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Network Monitoring Applications

» Traffic Engineering (TE)

— Capacity planning, routing, load balancing, fault
management

— Tuning knob: routing configurations, link weights

= Ensuring service level agreements (SLA)

= Security: Detect and keep out unwanted traffic <
— Anomaly/intrusion detection
— Tuning knobs: IDS rules, firewall configurations
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Anomaly Detection

Anomaly detection heavily depends on

= Accurate traffic measurements/observations:
— What to measure?
— How to measure? (Limited resources: CPU, memory)
— Where to measure?

= Robust detection algorithm
— What is normal/abnormal?
— Target specific
» E.g., portscan detection, signature based worm detection
— Generalized traffic profiling
 E.g., Entropy based profiling
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Detecting Anomalies in IP-Backbone

Why?
= |SPs interested in detecting and stopping anomalous
traffic early
— Additional service to stub networks
— Protecting scarce resources in wireless access links
= Ability to observe more diverse traffic mix
— Global view of traffic better capture scanning patterns
= Inherent monitoring capability

— Sampled traffic used for traffic engineering
« Cisco’s Netflows, Juniper’s Traffic Sampling
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Sampling

= Sampling typically used in high-
speed networks
— Reduce monitoring/measurement
overhead (CPU, memory)
= Sampling distorts traffic statistics

— Miss packets from the same flow,
miss flows all together, ...

— Affect estimates of mean rate, flow
size distributions
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Coping with Sampled Data

Prior work related to TE

= [nferring accurate flow statistics (flow size or
total # of flows) from sampled data [Duffield03,
Hohn03]

— SYN flag in TCP header
= Tracking heavy hitters [Estan02]

» Maintain accurate ranking of flows [Barakat05]
— TCP/RTP sequence#
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Impact of Sampling on Anomaly Detection

= Question we ask:
Does sampled traffic contain sufficient
information for effective anomaly detection?

= Approach: Empirical experiments to gauge impact
of sampling on anomaly detection algorithms

[JSACO06] J. Mai A. Sridharan, C-N. Chuah, T. Ye, and H. Zang, "Impact
of Packet Sampling on Portscan Anomaly Detection," IEEE JSAC -
Special Issue on Sampling the Internet, vol. 24, no. 12, pp. 2285-2298,
December 2006.

[IMCO06] J. Mai, C-N. Chuah, A. Sridharan, T. Ye, and H. Zang, "Is
Sampled Data Sufficient for Anomaly Detection?" ACM/USENIX Internet
Measurement Conference, October 2006 .
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Experiment Methodology
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= Backbone traffic traces
Trace Average Rate | Anomaly | Duration
BB-East 207 Mbps DoS 17 hours
BB-West 55 Mbps Portscan 1 hour
Wireless 7 Mbps Portscan | 3 hours
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Anomalous Traffic and Detection Algorithm
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Type of Anomalies Detection Algorithms
Volume anomaly: 1. Wavelet-based abrupt change
DoS attacks, flash crowds | detection [Barford02]
Port scanning: 2. Threshold random walk (TRW)
Worm/virus propagation [Jung04]
3. Time Access Pattern Scheme (TAPS)
[Sridharan06]
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Sampling Methods (1)
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Random packet sampling: packets sampled with probability p < 1.
— Simple and efficient, widely deployed (NetFlow)
— Hard to infer flow statistics
Random flow sampling: flows sampled with a probability p < 1.
— Prohibitive resource requirement
— Accurate estimation on flow statistics [Hohn03]
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Sampling Methods (2)

Non-uniform flow sampling: focus on catching heavy-
hitters

= Smart sampling [Duffield02] — flow records selected
with a probability
A if x5 <
) = pe) = { § S
» Sample-and-hold (S&H) [Estan02]

— Packet is sampled and flow entry created with probability
hs=1-(1-h)s, as if each byte of a packet sampled with a
small probability h.

