instances of channel matri for indoor wireless
environment. WIiSE allows us to specify the floor plan of a

This can be simplified further. By the reciprocity propert)building (e.g., location of vertical walls, ceilings, corridors,

(see Appendix 1), we know that,(H) = I,(H'). From this
we can conclude that

IO(ST7 SR7 p) = IO(SR7 ST7 p)
Let us setSy(w) = 1 forallw € [0, 1]. From (19), we get

1
I(St, Sg, p) =logp+ / lognr(x) dx 4+ o(1).
0
On the other hand,

1
I(Sw. Sz, ) =logp+ [ logSa(w)do
0

+ /1 log(1 — x) dz + o(1).

Equating these two expressions, we get

1 1 1
/ logng(z)de = / log Sp(w) dw —l—/ log(1 — z) dx.
0 0 0

Now

1
/ log(l — z)dxz =loge.
0
Substituting these equations into (19), we get

1
I(Sz, Sa. p) =lox(p/e)+ | log Sz(e)d
0

1
+/ log Sr(w) dw + o(1). (20)
0

etc.) and generate the corresponding propagation models inside
the building. As described in [6], the reflection/refraction coef-
ficients and scattering effect for different building materials are
derived from a multilayer dielectric model. For our numerical
study, we consider the indoor wireless environment of a
two-floor office building at Crawford Hill, NJ (see Fig. 1). We
place the transmitting MEA on the first floor ceiling near the
middle of the office building throughout our study. Receiving
MEAs are placed with random rotations at 1000 randomly
chosen positions in Room A, which is at intermediate distance
from the transmitter. We consider a carrier frequency of 5.2
GHz, i.e., wavelengthh, = 5.8 cm. The MEAs consist of
multiple omnidirectional antennas, arranged either in square
grids or linear arrays within horizontal planes. The separation
between antenna elementis the same at both the transmitting
and receiving MEAs. We considelr = 0.5, andd = 5X,,
unless specified otherwise.

The power of the rays impinging on the receiving antennas
is recorded when the carrier is launched from the transmitting
MEA with power 10 log Prax dBm. The impulse response be-
tween a specific transmitting—receiving antenna pair is modeled
as the vector sum of all the rays arriving at the receiving antenna
as

M
9i5(t) = > V/Pi- - 6i(t =) (21)
k=0

We observe that the first term is the high—SNR capacity favhere P, 6;, andr; are the received power, phase angle, and
independent fading. Hence, the second and third terms repisie delay of theith ray, respectivelyl/ is the total number of
sent the capacity penalty due to correlation at the transmit arays and’,(¢) is the delta impulse function. With narrow-band
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assumption, we compute the frequency response at infinitesi- 1
mally small bandwidth centered at the carrier frequency as Fe
" § 08
hij — Z \/Fk et . 27 foTh (22) T;: L
k=0 §osr
H is computed using (22) anBy, 6;, andr; are obtained § I
from the WiSE simulation. All the? elements;; are complex 2 04
numbers in this case. > -
Since H varies for different receiver locations, we estimate = 02
the channel variancg® by averaging over 1000 realizations of -
H, and over all possible antenna paifgp :. We assume that 0
the average received SNR as defined in Section lll, should 0 0.5 1 1.5 2 25 3
be high enough for low-error-rate communication. If SNR is Antenna spacing d (ko)

too low, we need very complex codes to provide enough redun- @

dancy to combat the noise so that we can recover the desirec 1 : : : ' i
signal with low error probability at the receiver. The practical
constraints on analog-to-digital (A/D) converters that are avail-
able with current technology limit the maximum SNR that can
be exploited effectively. Thus, we consider SNRs in the 18-22
dB range. For all our simulations, we assuiieto be 10 MHz,
andN, to be—170 dBm/Hz, giving a total noise varianég W

of —100.8 dBm. When we take expectation with respect to dif-
ferent realizations o, we mean taking the ensemble average
over the 1000 sample receiver locations. The capacities with anc
without water filling, C,, and/,,, are computed for different.

