

Impact of Sampling on Anomaly Detection

DIMACS/DyDan Workshop on Internet Tomography

Chen-Nee Chuah

Robust & Ubiquitous Networking (RUBINET) Lab <u>http://www.ece.ucdavis.edu/rubinet</u> Electrical & Computer Engineering University of California, Davis

	Outline	
 Ove Imp - N - H - Toy Det - H - H 	erview pact of Sampling on Anomaly Detection Volume Anomaly Detection Portscan Detection Entropy-based Traffic Profiling wards Accurate Measurements for Anomaly rection Filtered Sampling Programmable Measurement Approach	
Rubinet	DIMACS, May 2008	2

	Anomaly Detection	
Anoma Accu - W - Ha - W Robu - W - Ta - Ga	aly detection heavily depends on urate traffic measurements/observations: That to measure? ow to measure? (Limited resources: CPU, memory) There to measure? ust detection algorithm That is normal/abnormal? arget specific • E.g., portscan detection, signature based worm detect eneralized traffic profiling • E.g., Entropy based profiling	ion
RUBINET	DIMACS, May 2008	4

Detecting Anomalies in IP-Backbone

Why?

- ISPs interested in detecting and stopping anomalous traffic early
 - Additional service to stub networks
 - Protecting scarce resources in wireless access links
- Ability to observe more diverse traffic mix
 - Global view of traffic better capture scanning patterns
- Inherent monitoring capability
 - Sampled traffic used for traffic engineering
 - Cisco's Netflows, Juniper's Traffic Sampling

rubinet

DIMACS, May 2008

5

<section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item>
 <section-header>

Comparing Various Sampling Schemes							
 How to compare: normalizing CPU load, or memory consumption Our choice – the percentage of flows sampled Input to the anomaly detection based on flows Number of flows translates to memory consumption Example of sampling parameter settings: 							
% flows	random packet		random flow		smart sampling		
70 HOWS	r	% pkts	р	% pkts	Z	% pkts	-
34.4%	0.1	10.0%	0.344	34.4%	11	84.5%	-
6.91%	0.01	1.00%	0.691	6.96%	75	62.7%	-
				· /			-
RUBINET DIMACS, May 2008				13			

Detection Result from Sampled Traces

• Apply DWT* to Sampled Data

Sampling interval	10	100	1000
Percentage of flows (%)	36.7	8.03	1.47
Random packet sampling	19	6	1
Random flow sampling	21	18	13
Smart sampling	18	1	1
Sample-and-hold	18	2	1

*[Barford02] P. Barford, J. Kline, D. Plonka, and A. Ron. A Signal Analysis of Network Traffic Anomalies. In Proc. ACM SIGCOMM IMW'02, Nov. 2002.

RUBINET	DIMACS, May 2008	15

