
1

Impact of Sampling on
Anomaly Detection

DIMACS/DyDan Workshop on Internet Tomography

Chen-Nee Chuah
Robust & Ubiquitous Networking (RUBINET) Lab

http://www.ece.ucdavis.edu/rubinet
Electrical & Computer Engineering

University of California, Davis

2DIMACS, May 2008 

Outline

 Overview

 Impact of Sampling on Anomaly Detection
– Volume Anomaly Detection

– Portscan Detection

– Entropy-based Traffic Profiling

 Towards Accurate Measurements for Anomaly 
Detection
– Filtered Sampling 

– Programmable Measurement Approach
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Network Monitoring Applications

 Traffic Engineering (TE)
– Capacity planning, routing, load balancing, fault 

management

– Tuning knob: routing configurations, link weights

 Ensuring service level agreements (SLA)

 Security: Detect and keep out unwanted traffic
– Anomaly/intrusion detection

– Tuning knobs: IDS rules, firewall configurations
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Anomaly Detection  

Anomaly detection heavily depends on
 Accurate traffic measurements/observations: 

– What to measure? 
– How to measure? (Limited resources: CPU, memory)
– Where to measure? 

 Robust detection algorithm
– What is normal/abnormal?
– Target specific 

• E.g., portscan detection, signature based worm detection
– Generalized traffic profiling

• E.g., Entropy based profiling
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Detecting Anomalies in IP-Backbone

Why? 

 ISPs interested in detecting and stopping anomalous 
traffic early
– Additional service to stub networks

– Protecting scarce resources in wireless access links

 Ability to observe more diverse traffic mix
– Global view of traffic better capture scanning patterns

 Inherent monitoring capability
– Sampled traffic used for traffic engineering

• Cisco’s Netflows, Juniper’s Traffic Sampling
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Sampling

 Sampling typically used in high-
speed networks
– Reduce monitoring/measurement 

overhead (CPU, memory)

 Sampling distorts traffic statistics
– Miss packets from the same flow, 

miss flows all together, …

– Affect estimates of mean rate, flow 
size distributions
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Coping with Sampled Data

Prior work related to TE

 Inferring accurate flow statistics (flow size or 
total # of flows) from sampled data [Duffield03, 
Hohn03]
– SYN flag in TCP header 

 Tracking heavy hitters [Estan02]

 Maintain accurate ranking of flows [Barakat05]
– TCP/RTP sequence# 
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Impact of Sampling on Anomaly Detection

 Question we ask:
Does sampled traffic contain sufficient 
information for effective anomaly detection?

 Approach: Empirical experiments to gauge impact 
of sampling on anomaly detection algorithms

[JSAC06] J. Mai A. Sridharan, C-N. Chuah, T. Ye, and H. Zang, "Impact 
of Packet Sampling on Portscan Anomaly Detection," IEEE JSAC -
Special Issue on Sampling the Internet, vol. 24, no. 12, pp. 2285-2298, 
December 2006. 
[IMC06] J. Mai, C-N. Chuah, A. Sridharan, T. Ye, and H. Zang, "Is 
Sampled Data Sufficient for Anomaly Detection?" ACM/USENIX Internet 
Measurement Conference, October 2006 .
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Experiment Methodology

 Backbone traffic traces 

3 hoursPortscan7 MbpsWireless

1 hourPortscan55 MbpsBB-West

17 hoursDoS207 MbpsBB-East
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Anomalous Traffic and Detection Algorithm

Traffic
Traces

Anomaly
Detection
Module

Results

Results
Anomaly
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Sampling 
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3. Time Access Pattern Scheme (TAPS) 
[Sridharan06]

2. Threshold random walk (TRW) 
[Jung04]

Port scanning:

Worm/virus propagation

1. Wavelet-based abrupt change 
detection [Barford02]

Volume anomaly:

DoS attacks, flash crowds

Detection AlgorithmsType of Anomalies
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Sampling Methods (1)

Random packet sampling: packets sampled with probability p < 1.

– Simple and efficient, widely deployed (NetFlow)

– Hard to infer flow statistics

Random flow sampling: flows sampled with a probability p < 1.

– Prohibitive resource requirement

– Accurate estimation on flow statistics [Hohn03]
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Sampling Methods (2)

Non-uniform flow sampling: focus on catching heavy-
hitters

 Smart sampling [Duffield02] – flow records selected 
with a probability

 Sample-and-hold (S&H) [Estan02]
– Packet is sampled and flow entry created with probability 

hs=1-(1-h)s, as if each byte of a packet sampled with a 
small probability h. 

– All the following packets in the flow will be sampled once 
the a packet in the flow gets sampled.
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Comparing Various Sampling Schemes

 How to compare: normalizing CPU load, or memory 
consumption

 Our choice – the percentage of flows sampled
– Input to the anomaly detection based on flows
– Number of flows translates to memory consumption

 Example of sampling parameter settings: 
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Case Study #1: Volume Anomaly Detection

 Discrete Wavelet Transform (DWT)* based Change Detection

– Decomposition

– Re-synthesis into 3 bands

• High:  1 second,

• Mid:  1 minute,

• Low:  15 minutes.