The results are presented in terms of complementary cumula- 0
tive distribution functions (CCDFs), the averag@s and1,,, 0 0.5 1 15 2 2.5 3

and capacities at 5% channel outag&.°> and1%-9. Ante””&fpad"g d (o

o
[

o
>

Maginitude of Correlation
o
S

0.2

B. Fading Correlation Fig. 2. (a) Magnitude of correlationB7, and¥ {;, (as defined in Section IV)
for antenna spacings ranging fraito 3,. (b) Magnitude of the normalized
As mentioned beforelf;; are correlated for finite separationcorrelationE[Hy, H,] compared to the magnitude of the produgt, ¥1%.

between antenna elements. For an illustration, we consider the
case of a two-antenna MEA system. 1000 realizations of thi
channel matrixd are generated using WISE for different an-
tenna spacingl. Using the notations in Section W7, and 0.8
VR are determined. The magnitude uf, and V%, resemble
zero-ordered Bessel functions that decay very slowly, as show AL 06 |
in Fig. 2(a). Atd = 0.5),, a strong correlation d0.65 exists 5
between path gains originating from different transmitters. The~
correlation between path gains arriving at different receivers it 94
0.34. The asymmetry is due to the different local scattering en-&
vironments around the transmitter and receiver. 02
In Section 1V, we modeled the two-dimensional correlation
function in product form. To verify the appropriateness of this
approach, we plot the product afl, gnd\If{"; in Fig. _2(b), to- o 20 40 6 8 100 120 140 160
gether with the correlatioB'[H1; H3,| inferred from WIiSE sim- X (bps/Hz)
ulation results. Close agreement is found consistently between
these two curves over the rangedofve consider. This implies Fig. 3. The CCDFs of?,, (achieved via water filling) and,, (with equal
that our assumption of separable transmit/receive correlatigi@ger allocation) form = 1, 4,9, 16, 25, and36 atp = 18 dB. MEAs are
in Section IV-B1 is a reasonable first approximation. arranged in square grids with= 0.5,

X)

or

18 dB. Recall that”,, and /,, are defined as the capacity with
optimal water-filling power allocation and with equal-power al-
In this subsection, we consider square MEAS, which are mdoeation, respectively. Examining Fig. 3, we see thahads-
compact than linear arrays for a givenThe receiver MEA is creases, the CCDFs of bofl}, and I,, shift to the right, indi-
placed in Room A. Fig. 3 shows the CCDFs®@f{ andI,, for cating that MEAs yield a capacity gain that increases steadily
n = 1,4,9, 16, 25, and 36, assumingd = 0.5\, andp = with n. We see that as increases, the horizontal gap between

C. Capacity of MEA Systems
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TABLE | 3.5 T T T T T
THE PERCENTAGEDIFFERENCE (C2-9% — J9:03) /-5 FORMEAS PLACED IN

RoomM A. HEREp = 18 dBAND d = 0.5, 3L d=0.52%, ]

Number of antennas, n 1 4 9 16 25 36
€09 (bps/Hz) 59 | 20 | 36 | 57 | 75 | 106 |
1,995 (bps/Hz) 59 19 34 52 68 95 7
% difference 0 5.7 7.2 8.8 10 11 i

C, andl, increases, i.e., water filling yields a larger gain over
equal-power allocation.

Areasonable performance indicator is the capacity thatcant ~ 0-5 ' ' ' ' '
supported with 5% outage. Table | presents values®dP and -10 0 10 20 30 40 50
1095 extracted from the CCDFs shown in Fig. 3. Whee: 1, Average received SNR, p (dB)
CY05 = 10-05 = 59 b/s/Hz. Increasing can yield dramatic (@)
increases irC%-% and 1%, Whenn = 4, C%-% = 20 b/s/Hz 3.5 . : . ; .
and%% = 19 b/s/Hz, which are nearly three-and-a-half times
higher than for = 1. Increasing ta: = 36, we obtainC?-%5 = 3
106 b/s/Hz and?-% = 95 b/s/Hz, which are, respectively about
18 and 16 times higher than far= 1. 25

