DNN Model Architecture Fingerprinting Attack on CPU-GPU Edge Devices

Kartik Patwari, Syed Mahbub Hafiz, Han Wang, Houman Homayoun, Zubair Shafiq, and Chen-Nee Chuah
University of California, Davis, CA, USA
{kpatwari, shafiz, hjlwang, hhomayoun, zshafig, chuah}@ucdavis.edu

Abstract—Embedded systems for edge computing are getting
more powerful, and some are equipped with a GPU to enable
on-device deep neural network (DNN) learning tasks such as
image classification and object detection. Such DNN-based
applications frequently deal with sensitive user data, and
their architectures are considered intellectual property to be
protected. We investigate a potential avenue of fingerprinting
attack to identify the (running) DNN model architecture
family (out of state-of-the-art DNN categories) on CPU-GPU
edge devices. We exploit a stealthy analysis of aggregate
system-level side-channel information such as memory, CPU,
and GPU usage available at the user-space level. To the best
of our knowledge, this is the first attack of its kind that
does not require physical access and/or sudo access to the
victim device and only collects the system traces passively,
as opposed to most of the existing reverse-engineering-based
DNN model architecture extraction attacks. We perform
feature selection analysis and supervised machine learning-
based classification to detect the model architecture. With a
combination of RAM, CPU, and GPU features and a Random
Forest-based classifier, our proposed attack classifies a known
DNN model into its model architecture family with 99%
accuracy. Also, the introduced attack is so transferable that
it can detect an unknown DNN model into the right DNN
architecture category with 87.2% accuracy. Our rigorous
feature analysis illustrates that memory usage (RAM) is
a critical feature for such fingerprinting. Furthermore, we
successfully replicate this attack on two different CPU-
GPU platforms and observe similar experimental results that
exhibit the capability of platform portability of the attack.
Also, we investigate the robustness of the proposed attack
to varying background noises and a modified DNN pipeline.
Besides, we exhibit that the leakage of model architecture
family information from this stealthy attack can strengthen
an adversarial attack against a victim DNN model by 2x.
Index Terms—DNN Model Architecture Fingerprinting,
Side-Channel Attack, GPU-enabled Embedded System

1. Introduction

Modern edge devices [I] have significant on-device
computing that allows them to employ powerful deep
neural network (DNN) models [2], [2]. DNN models
employed on edge devices process sensitive user infor-
mation and are themselves considered confidential in-
tellectual property. Thus, the research community is ac-
tively investigating direct and side-channel attacks that
leak information about on-device DNN models employed
by smart edge applications. [4]-[6]. Furthermore, unau-
thorized knowledge of the DNN model can also enable
downstream attacks, including model inversion attacks [7],
membership inference attacks [8], and adversarial at-
tacks [9], [10].

This paper investigates a DNN model architecture
fingerprinting attack on GPU-enabled edge devices via
side-channel leakage. Specifically, we propose a novel
DNN model fingerprinting attack on CPU-GPU-based
edge devices through passive analysis of system-level
side-channel information such as global memory, GPU,
and CPU usages available at the user-space level. System
statistics and performance counters provide handy infor-
mation for users to monitor application performance or
behavior problems [!1]. Our black-box attack involves
training a supervised classifier using system-level traces
for a diverse set of popular DNN model architectures
used in deep learning (DL) applications. Rather than
reverse-engineering the victim DNN model architecture,
parameters (i.e., more fine-grained properties) by exploit-
ing fine-grained side-channel leakage, our attack focuses
on classifying a victim DNN into a category/family of
architectures (i.e., less fine-grained property) utilizing only
coarse-grained side-channel knowledge. Prior research [©],
[12] has shown that an attacker’s knowledge of DNN
model architecture—even though the acquired information
is less fine-grained—allows it to improve the effectiveness
of adversarial attacks.

While prior literature has investigated model extrac-
tion through memory access pattern-based side-channel
venues [9], [13], [14], they are limited in the follow-
ing ways. First, some require physical access to the
victim device (e.g., by probing electromagnetic (EM)
emissions) [9], [13]. EM emanations enable more fine-
grained memory statistics and can reconstruct model
network architecture without prior knowledge. Second,
some utilize popular cache-based side-channel attacks like
Flush+Reload or Prime+Probe [14], [15]. These cache-
based methods solve the issue of requiring physical access
but require active cache probing. This is undesirable as
it involves directly probing the system cache, and due
to the significant emergence of cache-based side-channel
attacks, researchers are developing detection techniques
and algorithms [16], [17]. Our attack overcomes these
limitations as it does not require physical access to collect
passive system information or any assumptions of code
sharing the same memory space, e.g., L3 cache or attacker
having to either access or manipulate cache or such.
Furthermore, utility functions that provide fine-grained
side-channel leakage (e.g., per-process stats) are disabled
on many systems. We investigate a new vulnerability to
snitch model architecture family using only coarse-grained
side-channel stats.

We implement our attack against popular and state-
of-the-art DNN model families, such as ResNet, VGG,
DenseNet, SqueezeNet, AlexNet, MobileNet, ShuffleNet,
and Inception, running on NVIDIA Jetson family edge
devices. Our attack pipeline consists of two steps. First,

we collect global system traces using tegrastats on Nvidia
Jetson Nano (4GB) when a DNN model is running and
select suitable features from the collected time-series data.
Second, we train a machine learning classifier on the
labeled data to fingerprint victim DNN architecture and
analyze the impact of different features—RAM, CPU,
and GPU usage. Many model families include variants of
models that share a similar backbone architecture. While
it is common to use the popular models, they can also be
slightly modified—with more layers by smart application
developers—for specific tasks. Hence, we inspect further
the transferability' property of our attack with variants
of model families that the attackers classifier was not
trained on. In addition, we successfully clone our attack on
two different CPU-GPU edge platforms — Jetson Xavier
NX and TX2 — to show the attack can be generalized
to a different platform. We investigate that the common
property of the platforms is that they are shared-memory
systems. Furthermore, we inspect the robustness’ of the
trained attacker classifier when there is a secondary appli-
cation running with varying memory loads and when DNN
models are modified via transfer learning. Finally, with the
fingerprinted knowledge of the model family, we illustrate
an improved adversarial attack on the victim DNN.