 Detection
– Sliding window

– Deviation score

 Original trace
– 21 potential anomalies
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Detection Result from Sampled Traces

 Apply DWT* to Sampled Data

*[Barford02] P. Barford, J. Kline, D. Plonka, and A. Ron. A Signal Analysis of 

Network Traffic Anomalies. In Proc. ACM SIGCOMM IMW’02, Nov. 2002.
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Impact of Sampling

 Sampling distorts variance of time series => signals 
become noisier, especially at high frequency band

 False Negatives caused by the increase of sampling 
variance:
– Let flow arrivals be stationary i.i.d. point process {Xt} with 

variance X
2 and average arrival rate 

– With random flow sampling, total variance of sampled 
process becomes

 No False Positives Sampling variance
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Sampling Variance

 Variance of the sampled (random flow sampling) time series:
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Case Study #2: Port Scan Detection

 Port scan typically precedes worm/virus propagation
– Vertical scan: scan for vulnerable ports on a targeted machine

– Horizontal scan: scan for vulnerable hosts on a targeted port

 Consider two target-specific detection schemes:
– TRWSYN

[Jung04] J. Jung, V. Paxson, A. W. Berger, and H. Balakrishnan, “Fast 
Portscan Detection Using Sequential Hypothesis Testing,” IEEE 
Symposium on Security and Privacy, May 2004.

– TAPS

[Sridharan06] A. Sridharan, T. Ye, and S. Bhattacharyya, “Connection 
Port Scan Detection on the Backbone,” Malware Workshop, April 2006.
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TRWSYN

 Rationale: scanners makes a lot more failed 
connection attempts than a benign host

 We need an ORACLE
– which tells upon seeing a SYN packet if the connection 

will succeed, be rejected or go unanswered ...

 A flow of single SYN-packet is a failed connection

 The connection state drives the random walk.
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TRWSYN (Cont’d)

 Sequential Hypothesis Testing
– Hypotheses: H0 – a benign host; H1 – a scanner

– Sequence of events: Yi

– Likelihood ratio

– Random walk:
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TAPS

TRWSYN
 Caveat: single observation point on uni-directional 

backbone link 
TAPS
 Rationale: scanners tends to access a large number of 

distinct destination addresses (or port numbers)
 Time-bin driven random walk

– In each time bin, compute ratio (distinct dest.IP or port #); if 
exceed threshold k, mark Yi to 1

– Update likelihood ratio as TRWSYN

 Designed to lower the false positives
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Performance Metrics

 Success Ratio Rs = #(True Scanners Detected)
#(True Scanners) 

 False Positive Ratio Rf+ = #(False Scanner Detected)

#(True Scanners) 

 Rs => effectiveness, Rf+ => errors,

 Challenge: how to generate the “True Scanners” set?
– Use list of scanners manually generated [Sridharan06] 

– We care about relative performance of the portscan 
detection algorithms with sampled vs. original data 

• Less interested in absolute performance
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TRWSYN Detection Results: Success Ratio
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TRWSYN Detection Results: False Positives
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Impact of Sampling

 Flow count reduction – false negatives

 Flow shortening – false positives shoot-up in 
random packet sampling
– A multi-packet TCP flow shrunk to a single SYN-

packet flow

– The result: scanners and benign hosts are statistically 
indistinguishable.
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TAPS Detection Results: Success Ratio
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TAPS Detection Results: False Positives
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Implications of Our Results

 Random packet sampling is oblivious to any 
underlying traffic features, and causes information 
loss and distortion which degrade the performance of 
anomaly detection algorithms.

 Random flow sampling is generally robust to both 
volume anomaly and portscan detections.

 Smart sampling and sample-and-hold target heavy-
hitters, thus not quite suitable for anomaly detections.
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Entropy-Based Traffic Profiling

 We also study non-target-specific detection scheme, 
e.g, entropy-based traffic profiling*
– Construct entropy time series along four dimensions {SrcIP, 

DstIP, SrcPort, DstPort) 

– Extract ‘Significant Clusters (SCs)’ until the rest looks 
random (uniform)

– Categorize SCs into behavior classes (BCs) based on 
similarity or dissimilarity of communication patterns

 Sampled traffic tends to be more uniform
=> increase in entropy & lower # of SCs

*[Xu05] K. Xu, Z. Zhang, and S. Bhattacharrya, “Profiling Internet Backbone 
Traffic: Behavior Models and Applications,” ACM SIGCOMM, Aug 2005.
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Results with Random Packet Sampling

 Relative Uncertainty (RU) increases, closer to 1
– Distribution becomes closer to uniform instead of cluster-like 
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Closing Remarks

Towards accurate measurement for anomaly
detection …

 Two on-going directions
– ‘Universal box’ that works for both TE & anomaly 

detection

– ‘Programmable’ measurement modules that can be 
customized depending application requirements
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Approach#1: Catching both elephants & mice

 Preview: Fast Filtered Sampling
– Goal: Catch both elephants & mice 

– Constraint: Low measurement cost

N counters of m bits

If counter value ≤ s, 
pass packet to 

sampler, 
else discard.

If counter value ≥ l, 
it is reset to zero.

Pr {packet sampled 
from flow size i}
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Reducing False Positives for TAPS
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Approach #2: Programmable Measurement

 New abstraction for measurements: Flowset*
– Arbitrary set of flows or traffic subpopulation

 Flexibly defined by user
– E.g. “bogon traffic”, “traffic going to ISP X”

 Can be dynamically redefined 
– To match application requirement (TE vs. anomaly detection) 

or traffic condition 

 Significant implication to scalability
– Per-flowset counters vs. per-flow counter

 Caveat: You know what to ‘query’

*[Yuan07] L. Yuan, C-N. Chuah, and P. Mohapatra, “ProgME: Towards 
Programmable Network MEasurement” ACM SIGCOMM, Aug 2007
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ProgME Architecture
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Questions & Comments?

 E-mail: chuah@ucdavis.edu