Table | also presentg9-05 — 19:05) / 0-95 the fractional gain 5\

d=05%k, |

=
yielded by water filling over equal-power allocation. This frac- ,~ 2

w

tional gain increases frofi(n = 1) to 11.3%(n = 36). Ss

The capacity improvement of water filling over equal-power © 1.5
allocation depends not only am but on the SNRy» as well.
Fig. 4(a) and (b) shows the rati6s, /I,, andC?-%> / I%-9% versus 1+
pforn = 4,9, 16. The figure assumes MEAs on square grids
with d = 0.5X,. The receiving MEA is placed in Room A. The 0.5 : : ' . .
ratios C,,/I,, and C2-%%/19-9 are substantial at low SNR, -10 0 10 20 30 40 50
and decrease asymptotically toward unitypascreases. When Average received SNR, p (dB)
p is low, it is important to allocate the available power to the (0)
strongest subchannels, while asncreases, there is sufficient

power to be distributed over all subchannels. Fig. 4. (a) The ratio of average capacity with water filling to that with
equal-power allocation”’,,/I,, at varying average received SNR for

; ; it n = 4,9, and16. (b) Ratio of 5% outage capacity with water filling to that
D. Asymptotic Behavior of MEA Capacities with equal-power allocatio@?-°3 /I°-°% over differentp, forn = 4, 9, and

In this section, we study the asymptotic behavior of the c&é . In bqth (a) and (_b) MEAs at both the transmitter and the receiver are
pacity asn grows large. We focus on the high-SNR regime®"anged in square grids.
consideringy = 22 dB. SinceC,, = I,, for high SNR, we con-

sider only the water-filling capacitg,, here. We consider linear YSing (11). To compute the growth rate of capacity including
fading correlation, as derived in Section IV-B, we use simulated

MEAs for two different values of antenna spacing= 0.5, ) ) ) ) )
| tgchannel matrice¢] to estimate the variance df;; (i.e., %),

andd = 5X,. The transmitting MEA is placed either paralle R T X - -
the long dimension of the hallway (inline case) or perpendiculdy_andA; - In this case, both the transmitting and the receiving

to it (broadside case). In all cases, the receiving MEA is placdEAS are linear a.rrays,rand infiividual elements are glaced ata
in a random angular orientation in Room A. In this section, w&€d spacing of eithed.5A, or 5, apart. Recall thad;® and

T H R T R
consider the average capacities obtained on simulated chanig|&'€ éigenvalues oF " and U™, respectively. For each case,
T, as opposed to the 5% outage capacify®> considered in we generate 1000 random channel matrifeand estimate the
the previous section. covariance matrice$ ® and U7 asE[H[ H;.] and E[H.;H'],

In order to compute the asymptotic growth rate of capacity d&SPectively. Since the asymptotic growth rétegiven by (15)

suming independent fading, as derived in Section IV-A, we ué%_d'ﬁ'cu(l)t to C(O)mpu_te, we can approximaté by computingl®
simulated channel matricé#’ whose entriegf/; are generated (sinceC” = I” at high SNR) as given by (20). We can approx-
by placing individual transmitter and receiver antenna elemefiaate Sr(w) andSg(w) in (20) with piecewise-linear curves,
at i.i.d. random locations in Room A, instead of placing thefdnd replace the integrals with summations

in a linear array separated by a fixed distance (€.e,0.5\,) 1 n R r

as in the regular case. With such an arrangement, the fades bé&% = I, = — | log(p) + > log AT+ log AT | (29)
tween antenna pairs are almost mutually independent. We use i=1 j=1