Our results evidence that we can use a combination
of GPU and CPU loads and memory usage (of RAM) to
achieve an accuracy of 99% on trained models. We per-
form feature ablation to notice that feature combinations
with RAM attain an accuracy of 98%-99%. Furthermore,
our transferability experiment also indicates RAM usage
as a critical characteristic to distinguish between DNN
architectures. The attacker’s classifier obtains a success
rate of about 87%-90% for unseen model variants with
RAM usage. For our platform portability® tests, we find
that the combination of RAM and GPU statistics yield
an accuracy of 98.9% on seen and 86.6% on unseen
model variants. Besides, we demonstrate the accuracy
of the attack falls short from 86.4% to 16.9% with a
concurrent AES encryption/decryption application on 10
to 100 megabytes, respectively. Also, we showcase that
the adversarial attack, DeepFool [18], on a DenseNet
DNN model degrades the benign accuracy from 83% to
51% when the attacker has incorrect knowledge of the
ensemble of the DNN models and to 28% when it has the
correct knowledge of the family of the DNN model. The
DNN model fingerprinting open-source library has been
released in GitHub [19].

We summarize our key contributions as follows:

e For the first time, our fully experimental work
shows the use of global system-level statistics at
the user-space level to fingerprint DNN model
architecture. This is very valuable as no admin
access or sudo access, or jailbreaking of the device
is required.

o We illustrate that global side-channel statistics can
be exploited for accurate DNN model architecture
fingerprinting on CPU-GPU-based Nvidia Jetson
devices.

1. Transferability is formally defined in Sec. 5.4 (see Definition 5.1).
2. Robustness is formally defined in Sec. 5.6 (see Definition 5.3).
3. Portability is formally defined in Sec. 5.5 (see Definition 5.2).

o We conduct our DNN architecture fingerprinting in
a more realistic scenario, i.e., remote host setting
without prior knowledge of the victim model.

e« We show that global memory (total RAM) usage
is the most crucial feature for transferability.

« We demonstrate that our attack pipeline can be
replicated to different GPU-enabled platforms.

« We execute an exhaustive feasibility analysis of
our proposed attack in the lens of its robustness
to a memory-bound secondary application with
different stresses and modified DNN models with
transfer learning. We also evaluate the attack per-
formance on the TensorFlow DL framework in
addition to our original pipeline on PyTorch.

« Finally, we illustrate that the advanced knowledge
of the DNN model family doubles the effective-
ness of a semi-black-box adversarial attack.

2. Related Work

Prior related works exploited different side-channel
information for different attack targets such as model
architecture, inputs, or parameters. Most of the works
focused on extracting/re-engineering model network ar-
chitectures. Knowledge of the network architecture con-
stitutes two main concerns: (1) network architectures are
considered intellectual property, and (2) studies showed
knowledge of network architecture could improve adver-
sarial attacks and membership inference attacks [8], [9],
[13], [14]. The common sources of side-channel leakage
include cache [15], [20], memory-access, [9], [13], [14],
electromagnetic (EM) emission & power [7], [21]-[23],
timing [24], [25], and GPU [26], [27] statistics. While
most of the works focused on network architectures, a few
also aimed to extract model parameters [7], [13], [28] and
inputs [21], [22], [25].

Usually, the collection of EM/power traces requires
physical access to the target device. Batina et al. [21]
leveraged power/EM side-channel leakages and queried
a target model to reverse engineer network architectures.
Xiang et al. [7] extracted parameters (with known in-
puts) and the model architecture via power traces. Wei
et al. [22] showed that power traces could be utilized
to recover an input image from a physically accessible
FPGA-based CNN accelerator with known parameters.
Note that recovering parameters or input images require
one to infer the other. In one of the most recent works,
Chmielewski, Lukasz, and Weissbart [23] performed EM
emanation and timing analysis on NN layers execution on
a GPU implementation (Jetson Nano). They were able to
recover the number of layers and number of neurons per
layer, and identify different types of activation functions
with power analysis.

Duddu et al. [24] achieved model extraction by query-
ing the target model and measuring the execution time.
The execution time is used to predict the depth of the
model and effectively reduce the search space to infer a
target model. A reinforcement learning-based search finds
an architecture closest to the target model. Another line
of research used timing-based side-channel information
to recover model inputs. For example, Dong et al. [25]
was able to recover input images of DNNs deployed
on micro-controllers using the running time of floating-
point multiplications. Kernel execution times are also used

in conjunction with other side-channel information (e.g.,
memory-accesses) for model extraction [9].

In recent years, GPUs have become the dominant
platform to train and deploy DNN models. There is a
line of research attacking general-purpose GPUs. Wei
et al. [260] exploited GPU context-switching penalty to
extract model architecture. Their attack, Leaky DNN,
requires the adversary to share the same GPU as the victim
when training the model. Furthermore, this is an attack
conducted on cloud-based GPUs and had to perform a
denial of service (DoS) attack in order to slow down the
transition between DNN layers to be able to recover them.
Naghibijouybari et al. [27] utilized a CUDA spy applica-
tion co-located with a victim CUDA DNN application and
required a CUPTI NVIDIA profilers, to monitor hardware
performance counters. The counter values are then used to
infer the network architecture. Both two works required
NVIDIA profilers such as CUPTI, which are not easily
available on Jetson edge devices. Conversely, our focus is
on GPU-powered edge devices, and tegrastats that comes
installed. Besides, there is no “nvprof” profiler for the
Jetson edge devices for fine-grained statistics.

