
Chen-Nee Chuah
Robust & Ubiquitous Networking (RUBINET) Lab

http://www.ece.ucdavis.edu/rubinet
Electrical & Computer Engineering

University of California, Davis

Validating the System Behavior of
Large-Scale Networked Computers

Networked Computers: Some Observations

Laptops

Wireless
Sensors

Hand-held devices
(PDAs, etc)

Smart home
appliances

Super computer

Intelligent transportation system

Rover Mars Vehicle

• Different capabilities/constraints
- Getting smaller & getting bigger

• Different requirements
• Explosive growth in numbers

We know how individual
component/layer behaves, but
when they are inter-connected
and start interacting with each
other, we become clueless!

What do we care about when we design networks?

 End-to-end behavior
– Reachability
– Performance in terms of delay, losses, throughput
– Security
– Stability/fault-resilience of the end-to-end path
– …

 System-wide behavior
– Load distribution within a domain
– Stability/Robustness/Survivability
– Manageability
– Evolvability and other X-ities

• J. Kurose, INFOCOM’04 Keynote Speech

How do we know when we get there?

 We know how to do the following fairly well:
– Prove correctness/completeness of stand-alone system or protocol

• E.g., algorithm complexity, convergence behavior
– Look at steady state, worst-case, and average scenario

• E.g., Queuing models
– Run simulations/experiments to show improvement of

protocol/architecture Z over A, B, C, D ….
 What is lacking:

– End-to-end Validation of the design solution or system behavior
• Is the system behavior what we really intended?
• How do we verify what type of behaviors/properties are ‘correct’ and

what are ‘abnormal’?
– Verification of the system ‘dynamics’, e.g., how different

components or network layers interact

Challenges

 End-to-end system behavior depends on:

Physical topology

Routing
protocols

BGP Policies

NAT boxes,
firewalls, packet

filters, packet
transformers

Logical topology

Traffic
Demand

 Messy dependency graphs => A lot to model if we truly
want to understand and able to validate system behavior

Problem Areas

Validating
1. End-to-end network properties

– Example: end-to-end reachability and/or security

2. Interactions between multiple control loops (across
protocol layers or between multiple entities)
– Example: overlay/IP-layer routing

3. Measurement/monitoring methodologies
– How do we know we’re measuring the traffic features

that are really important instead of distorting them?

End-to-End Reachability/Security

 When user A sends a packet from a source node S to a
destination node D in the Internet
– How do we verify there is indeed a route that exist between S and D?
– How do we verify that the packet follow a certain path that adheres to

inter-domain peering relationships?
– How do we verify that only this end-to-end connection satisfy some

higher-level security policy?
• E.g. Only user A can reach D and other users are blocked?

 Answer depends on:
– Router configurations & BGP policies
– Packet filters along the way: Firewalls, NAT boxes, etc.

Distributed Firewalls

ISP B

ISP A

Example: Network of Firewalls

Validating End-to-End Reachability/Security

 Effectiveness of firewalls depend on (mis)configuration!
– Policy violation
– Inconsistency: shadowing, generalization, …

 How do we verify configuration of firewall rules?
– Borrow model checking techniques from software

programming

 Example static analysis approach
– Control flow analysis: possible flow path
– Data flow analysis: catching anomalies
– Binary Decision Diagram (BDD) representations

filter 1 accept

filter 2 accept

filter k drop

filter n accept

implicit drop

start

IPX Model
- Multiple access list in sequential order

Built-In Chain X

User-Chain Y

Chain Z

filter 1 drop

filter 2 return

filter K

policy action

Chain Y

filter K+1

filter 1

accept

filter N drop

accept

filter 2 return

filter K accept

filter N drop

end

startfilter 1

filter K

accept

filter K+1

Chain Y

filter N

drop

accept

IPtable / Netfilter Model
- Modeled as function calls

Source Port > 1023

1023 < S. Port < 49152

0 1

100

102

108

104

110

106

108

110

01

100

102

104

106

108

110

01

108

110

0 1

sip[7]

sip[6]

sip[5]

sip[4]

sip[3]

sip[2]

sip[1]

sip[0]

Binary Decision Diagram (BDD) Representations

Source IP = 10.0.0.0/8

Source Port < 49152

Network of Firewalls: Remaining Issues

 How do we validate/verify dynamic behavioral changes?
– With multi-homing and dynamic load-balancing, the end-to-end

path and sequence of firewalls traversed could change over time
– Adaptation of firewall rules on demand depending on applications

 How do we optimize firewall configurations?
– Inter-firewall & inter-path optimization

• Must interface with routing plane
– Heavy traffic ‘accepted’ first?

• Need to interact with traffic measurement/monitoring modules

#2: Interaction btw Multiple Control Loops

Example 1: Overlay/IP-layer Interactions
 Overlays compete with IP-layer to control routing decisions

– ISPs & overlays are unaware of decisions made by the other layer
– Multiple overlay networks co-exist and make independent decisions

 Side Effects
(a) Challenges to ISP’s Traffic engineering (TE)

• Overlays shift and/or duplicate TM values, increasing the dynamic
nature of the TM, making it harder to estimate

• Harder to estimate Traffic Matrix (TM) essential for most TE tasks.
(b) Multiple overlays can get synchronized

• Interfere with load balancing or failure restoration, leading to
oscillations

(c) Coupling of multiple ASes
• Overlay Networks may respond to failures in an AS by shifting traffic

in upstream AS.

(b) Race Conditions & Load Oscillations

 Multiple overlays can get synchronized!

A

B

C D

E F

5
25

25

5

5
25

15

20 20
20 20

H
5

20
20

20

X

20 20 20

20

20

20
20

20
20

Link load > 50 is overload

Overlay-1
Overlay-2- Result of

• Periodic nature of path probing process
• Partial/full overlap of primary and alternate paths

- Could happen in real networks

Insights from Economic & Social Foundations

Related Studies
 Qiu et al investigate the performance of selfish routing of

multiple co-existing overlays [QYZ03]
– Optimal average latency is achieved at the cost of overloading

some links
 Liu et al model interaction between IP traffic engineering

and overlay routing as two-player game [LZ+05]

Other example problems
 Tuning IGP routing protocol parameters

– Stability vs. Fast convergence
 TCP congestion control vs. IP traffic engineering

#3:Measurement/Monitoring Methodologies

 Network measurements/monitoring traditionally
useful for network design and traffic engineering
purposes
– E.g., how to select optimal set of IGP link weights to

route all OD pairs given a topology to distribute loads
evenly across network.

 Increasingly important for anomaly detection &
security forensics
– E.g., online detection of DoS/DDoS attacks, worm/virus

propagation, flash crowd, etc.

 Challenges: high data speed, limited storage
– ‘Sampling’ is typically done to reduce overhead

 Questions:
– What is the optimal sampling rate?
– Does sampling preserve the traffic features that are

crucial for anomaly detection (in addition to volume
estimation for TE)?

– Can we sample less if we collect measurements at more
points?

#3:Measurement/Monitoring Methodologies

Summary

1. Validate end-to-end security/reachability properties
– Example: firewall
– Useful toolkit:

• Model checking from software programming
• Combinatorial optimization

2. Model system dynamics and interactions between entities
– Example: overlay/IP-layer routing
– Borrow economic models: game theory

3. Verify measurement/monitoring methodologies
– How do we know we’re measuring the traffic features that are really

important instead of distorting them?