these matriced!’ to estimate the varianag® and the equiva- where/"'s and\7"s are eigenvalues of* and &%, respec-
lent SNRp. We then compute the asymptotic growth réte tively.
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100 L 100 | Broadside ]
p=22dB p=22dB 4
§ 80 | | —°— ?n ' ¥osof
5 g
> 80 < 60 | e
£ =
© 1]
& 40 | g 40 |
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. o . . . Fig. 6. Average capacitf’,, versusn for the broadside case. We consider
Fig. 5. Average capacity{’'.. versusn for inline case. We consider linear |inaar arrays with two antenna spacings:= 0.5\, andd = 5\,. The

arrays with two antenna spacings= 0.5, andd = 5A,. The transmitting .angmitting MEA is placed parallel to thg-axis. The receiving MEA is

o Bt 2000 e oo oSttt erage, 2660 1 andom oeniaion i 1000 andom ocaonsn Koo i
) h . . 1 age ity average capacity obtained when the transmit and receive antenna elements
capacity obtained when the transmit and receive antenna elements lie atgcl at i.i.d. locations within their respective workspaces, i.e., they are not

Iocation; within their respective workspaces, i.(_e., they are not constrained.{Q <t ained to regular linear arraysC'* andnC® are asymptotic results for
regular linear arrays:C* andnC'? are asymptotic results for correlated and.qalated and independeHt;, respectively.
3 .

independentd; ;, respectively.

We first consider the inline case. Fig. 5 shows the averageeour results indicate that fading correlation can significantly

capacityC,, versusn for d = 0.5\, andd = 5X\,. For each asdI;(r:ee'\gZA Szi’\teTAg?gj\fe'?’oivﬁggztz?ﬁg&?ﬁ;?}gr;tsseﬁc'ng
d, C,, grows roughly linearly with., from about 5.57 b/s/Hz at .. 9 0o L . . Symp
- totic growth ratenC, which considers correlation, provides a
n = 1 to about 79.3 b/s/Hz fad = 0.5\, and 84.0 b/s/Hz for . — X
- — . - good estimate of the observed average capd¢ityThis tends
d = 5\, atn = 16. At eachn, C,, is larger ford = 5X, than . X :
. . . tovalidate the assumptions under which the formulad®mwas
for d = 0.5A,, because the largérreduces fading correlation,

which was shown in Section IV-B to reduce capacity. In Fig. erived in Section IV-B, including the correlation model for the

. . fades between different antenna pairs. If the assumptions in Sec-
we see that the asymptotic growth rate of capacity, assumin
: . I, tion IV-B hold, C,, /n should converge almost surelydt (see
independent fadingC*, significantly exceeds the observed av- . S . . .
e — - . (23)) in the limit of larger and high SNR. In Figs. 7 and 8, we il-
erage capacities,, evenford = 5),. The discrepancy between : . . . )
N = . . lustrate this asymptotic behavior©f, /» by plotting the empir-
nC* andC,, grows with increasing.. On the other hand, the . i . .
) e . .., ical probability density functions (pdfs) @f,,/n for n = 4, 9,
asymptotic growth rates of capacity including correlatiart

form better upper bounds f@¥,, thannC* for both values ofl. and16, con5|d_er|ngp = 22 dB. _F|g. 7 considerg = 0.5,
nC® are in better agreement wid, for d = 5A thand = 0.5\ (where there is strong correlation between element&lg),
for all values ofn 7 while Fig. 8 considersl = 52X, (where there is less correla-

) ) tion between elements @f;;). Asn increases, the pdf becomes

To further explore the effects of fading correlation, we havigarrower and has a higher peak value, &, /n becomes less
computed channel matrices;; in which the transmitter and random. In the limit of large:, we expect the pdf of, /n to
receiver antenna elements lie in i.i.d. random locations withihnyerge to an impulse function centered at the valeThe
their respective workspaces, rather than lying in a regular linggérrowing pdfs in Figs. 7 and 8 illustrate the almost-sure con-
or square array. Thus, the element#f should be more nearly yergence of?, /n to C°. Note that whenl = 5),, the pdfs are
independent than those ;. We have used thed€;; to com-  narrower and taller than wheh = 0.5),. This indicates that
pute the average capacify;,, which is also shown in Fig. 5. the rate of convergence is higher wheis larger, i.e., when the
We observe that at each C'7, is larger tharC’,,, and that’’;,  correlation between elements Ht; is lower.
is nearly as large asC*, the asymptotic growth rate assuming
independent fading.