Cache-based side-channel attacks exploit the shared
cache between processes. Often, these methods require
the attacker and victim to be co-located processes using
the same DL framework. Most cache-based methods rely
on having memory sharing and code access to monitor
specific function invocations etc. Hong et al. [20] retrieved
DL architecture using Flush+Reload side-channel attack
to monitor specific function calls during inference. Yan,
Fletcher, and Torrellas [15] monitored Generalized Ma-
trix Multiply (GEMM) functions using Flush+Reload and
Prime+Probe techniques to infer the model architecture.

Memory-access pattern-based attacks are closest to
our work as we look at models’ aggregate global mem-
ory usage to build the classifier for the fingerprinting
task. Hua, Zhang, and Suh [I3] were able to reverse
engineer CNN models running on hardware accelerators
by querying the victim model and monitoring the off-
chip memory accesses. Hu et al. [9] work—DeepSniffer
framework utilized memory access patterns (with physical
access to the victim device) acquired through EM emis-
sions and bus snooping methods to infer the complete
victim NN architecture (including layer sequence, topol-
ogy, and dimension sizes) without any prior knowledge
of the model. For complex DNNs, their attack requires
bus snooping attack to gain memory read/write statistics,
which is more intrusive. These works require physical
access to the device to probe for EM emanations. Liu
and Ankur [14] developed a DNN architecture extraction
framework, GANRED, under the remote host setting using
cache timing to counter the physical access requirement
of side-channel information. They compared the victim
DNN architecture and the attacker DNN structure (created
by a generative adversarial network (GAN) method [29])
via cache traces acquired from Prime+Probe side-channel
attack technique. The traces reflect the memory-access
patterns of the running DNNs and compare the generated
and target models. However, using a cache-based attack
such as Prime+Probe makes this attack less passive, hav-
ing attack code to access and modify the shared cache.

In contrast to the above works, we classify deep learn-
ing applications deployed on edge devices into a set of

targeted model architecture families—the fingerprinting-
based model architecture leakage attack we propose is sig-
nificantly novel and differs from other model architecture
extraction attacks. Our attack is non-intrusive: passively
and remotely collects only global memory-usage side-
channel traces from a black-box victim DNN application.
Our attack neither requires physical access nor need to
modify shared resources (like cache). The traces are used
in a supervised learning approach to classify the network
architecture.

The application/website fingerprinting line of research
also utilizes side-channel information for the fingerprint-
ing task. Similar to model extraction, application/website
fingerprinting has also been performed through the various
side-channel venues such as EM [30], [31], power [32],
[33], GPU [34] and network traffic [35] leaks. Chawla
et al. [36] combined EM emissions and dynamic voltage
frequency scaling (DVFS) states as features to finger-
print applications on android platform using supervised
ML techniques. The majority of application fingerprinting
attacks utilize per-process statistics (i.e., from profcs)
predominantly targeting mobile (Android) devices [37]—
[40]. Similar to our approach, Zhang et al. [41] employed
global statistics (memory and network patterns) to ex-
plore application fingerprinting on iOS platforms without
procfs—introducing new side-channel attack vectors
(i0S APIs). We take inspiration from the technique to
fingerprint model network architectures instead. Our focus
is on edge devices, and there are a few works on finger-
printing on IoT/edge devices; most of them have focused
only on fingerprinting the IoT devices themselves [42],
[43].

Adversarial attacks generate adversarial examples
with imperceptible perturbations, leading to miss-
classification or erroneous results by machine learning
systems. Transfer-based adversarial attacks [12], [44], [45]
look into generating adversarial examples that can transfer
across different model architectures. Liu et al. [12] used
novel ensemble-based approaches to generate transferable
adversarial examples from models trained over a large-
scale (ImageNet) dataset. As a result, they can success-
fully generate targeted and non-targeted adversarial exam-
ples for a black-box image classification system (which
need not be trained on the same dataset used to generate
examples). A key observation is that the transferability
of adversarial examples improves if the substitute* and
victim models belong to the same network architecture
family. DeepSniffer [9] follows similar techniques from
Liu’s work to demonstrate improved adversarial attack
efficiency with network architecture knowledge.

To our best knowledge, this is the first work that
aims to employ fingerprinting techniques to extract model
architecture knowledge that further strengthens the adver-
sarial attack.

3. Background
3.1. DNN Architecture Families
Deep Learning (DL) is a subset of machine learning,

which involves building a sequence of layers that per-
form feature processing/extraction steps in a hierarchy for

4. Substitute models are selected models that are trained by the
adversary and are used to generate the adversarial examples.

[Model family [Train/Test set I | Test set 2 |

VGG VGGL1, 19 VGGI3, 16

ResNet ResNet18, 50, 152 | ResNet34, 101
SqueezeNet SqueezeNet 1.0 SqueezeNet 1.1
DenseNet DenseNet121, 201 DenseNetl161, 169
ShuffleNet ShuffleNetv2 0.5 ShuffleNetv2 1.0
Inception InceptionV3 N/A
MobileNet MobileNetv2 N/A

AlexNet AlexNet N/A

TABLE 1: Explored Models. All models were obtained
from torchvision models. Model variants are N/A if there
exist no variants or if they were not easily available on
the torchvision model suite.

pattern analysis and recognition. This hierarchy of layers
is often referred to as the DNN architecture. Various re-
searchers have developed strong performing DNNs, which
can easily be re-trained for individual tasks while keeping
the same backbone architecture. Furthermore, there can be
multiple variants of a DNN stemming from a backbone
architecture, e.g., ResNetl8 and ResNet50 are based on
the ResNet architecture with a different number of layers
(as indicated by the number adjacent to the model name).
Hence, we can say these variants belong to the same
backbone architecture or family.