— All the following packets in the flow will be sampled once
the a packet in the flow gets sampled.
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Comparing Various Sampling Schemes

= How to compare: normalizing CPU load, or memory
consumption

= Qur choice - the percentage of flows sampled
— Input to the anomaly detection based on flows
— Number of flows translates to memory consumption

= Example of sampling parameter settings:

random packet random flow smart sampling
r | % pkts p | %opkts] z | % pkts

34.4% 0.1 10.0% || 0.344 | 34.4% || 11 84.5%

6.91% 0.01 | 1.00% | 0.691 | 6.96% | 75 62.7%

% flows
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Case Study #1: Volume Anomaly Detection

= Discrete Wavelet Transform (DWT)* based Change Detection
— Decomposition 3 3iw . “originall
— Re-synthesis into 3 band 2 ,|
* High: 1 second, " H
e Mid: 1 minute, T hig;h—bant_l
+ Low: 15 minutes. b '
= Detection . i
— Sliding window e
— Deviation score
= Original trace -
— 21 potential anomalies ]
Time (s) ’ ) a1t
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Detection Result from Sampled Traces

= Apply DWT* to Sampled Data

Sampling interval 10 | 100 | 1000
Percentage of flows (%) | 36.7 | 8.03 | 1.47
Random packet sampling | 19 6 1
Random flow sampling 21 18 13
Smart sampling 18 1
Sample-and-hold 18 2

*[Barford02] P. Barford, J. Kline, D. Plonka, and A. Ron. A Signal Analysis of
Network Traffic Anomalies. In Proc. ACM SIGCOMM IMW’02, Nov. 2002.
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Impact of Sampling

= Sampling distorts variance of time series => signals
become noisier, especially at high frequency band

» False Negatives caused by the increase of sampling
variance:
— Let flow arrivals be stationary i.i.d. point process {X;} with
variance c,2and average arrival rate A

— With random flow sampling, total variance of sampled
process becomes

2 2 2 2 2

= No False Positives Sampling variance
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Sampling Variance
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= Variance of the sampled (random flow sampling) time series:
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Case Study #2: Port Scan Detection

= Port scan typically precedes worm/virus propagation
— Vertical scan: scan for vulnerable ports on a targeted machine
— Horizontal scan: scan for vulnerable hosts on a targeted port

= Consider two target-specific detection schemes:
— TRWSYN

[Jung04] J. Jung, V. Paxson, A. W. Berger, and H. Balakrishnan, “Fast
Portscan Detection Using Sequential Hypothesis Testing,” IEEE
Symposium on Security and Privacy, May 2004.

— TAPS

[Sridharan06] A. Sridharan, T. Ye, and S. Bhattacharyya, “Connection
Port Scan Detection on the Backbone,” Malware Workshop, April 2006.
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TRWSYN

Rationale: scanners makes a lot more failed
connection attempts than a benign host

We need an ORACLE

— which tells upon seeing a SYN packet if the connection
will succeed, be rejected or go unanswered ...

A flow of single SYN-packet is a failed connection
The connection state drives the random walk.
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TRWSYN (Cont’d)

= Sequential Hypothesis Testing
— Hypotheses: H, — a benign host; H, — a scanner
— Sequence of events: Y;
— Likelihood ratio  A(Y) =111, YRl
— Random walk:

Pr{Yi|Hi]

# scanner

likelihood ratio ~ .

-

Events

T0
* benign host
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TAPS

TRWSYN

= Caveat: single observation point on uni-directional
backbone link

TAPS

= Rationale: scanners tends to access a large number of
distinct destination addresses (or port numbers)

= Time-bin driven random walk

— In each time bin, compute ratio (distinct dest.IP or port #); if
exceed threshold k, mark Y; to 1

— Update likelihood ratio as TRWSYN
= Designed to lower the false positives
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Performance Metrics

Success Ratio Ry = #(True Scanners Detected)

#(True Scanners)
False Positive Ratio Ry, = #(False Scanner Detected)
#(True Scanners)
R, => effectiveness, R;, => errors,
Challenge: how to generate the “True Scanners” set?