Similar results are obtained for the broadside case, as shown VI. CONCLUSION
in Fig. 6. The average capaciy, is generally higher than for
the inline case for botd = 0.5\, and3),. Indeed,C,, in this MEA systems offers potentially large capacity gains over
case lies closer to the asymptotic valw€* than C,, for the single-antenna systems. With perfect channel knowledge at the
inline case. Ath = 16 andd = 5),, C,,/nC* = 91.3% for the transmitter, power can be allocated optimally over different
broadside case, but only 82.4% for the inline case. This suggdssmsmitting antennas (water filling) to achieve capadity.
that there is less correlation between path gains for the broadside water-filling gainC,, /I,, is most significant when there
configuration than for the inline configuration. are fewer strong eigenmodes, i.e., when the average received
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Fig. 7. Empirical pdf of the normalized capacity for= 4, 9, and16. We

consider linear arrays with antenna elements separated y. The reference Fig. 8. Empirical pdf of the normalized capacity for= 4, 9, and16. We

value isC as predicted by the asymptotic theory considering correlitgd  consider linear arrays with antenna elements separatéd byThe reference
value isC® as predicted by the asymptotic theory considering correl&tgd

SNR p is small. For example(9-%°/1%-% = 3.5 when APPENDIX |
p = —10dB, but afp = 50 dB, water-filling gain is negligible, RECIPROCITY PROPERTY
005 /1005 1.

Assuming i.i.d. path gains between different antenna pairs,we note here two reciprocity properties discussed in [20]
theoretical analysis shows that the capacity grows linearly wigfhich will be useful in some of the analysis in Section IV-B.
the number of antennasin the limit of largen. In a more re- These properties also make it very easy to extend the analytical
alistic propagation environment, correlation does exist betwegsults to the case with unequal number of transmit and receive
antenna pairs and affects the rate of growttCgfand Z,,, al- antennas.
though it was shown that they still grow linearly withTherate  First, the (water-filling) capacity of the multiantenna channel
of growth of 7, is reduced by correlation over the entire range afith ¢ transmit and- receive antennas and channel maitix
SNRs, while that foC,, is reduced by correlation at high SNRis the same as that of a system withransmit and: receive
but is increased at low SNR. Our simulation results show thattennas and channel mat#k’. This is because the nonzero
for 0.5), antenna spacing, the simulated average capétitg  singular values off H' and HTH are identical. Second, the
only 88.5% of the predicted value based on independent fadim@tual information achieved with equal transmit povigrat
assumptions;C* for n = 16 in the case of broadside with= ' each antenna in a system wittransmit and receiver antennas
22 dB. When the antenna spacing is increaseti#o5),, the and channel matri¥ is the same as that achieved using transmit

effect of correlations on total capacity is smalléf, /nC* = powerQ in a system with transmit and receive antennas and
91.3%. The approximation based on our asymptotic results annel matrixZ . This is because

correlated fading C forms a close upper bound for the average
capacity observed on simulated chann&)sat high SNR. I, =logdet(I«, + QHH') = logdet(I,«; + QHH).
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It should be noted that for the water-filling capacity, theiser. The transmit power of theh user isp(Dr ), and its
reciprocity is with respect to two systems with the satal vector of channel gain at the receiverisg.

transmit power, whereas for the equal-power mutual informa-The sum capacity can be achieved by a combination of suc-
tion, the reciprocity is with respect to two systems with theessive cancellation and linear MMSE demodulation [21]: first

same poweper transmit antenna one user is demodulated by a linear MMSE receiver and de-
coded, treating all the other users as interference; then the signal

APPENDIX I from that user is subtracted off and the process is repeated for

PROOF OFTHEOREM IV.2 the remaining users. Moreover, the sum capacity is achieved re-