In our paper, we consider popular state-of-
the-art DNN models which are available with
torchvision.models [46] that goes in-hand

with Pytorch [47]. We chose to study the image
classification models, and all explored model families
are shown in Table 1. For instance, AlexNet [48]
enabled distributed CNN training between multiple GPU
cores. VGG [49] initiated deep visual representations
in computer vision for large-scale image classification
tasks using small convolution filters (about twice as
deep as AlexNet). Along this direction, ResNet [50]
went significantly deeper in visual representation to
improve accuracy. Furthermore, DenseNet [51] focused
on shortening connections between layers that are closer
to input and output and building connections with each
layer to every other layer to reduce the number of
parameters. Both ResNet and DenseNet are residual
networks, which add ‘shortcut’ or skip links between
layers. ShuffleNet [52] improved the computational
complexity of CNN by evaluating the performance by
memory-access overhead and operating platform. On
the other hand, SqueezeNet [53], Inception [54], and
MobileNet [55] have been proposed as alternate CNN
models on lightweight devices (such as mobile, FPGA,
edge devices) to facilitate fast inference with limited
resources.

3.2. CPU-GPU Embedded Edge Devices

The NVIDIA Jetson devices are GPU-enabled embed-
ded systems engineered for Al and edge computing [56]—
all having a complete System on Module (SOM) including
CPU, GPU, memory, high-speed interfaces, etc. The de-
vices include the Jetson Nano [57], Jetson TX2 series [58],
Jetson Xavier NX [59], and the Jetson AGX Xavier se-
ries [60], a variety with a different combination of per-
formance, power-efficiency, and form factor. Being GPU-
enabled embedded computers, they offer high compute
capability, especially for DL applications. A vital compo-
nent of these devices is that they have all shared memory

systems—the CPU and GPU share the main memory. It
is common for GPUs to have memory, and often for DL
pipelines, the model (weights) and inputs are loaded from
CPU to GPU for the inference task. On high-end servers,
GPUs typically have their own memory for faster access.
As the CPU and GPU share the main memory on these
edge devices, the main memory also reflects the GPU
memory utilization. Hence, RAM usage is an important
feature for fingerprinting model architectures.

tegrastats is a utility tool available to Jetson-based
devices that reports memory and processor usage at a
selected sampling rate (in milliseconds). It can be run
with and without sudo access. Using the utility with
sudo access provides additional statistics. For instance,
with sudo we can gain additional statistics about the
video/audio processor engines. Furthermore, some statis-
tics are augmented. With sudo, the frequency for the
GPU engine and EMC controller is available. For this
paper, we do not use the utility with sudo access. This
makes our attack model stronger, as an attacker does not
require privileged access to monitor the system traces.
Without sudo and running tegrastats as a background
process, the system traces collection phase of the attack
is stealthy and passive. Section 4.3 explores available
statistics from tegrastats without sudo access.

4. Model Fingerprinting Attack
4.1. Threat Model

Our DNN architecture fingerprinting method is mo-
tivated by application/website fingerprinting [30], [41]
approaches. The core idea is that the attacker can build
a classifier from global-statistic traces collected using the
same target device that hosts the victim DL applications.
We consider a closed-world scenario, where the attacker
is aware of network architectures that can be running on
the victim device. These include popular and state-of-the-
art deep learning network architectures that are frequently
used for computer vision tasks. This enables us to create
a labeled dataset used to train the classifier via supervised
learning.

Attackers Goal. The attacker’s primary goal is to
learn about the victim DL application; in particular, the
DNN architecture. The attacker aims to do this remotely
and passively, by only collecting aggregate system-level
traces from the victim device. With knowledge about
which common model architectures the victim DL appli-
cation uses, the attacker can explore a variety of down-
stream adversarial attacks.

Attackers Knowledge. Our proposed attack makes
the following three basic assumptions. (1) To infer the vic-
tim DNN architecture, the attacker must know the type of
victim edge device(s). The attacker can purchase the same
device, which we refer to as the attacker’s device. The
attacker’s device runs DNN models and collects system
traces aiming to mimic the victim device. (2) Only one
DNN runs at a given time on the victim device, with-
out any other background processes. Hence, the global
statistics reflect the running targeted application. This is
a reasonable assumption given that the target edge device
is resource-constrained and typically deployed for specific
application. (3) The attacker also assumes the victim DNN
belongs to one of the known families of network architec-
tures (in particular, VGG, ResNet, DenseNet, SqueezeNet,

Attacker Device

t;«%

Victim Device

Sensitive DNN Application

Pool of DNN > System > Feature

Malicious App t

Supervised

Traces Selection

>
tegrastats

v

Training

I
I
I
I
I
I
I
I
I
I
} Applications
I
I
I
I
I
I
I
I
I
I
I

Offline Preparation

Inference using Attacker Classifier

|
|
|
|
|
|
|
|
|
i
Collect System Traces }
|
|
|
|
|
|
|
|
|
|

|

Online Fingerprinting

Figure 1: Attack pipeline for the model architecture fingerprinting.