— Use list of scanners manually generated [Sridharan06]

— We care about relative performance of the portscan
detection algorithms with sampled vs. original data
* Less interested in absolute performance
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TRWSYN Detection Results: Success Ratio
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TRWSYN Detection Results: False Positives
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Impact of Sampling

» Flow count reduction — false negatives

= Flow shortening — false positives shoot-up in
random packet sampling

— A multi-packet TCP flow shrunk to a single SYN-
packet flow

— The result: scanners and benign hosts are statistically
indistinguishable.
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TAPS Detection Results: Success Ratio

0.9 . ‘
random packet sampling —+—
0.8 random flow sampling - .
9 smart sampling =8
. 0.7 "y _sample-and-hold =@
0 —
£ 06+
o
w 05+
14
S 04 r
L
S 03
n
02 r
01 r
0 . Ll L o i e 'M""
1 10 100 1000

Effective Sampling Interval

RUERINET DIMACS, May 2008 2%




TAPS Detection Results: False Positives
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Implications of Our Results

= Random packet sampling is oblivious to any
underlying traffic features, and causes information
loss and distortion which degrade the performance of
anomaly detection algorithms.

= Random flow sampling is generally robust to both
volume anomaly and portscan detections.

= Smart sampling and sample-and-hold target heavy-
hitters, thus not quite suitable for anomaly detections.
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Entropy-Based Traffic Profiling

= We also study non-target-specific detection scheme,
e.g, entropy-based traffic profiling*

— Construct entropy time series along four dimensions {SrclP,
DstIP, SrcPort, DstPort)

— Extract ‘Significant Clusters (SCs)’ until the rest looks
random (uniform)

— Categorize SCs into behavior classes (BCs) based on
similarity or dissimilarity of communication patterns
= Sampled traffic tends to be more uniform
=> increase in entropy & lower # of SCs

*[Xu05] K. Xu, Z. Zhang, and S. Bhattacharrya, “Profiling Internet Backbone
Traffic: Behavior Models and Applications,” ACM SIGCOMM, Aug 2005.

RURBRINET DIMACS, May 2008 29

Results with Random Packet Sampling

Time Bin (5min)

= Relative Uncertainty (RU) increases, closer to 1
— Distribution becomes closer to uniform instead of cluster-like
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Closing Remarks

Towards accurate measurement for anomaly

detection ...
= Two on-going directions

detection

— *Universal box’ that works for both TE & anomaly

— ‘Programmable’ measurement modules that can be
customized depending application requirements
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Approach#1: Catching both elephants & mice

= Preview: Fast Filtered Sampling
— Goal: Catch both elephants & mice
— Constraint: Low measurement cost

Filter

. Sampler

)
packets I

| counter ! {flow table

N counters of m bits

O | O-m .

/ If counter value < s,\

pass packet to
sampler,
else discard.

If counter value > |,
it is reset to zero.

Pr {packet sampled
from flow size i}
p ifl<i<s
ps/iif s<i<lI

e
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Reducing False Positives for TAPS
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Approach #2: Programmable Measurement

= New abstraction for measurements: Flowset*
— Arbitrary set of flows or traffic subpopulation

= Flexibly defined by user
— E.g. “bogon traffic”, “traffic going to ISP X”
= Can be dynamically redefined

— To match application requirement (TE vs. anomaly detection)
or traffic condition

= Significant implication to scalability
— Per-flowset counters vs. per-flow counter
Caveat: You know what to ‘query’

*[Yuan07] L. Yuan, C-N. Chuah, and P. Mohapatra, “ProgME: Towards
Programmable Network MEasurement” ACM SIGCOMM, Aug 2007
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ProgME Architecture

9 Flowset-based Query

Answering Engine
4-Query

Program

Engine
\'-

intai AS,? p,:ze Interpretation of
i I query & results

per-flowset
counters \
Dynamically re-program QAE,
application-specific
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Questions & Comments?

= E-mail: chuah@ucdavis.edu
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