The following theorem captures the essence of [18, Corollatﬁllj?rdl.es.S of thg deco((jjmg for:er among the usersf. :;et us deco%e
10.1.2], which is the key random matrix result we need. €N In Incréasing order o the transmit POWETS 0 the users, an
without loss of generality assume that the diagonal elements of
Theorem All.1: Let A, be ann x n random matrix with in- Dy are in increasing order. Thus, we have
dependent entries which are zero-mean and satisfy the condition

nVar (Ayy) < B logdet (1+pWDy W) =3 log(1+SIRy),  (27)
k=1

for some uniform_bouna‘B < oo. Moreover, suppose we Olefinewhere SIR is the signal-to-interference ratio (SIR) achieved
for eachn a functionu,,: [0, 1] x [0, 1] — R by

when demodulating théith user. From MMSE estimation

vn(z, y) = n Var(A), theory it can be computed that
.. e . N -1
i, j, satisfying SIRy, = p(Dp )it (pWDg“)WT + I) i
R TS i e e ) where
n n n n
and thatv,, converges uniformly to a limiting bounded function (D =0, ifi <k
v. Then, the limiting eigenvalue distributidi* of A, A exists and
and its Steltjes’ transform(z) is given by (Délg))ii — (D1, it 0> k.
1
m(z) = / w(x, z)dx (24) Substituting (26), we get
0 —1
andu(z, z) satisfies the equation, SIR;, = D) w] <l WD(Tk)WT + 1 D§1> wh
n n p
1
u(z, 2) = i e - (25 wherewy, is thekth column of .
: 0 1+f01 w(w, 2)v(w, y) dw Y We now letn — oo but keepk = zn for z fixed. We wish to

. . o : . _compute the asymptotic limit of SIR
The solution of (25) exists and is unique in the class of functlons_l_he entries ofuy, are i.i.d. We can apply [22, Lemma 3.2] to

u(x, t) > 0, analytical inz and continuous om € [0, 1]. conclude that

To prove Theorem IV.1, we can apply this random matrix 1 1 -1
result to SR — (Dr)u — Tr <WD§“>WT + ;DR1> —0 (28)
1
Ay = %D}{QWDlT/Q- in probability. The trace term is the Steltjes’ transform of the
empirical eigenvalue distribution 6 DS W + 1 D! eval-
The desired result follows by noting that, in this cas@;, ¥) = uated ab. The following theorem, due to Marcenko and Pastur
St(x)Sr(y)- [23] and refined by Silverstein and Bai [15], computes the limit.

Theorem Alll.1: Let A and B be twon by n diagonal ma-
trices whose empirical distributions of the diagonal elements
converge toF4 and Fg, respectively, ass — oo. Let m4
Let us define be the Steltjes’ transform af’y. Then, the empirical eigen-
value distribution of- W BW' + A converges almost surely,

APPENDIX Il
PROOF OFTHEOREM V.3

. 1 1/2
W= WDR w (26)  and the Steltjes’ transformn(z) of the limiting distribution is
3 the unique solution to the functional fixed-point equation
and letw;, be thekth column ofW. The mutual informatiod,, .
has the same distribution as 2) = r— | —————dF .
m(z) =ma <7 / T rm(?) B(T)>

log det (I + pWDTWT) .
. . . _Applying this result to the above yields
This can be interpreted as the sum capacity of a vector multiple-
access channel with users and: degrees of freedom at the 1 1 (W D™ ED_I -t o) =3
receiver, treating each of thetransmit antennas as a separate not T + p B — m(0) = ()
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whereg(z) satisfies Proof: Fix n and consider the class of functions in
1 Sr(w) £1[0, 1] that are piecewise-constant functions on the intervals
B(x) :/ T dw. [k/n, (k + 1)/n), for k = 0, ..., n — 1. The mappingH
0 =+ Sgr(w) fll_w #% d¢ on this class can be viewed as a functionnofariables, the
p ' n values that the functions in the class can take on. Condition
Hence, combining this with (27) and (28), we get 1) then implies that® is a symmetric function of these

variables. The Schur convexity &f on this class follows from

1 . .
~ loo i
n log det (I+pWDTW ) [19, Proposition C.2, p. 67]. The Schur convexity Af on