AlexNet, MobileNet, and Inception). However, any prior
knowledge of weights or parameters is not required. Off-
the-shelf model architectures are convenient for users who
want an existing pipeline and implementation to perform
their DL/ML task. Existing models are commonly used
after they are either pre-trained on known datasets and
classes like ImageNet or retrained on custom datasets.
This closed-world approach gives the attacker a pool of
applications with the different DNN architectures to train
and test an ML-based attacker classifier. The training and
testing phases for this classifier are performed on the
attacker device. Then the classifier is used to fingerprint
the model architecture running on the victim’s device.
Attackers Capability. The attacker uses a non-
privileged performance counter utility tool, tegrastats,
and gains access to the victim system either through
remote log-in or an installed malicious application’. In
both approaches, the attacker does not need to gain any
physical access to the device. The attacker collects the
system traces as a background process to avoid detec-
tion. Background processes are run independently of the
user without interaction, making the trace-collection phase
stealthy. Thus, the side-channel information collection is
passive, not requiring the use of cache-based methods like
Prime+Probe or Flush+Reload. It is also important to note
that various utilities disable per-process monitoring from
unauthorized users [01], hiding more fine-grained side-
channel leakages. This is why most prior work utilized
remote cache-based attacks or required physical probings
to gain the finer-grained memory statistics. However, us-
ing global statistics allows us to overcome this barrier.
With knowledge of the victim’s model architecture, the
attacker can then launch improved adversarial attacks.
Architecture-specific targeted adversarial examples can
then be generated to attack the victim DL application.
Indeed, our demonstrated attacker can identify (fin-
gerprint) the model architecture family with minimal
assumptions compared to the plethora of state-of-the-
art side-channel leakage-based attacks discussed in Sec-
tion 2. For instance, many model architecture extraction
attacks—which reveal fine-grained knowledge—utilize
micro-architectural side-channel information that requires

5. This is a common method for application/website fingerprinting.

the attacker to run very sophisticated processes (e.g.,
Flush+Reload, Prime+Probe, etc., to flush cache). In con-
trast, our attack utilizes a simple utility function provided
at the user level to collect global statistics, making the
attack more passive, (i.e., not invasive,) coarse-grained,
and stealthy.

4.2. Attack Overview

Our work leverages system-level information to fin-
gerprint popular model architectures deployed on CPU-
GPU edge devices. Figure 1 outlines the model finger-
printing attack. An attacker can download common ML
model architectures available through Pytorch, Tensor-
Flow, ONNX, etc. (see Table 1) and develop typical in-
ference pipelines with the pool of models on its device(s).
Specifically, We consider a typical DNN model inference
pipeline for image classification that consists of three
necessary stages: (1) loading the data/image to perform
DL task on, (2) loading the model and weights, and
(3) forward-pass data through a model to get predicted
label (running inference task). Stages (1) & (2) can be
performed in either order, but (3) requires both the prior
stages completed. We assume that a victim DL inference
application also exhibits these pipeline stages. As the
programs are run on resource-constrained edge devices,
we do not expect any more stages associated with training
and re-training.

4.2.1. Offline Preparation. Now that the attacker has
all models and inference pipelines ready, they can run
single-batched inference on randomized input images and
collect their system statistics. Our model fingerprinting
attack relies on the attacker’s ability to create a supervised
machine learning classifier. To be able to build and train a
classifier, the attacker needs to generate a training/testing
dataset from traces collected from its own device(s). The
dataset consists of system traces (i.e., memory, CPU,
GPU) collected when running the DNN inference ap-
plication on the device. The attacker simulates the in-
ference pipeline using the common DNN architectures.
The inputs can be any images fed into the DL system
as we are not interested in any particular type of inputs
or outputs but only the memory and processor usage of
the specific model architecture. The monitoring tool runs

4000

4000

4000 4000
VGG11 — ResNet18 — SqueezeNet 1.0 DenseNet121
— 3500 VGG19 /”j 3 3500¢ ResNet50 & 3500 SqueezeNet 1.1 —~ 3500 DenseNet169
o o
= A = = = =
< Vnt < < 2
o 3000 ﬂ_,f o 3000 ‘ o 3000 © 3000
g g g 7] g
> 2500 / 3 25001 at \ 5 2500 // 5 2500 /pf
= / = 7 = =
<

S 2000 Vi 2 2000 /’/ @ 2000 f’/ \ $ 2000 /
g / z ye \ g 7 £ V
12 1500}~ = 15000 | 2 1500 / 2 s00f

1000, 5 10 15 20 25 30 35 1000 5 7 s] o 12 14 1000 5 7y s 8 10 1000 2 4 6 8 10 12 14 16 1

Time (s) Time (s) Time (s) Time (s)

(a) VGG Family (b) ResNet Family

(c) SqueezeNet Family (d) DenseNet Family

Figure 2: Examples of total RAM usage for different DNN model families collected via tegrastats on Jetson Nano.
Memory usage patterns are similar within the same family and distinctive between separate families. To demonstrate
the different shapes of the memory traces, we do not scale the time-axis. The remaining families are in Figure 8.

as a background process, collecting (labeled) traces while
programs are running. This enables the attacker to collect
a labeled dataset on the specific device. The next step is
for the attacker to leverage its generated dataset to develop
a supervised ML model for time-series classification to
categorize the different DNN models.

4.2.2. Online Fingerprinting. After the classifier is built,
the attacker can launch online attack by collecting system
traces on the victim device and feeds them into its trained
classifier to infer the victim network architecture. The
attacker may infect an existing application or create a
malicious application to download on the targeted device.
The purpose of this application would be to (1) run the
system monitoring tool (tegrastats in our scenario for
targeted Jetson devices) and (2) process and feed those
time series traces to the trained classifier for inference.
Once installed on the victim device, the malicious app
would not need any privileged access. It can run the
monitoring tool in the background as a stealthy process to
avoid easy detection. We assume only one DL application
is running on the device at a time and the associated
DNN model is from one of the popular model architecture
families. Hence, any changes in system statistics from the
idle state can be attributed to the running application and
fed into the classifier for inference. The result from the
attacker’s classifier identifies the running model on the
victim device, the knowledge with which the attacker can
then exploit to perform transferable adversarial attacks.