1 & £1[0, 1] follows from an approximating argument by taking
= Z (1 + SIRy) —>/ log(1 + pSr(x)f(x)) dx large. 0
k=
thus establlshlng the desired result. Proof of Theorem AIV.21f A is ann by n Hermitian ma-
trixand A1 (A) > A2(A) > --- > X, (A) are its ordered eigen-
APPENDIX [V values, then it is known that for ali
A MAJORIZATION RESULT &
In this appendix, we will explore the effect of correlation has Z Ai(4) = e AUt
on the limiting eigenvalue distribution of the key random matrix =1 )

DrWDrW*. Just as for power spectrum, we can define gfhere the maximization is ovef x n complex matriced.
equivalent notion of a distribution being more spread out thafkis extremal representation shows tﬁaft i (A) is aconvex

another. function of the entries aft. Applying this observation to the ma-
Theorem AIV.1:A distribution " is more spread out tha@  trix A = DrH Dy HY, itfollows that ", \i(DrHDyH')is
if they have the same expectation, and for eveey [0, 1] a convex function of the entries é¥, and also a convex func-
1 1 tion of the entries ofDr. From Theorem IV.2, almost surely
/ F~(z)dz > / G~ (z)dx. the empirical eigenvalue distribution 6fp H D-H ' converges
o o to a limiting distributionG. This implies that for each fixed

The main result we want to prove is the following. 001
Theorem AIV.2:Let Sg, Sg be two receiver correlation LU= 1

power spectra, anfly, St be two transmitter correlation power Y X(DrHDrH') - / (@) (=) dx :=C(gr, g1)

spectra. Let? and G be the limiting eigenvalue distributions =1 o

of DrRWDrWT and DrW DrWT, respectively, where the

diagonal elements abp, Dg, Dz, Dy approach the spectra

Sk, Sk, St, Sr, respectively. IfSg is more spread out than

S andS7 is more spread out tha$i-, thenG is more spread

out thanG.

wheregr, gr € £1[0, 1] are the limiting functions of the diag-
onal elements abr, Dr, respectively. The convexity éfboth
as a function ofjg and as a function of follows from a lim-
iting argument. Moreover, the dependenc€ ain g, andgg, is
only through their empirical distributions. Hence, from Lemma

To prove the theorem, we need the following definitionAIV.4, it follows thatC is a Schur-convex function gfy for a
which gives a slightly more general notion of Schur convexitfjxed gz, and also a Schur-convex functiongf for a fixedg .
than the one presented earlier in the main body of the paperHence, for a fixedSg, if S is more spread out thafy, then

&) (@yde 2 /el(G)_l(a:) da.

£10, 1] is the set of all integrable functions g6, 1]. For a
functiong € £0, 1], let F}, be the empirical distribution of

g, i-e., Fy(z) = m{u: g(u) < x}, wherem is the Lebesque This holds for allg, and henceZ is more spread out tha@;
measure. The maf{ is said to be Schur-convex if for any twosimilarly, for a fixedSr, if S is more spread out thafy, then

functionsg, andg, such thatl,, is more spread out thaf,, ¢ is more spread out thaf. This proves the theorem.
implies thatH(g,) > H(g2).

Definition AIV.3: Consider a magt: £1[0, 1] — R, where /1 (
4

The following is a key lemma in the proof of Theorem AIV.2. ACKNOWLEDGMENT

Lemma AIV.4: Suppose the map: £1[0, 1] — R hasthe  The authors wish to thank J. Ling and D. Chizhik for their
following properties. assistance with the WiSE simulation tools. Discussions with G.
1) Foranyy, H(g) depends og only through the empirical J. Foschini, J. Salz, and D. Shiu have been enlightening and are
distribution £;. greatly appreciated.

2) H is convex, i.e.,
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