4.3. Feature Description

tegrastats reports collected statistics as time-series
data. Hence, we have the aggregated system traces for the
entire duration of the target DL application. The utility re-
ports various statistics, and the three we will focus on are
memory, CPU, and GPU usage. Other reported statistics
include usages for audio/video engines, EMC controller,
and thermals (temperatures for CPU & GPU). The EMC
controller, audio, video engine statistics are not applicable
to our scenario. Notice that the thermal information is
unreliable. Victim applications can be running back-to-
back, causing the temperatures to rise. It takes some time
for the temperatures to fall back to the level of an idle
state. If the temperatures are still high from the previous
run, those readings will contaminate the concurrent run.
Hence, we only track reliable parameters like GPU, CPU
loads, and memory usages, but did not utilize temperature
as a feature.
Memory. tegrastats delineates two main segments
of the memory statistics: physical memory (RAM) statis-

tics and virtual memory (SWAP) statistics. For the former
case, the utility reports the total RAM in use (in MB) out
of the total available RAM, which is device dependant.
This is the predominant source of data for analyzing mem-
ory usage. Alongside the RAM usage, information about
the Largest Free Block (1fb) is also reported. This statistic
is not as useful for our purpose as it is mainly static
and does not change considerably during the application
run or provide helpful insight for classification. The next
statistics reported is the virtual memory usage (SWAP) in
use (in MB) out of the total available SWAP. However, the
SWAP memory is only used when all available RAM is
used and additional memory is required. Thus, the SWAP
is not helpful for devices with adequate RAM for the DL
applications (like Jetson Nano 4GB). Finally, the amount
of SWAP cached (in MB) is also reported.

CPU. tegrastats reports the CPU load and fre-
quency for all available CPUs. These are rough esti-
mations that are acquired from time spent on the sys-
tem idle process as reported by the Linux kernel (in
/proc/stat). Thus, for every CPU core, the load (in
percentage) and its associated frequency are recorded.

GPU. The GPU is a specialized processor designed
initially to accelerate graphics rendering. However, the
modern trend is to use General-Purpose GPUs (GPG-
PUs) for non-specialized tasks outside of graphics. The
GPU is optimized for throughput and has an extraordi-
nary computation capability. For example, deep learning
involves a massive amount of computation that can be
parallelized, and therefore, using GPGPUs for DL has
become a norm. tegrastats reports the percentage of the
GPU engine (GR3D) being used relative to the current
running frequency.

4.4. Feature Analysis

Prior works [9], [14], [15], [26], [27] have utilized
more fine-grained memory or per-process side-channel
information to enable systematic and precise/exact model
extraction. We aim only to use global aggregate statistics,
which are more course-grained. Our goal is to classify
victim model architectures into known architecture fami-
lies.

4.4.1. Memory. Model extraction/reverse-engineering re-
search identifies memory-access patterns as a valuable
source for model extraction [9], [13], [14]. Furthermore,
memory-access patterns have been used to reconstruct net-
work architectures, so memory usage proved to have hints
about network architecture. DeepSniffer observed that the
runtimes for layers within a network vary across different

100 —
_— AlexNet 0 1 0 4 0 0 1 AlexNet
70 70
95
3 / DenseNet{ 0 1 13 5 1 14 o0 DenseNet
< 90 / 60 60
[y 85 / Inception| 1 2 0 2 0 0 0 Inception
< / _ 50 _ 50
] / 2 MobileNetf 0 1 0 30 0 25 24 0 2 MobileNet
< 80 / - 40 7 40
§ 75 / S ResNet| 8 22 0 8 23 2 14 3 S Reshet
B / 30 30
= 70 ShuffleNet| 0 0 1 18 0 40 21 0 ShuffleNet
8 65 20 20
g SqueezeNet| 0 0 26 0 16 38 O SqueezeNet |
60 10 10
VGG| 0 0 0 0 0 0 0 VGG| 0 0 0 0 0 0 0
%1 2 3 4 5 6 7 8 g 8 5 8 8 8 8 § 0 g 3 5 8 8 &8 & 3 0
Sequence Length (s) < @ ‘| T) T > X] a @ n © T >
[n = [} N) @ = [N
< c g & x E o = c Y & x E @
[7) < <) 2 5] o c o 2 (9]
o = = & % o = = & %
predicted label predicted label

(a) Varying sequence lengths

(b) Sequence length of 1.5s

(c) Sequence length of 8s

Figure 3: 3a shows classification accuracies for different chosen sequence lengths. 3b and 3c exhibit confusion matrices
for the smallest (1.5s) and the largest (8s) sequence lengths, respectively.

models and layers of a DNN have static execution order
related to their computational graph. This implies that re-
gardless of execution times, the memory pattern observed
corresponds to the computational graph of a DNN [9].
Furthermore, one of the key reasons to inspect RAM usage
is because the Jetson Devices are shared memory systems,
which means the memory between CPU and GPU is
shared. For DL applications, this is important as typically,
the inputs, models, model weights all get loaded from the
CPU onto the GPU for inference. Usually, GPUs have
their memory for faster access. As the CPU and GPU
share the main memory, the main memory also reflects
the GPU memory utilization. Hence, RAM usage is an
important feature for fingerprinting model architectures.
4.4.2. GPU. There have also been model extraction tech-
niques through GPU side-channels, looking into context-
switching and CUDA spy applications. We aim to explore
CPU-GPU edge devices. These devices are built to deploy
Al on edge. The GPU is a core aspect of DL tasks and the
dominant platform to train and run DNNs. DNNs require
extensive computation, and this is where GPUs excel,
accelerating inference on the GPU. Different architectures
have different numbers and types of layers, which require
different computations. Hence, GPU usage is an obvious
candidate to fingerprint DNN applications.

4.4.3. CPU. Many modern DL technologies rely on CPUs
and GPUs working together. While CPU statistics have
not explicitly been used for model reverse engineer-
ing/extraction, CPU load has been shown to fingerprint
applications [30]. The CPU frequencies themselves are
not a viable differentiator between different DNN models.
More so, the device can be used on performance mode,
which means the clocks are locked to their maximum.
This makes frequencies redundant as they are always at
a static maximum. Unlike RAM and GPU usages, we
have multiple CPUs and hence data for each CPU load.
A process is scheduled onto an available core, and the
operating system (OS) determines the scheduling policy.
This indicates that the victim application process can be
running on any available CPU core. Therefore, we decide
to use all available CPU loads as features.

4.5. Classification

Our task is to use the system-level information as
features to classify a running DNN into a known archi-
tecture family. As previously seen, the features are all

collected throughout a running application as time-series
data using (non-sudo) utility tool tegrastats. Hence, our
classification problem becomes, with each feature is a
time-series itself, a multivariate classification problem.

We combat this by utilizing the sktime [62] library,
which is a new open-source, scikit-learn compatible,
Python library for machine learning with time series.
sktime provides a variety of state-of-the-art classifiers.
We leverage the interval-based Time-Series Forest Clas-
sifier [63] (based on Random Forest Classifier). For each
of our time-series features, sktime builds a classifier
and ensembles them. The classifier has two requirements.
The first is that the time series must be equally spaced
(in terms of observed time). This case is satisfied as our
sampling rate is constant (see Section 5.1.3). The second
requirement is that all the time series data have to be of the
same sequence length. However, as the DL applications
runs in real-time, the execution time varies depending
on various factors, including the hardware/software en-
vironments, and in our case, also the choice of DNN
model. We take the middle X seconds of the data, where
X is determined experimentally. We define the ‘middle’
by computing the middle value of a given trace (in time
axis), and taking X/2 seconds of data from each side
of that middle point. We test our classifier with a range
of values for X and pick the sequence length where the
accuracy is highest and stable (see Section 5.2). Further-
more, for each trace, we normalize the values using sci-
kit learn’s MinMaxScaler () to the range [0-1]. For
memory, normalization is important. Inherently, there is a
certain amount of RAM in use (by the OS itself). This
may differ from case to case, and without normalization,
it can skew our results and cause dependencies on device-
specific values.

The attacker will build its classifier based on the same
device as the victim, but it still needs to be generalized
to be able to adhere to slight variations (like the initial
offset caused by RAM in use). Normalized values allow
us to classify a DNN model based on the memory-
usage pattern or “shape” rather than raw values. The
CPU and GPU usages are already in the range of [0%-
100%]. They are still normalized to [0-1] for convenience.
We utilize the default parameters provided by sktime
for the classifier, for some vital parameters these are:
n_estimators = 200 (number of trees in the forest),

100

MexNetf 0 0 0 0 ©0 0O 0 0 AlexNet. 0 0 0

DenseNet| 1 DenseNet| 10 31
Inception| 0 0 0 0 0 0 0 0 Inception: 0 0 0

MobileNet| 0 0 0 0 0 0 0 0 MobileNet: 0 0 0

true label

ResNet| 11 5 1 0 ResNet; 2 2 1

true label

ShuffleNet, 0 0 0 19 0 80 1 0 ShuffleNet: 0 0 0

SqueezeNet: 0 0

o
o
o
o
N
8
o
]

SqueezeNet|

VGG 10 VGG

AlexNet|{ 0 0 0 0 0 0 0 0
DenseNet| 2
Inception; 0 0 0 0 0 0 0 0
MobileNet| 0 0 0 0 0 0 0 0

ResNet| 8 6 2 0

true label

ShuffleNet| 0 0 0 3 0

AlexNet| o
DenseNet| o
Inception| ©
MobileNet| o
ResNet| o
ShuffleNet| o
SqueezeNet| o
VGG
AlexNet| o
DenseNet| ©
Inception|{ ©

predicted label

(a) All Features

MobileNet| ©

predicted label

(b) RAM only

0 20 SqueezeNet; 0 0 0 o 20
0 0 0 VGG| 0 0 1 0 0 0 0
5 5 B @ 0 v - £ = = = £ o 0
233 3 N
5 2§ T 3§ 8 T 3§ 2 % ~
- < § ¢3¢ %5 ¢
& 3 a8 £ 2 & 2
“ @
predicted label

(¢) RAM and CPU

Figure 4: Confusion matrices for the transferability experimentations on Jetson Nano—classification conducted on Test
set 2—using all features (4a), most prominent feature—RAM (4b), and RAM+CPU (4c).

criterion set as ent ropy (the function to measure quality
of a split), and max_depth = None (the maximum
depth of the tree).

5. Experimental Evaluation
5.1. Experiment Setup

5.1.1. Device Specifications. From the Jetson family of
devices, we selected the Jetson Nano for our original
experimentation. The Jetson Nano has a Quad-core ARM
A57 (@ 1.43 GHz) CPU, 128-core Maxwell GPU, and
4 GB (64-bit LPDDR4 25.6 GB/s) Memory. The de-
vice utilizes the Linux4Tegra operating system based on
Ubuntu 18.04, and we use the JetPack SDK version 4.5.
There are two power modes — 10W (default) and 5W
for less energy use. We collect our training data with
the applications running on the 10W mode. Furthermore,
we use the Jetson Nano on performance mode, which
disables the DVFS governor and locks the clocks to their
maximums. This is the ideal mode to run DL applications
utilizing the GPU. For AI performance, the Jetson Nano
can deliver 472 GFLOPs.

5.1.2. Inference Pipeline Implementation. Using Py-
Torch, we develop realistic DL programs consisting of
the basic inference pipeline: loading data, loading model
(weights), and performing inference (see Section 4.2.1
for details). Since we use the PyTorch framework, pre-
trained image classification models are provided by the
torchvision models subpackage [46]. All pretrained mod-
els except InceptionV3 expect the input images to be
224x224 and normalized in the same way. InceptionV3
expects input images to be 229x229. We run inference
on the ImageNet ILSVRC Test set images. Next, we use
the PyTorch Dataloaders to randomly shuffle and sample
the input images. Then, the images are normalized and
loaded onto the GPU for single-batch inference. Hence,
the data loading stage for all applications is identical with
image input from the ImageNet Test set. The models are
chosen from the attackers’ model pool, and the model and
(pretrained) weights are loaded onto the GPU. Finally, the
single-batched inference is performed to yield a predicted
class. All applications follow this structure, with the dif-
ference being in which model is used.

5.1.3. Data Collection. Before any data is collected,
we set the Jetson Nano to performance mode. We start

tegrastats as a background process. Next, we run each
DL application one at a time. After every application
finishes execution, the resultant trace is collected and
stored with the label of the corresponding model run. Ap-
plication/website fingerprinting research has also shown
that higher sampling rates correlate to an increase in
classification accuracy [30] for fingerprinting. Therefore,
we maximize the sampling rate to distinguish between
model architectures so the system-level traces can give a
more accurate distinction. For our experiments, we set
our sampling rate to every lms (where the default is
1000ms for tegrastats). It is important to note that while
we select the sampling interval to be Ims, in reality the
utility samples at about 1.6ms. (As seen experimentally,
not mentioned by NVIDIA!)

5.1.4. Dataset. Table 1 shows all the model families and
the variants we consider for our experiments. There are
two datasets we use. The first is Train/Test 1, for which
we consider all the model variants in both the training
and testing set. The entire dataset includes 3200 samples,
with 400 samples from each with model families seen in
Table 1. If a model family has more than one variant, there
are equal sub-samples of each variant, adding up to 400
samples total for the family. To generate the Train set 1
and Test set 1, we use an 80:20 train-test split ratio.

Test set 1 provides the classification results for pre-
dicting model families from variants that are present in
the training dataset. Test set 2 is created with model
variants that do not exist in the training set. We created this
dataset to analyze the transferability (see Definition 5.1)
of our proposed attack. For model families where no other
model variants exist or are not readily available, we did
not consider them in the Test 2 set (N/A on Table 1).
Hence, we have 5 model families in Test set 2. We include
100 samples for each family. Again there are equal sub-
samples if there are variants within a family.

5.2. Training with Complete Feature Set

First, we attempt to leverage all features: CPU, GPU,
and memory (RAM). The execution times for each appli-
cation vary, and the classifier requires that the time series
be of the same sequence length. Hence, we experimen-
tally test sequence lengths ranging from 1.5 second to
8 seconds (on Test 1). Figure 3a demonstrates that the
classification accuracy peaks and becomes stable at 99%

for a sequence length of 7-8 seconds. However, there is
a significant decrease in accuracy when using a sequence
length under 3 seconds. This shows that under 3 seconds,
data-trace is not adequate or distinguishable amongst other
families for the classifier.

We demonstrate the confusion matrices for the lowest
(Figure 3b) and highest (Figure 3c) chosen sequence
lengths on Test set 1. We notice there is high accuracy in
identifying Alexnet, Inception, and VGG families. These
network architectures are larger. A majority of ResNet
samples are misclassified as DenseNet, both being resid-
ual networks. There is also noticeable misclassification
amongst the smaller networks: MobileNet, SqueezeNet,
and ShuffleNet. Furthermore, ResNet is also amongst
these misclassifications, possibly due to ResNetl8 be-
longing in the set, which is also a small network. Us-
ing a sequence length of 5s considerably improves the
classification. Based on our results, a sequence length of
8s is used for the remaining experiments, which gives a
classification accuracy of 99% on Test set 1.

100 99 98.7 98.3 98.2 97.6 B Testsetl

Test set 2
89.2

@ =}
=] =}

Classification Accuracy (%)
B
o

20

<

RAM+GPU
RAM
RAM+CPU
GPU+CPU
GPU
CPU

Selected Features
Figure 5: Classification Accuracies for different combina-
tion of features on Test set 1 and Test set 2 for the Jetson
Nano device.

5.3. Feature Ablation Study

We perform feature ablation experiments to identify
the importance and impact of our features—RAM, GPU,
and CPU. We train classifiers with all possible combi-
nations of these features. Figure 5 shows our findings
for feature ablation performed on Test set 1 and 2. This
section will discuss the findings from Test set 1. Next,
we will discuss the Test set 2 findings in Section 5.4. We
notice that classification accuracy with only GPU usage
is 94.2% and only CPU usage is 89.2%, resulting in
an accuracy drop of 4.8% and 9.8%, respectively, when
compared to previous experiment that utilize complete
feature set. On the other hand, using only RAM as a
feature suffers an accuracy drop of less than 1%. The
classification accuracy remains within 98%-99% for all
combinations with RAM included as a feature. However,
the classification accuracy decreases for feature combina-
tions without RAM. This implies that RAM usage is an
essential feature. We observe that the memory footprints

of the applications remain broadly consistent. The CPU
and GPU usages are comparatively less deterministic.
Numerous system software and hardware factors affect
the CPU, GPU control flow, and execution of instructions.
Some of these are explored in Section 6.5.

5.4. Transferability

Definition 5.1 (Transferability). A machine learning-
based attack is transferable if it can classify instances that
are not members of the attacker’s training dataset with a
reasonable accuracy.

Our attack looks at state-of-the-art models. However,
a victim can be running a modified architecture while
keeping the original backbone (e.g., changing the layers).
These constitute unseen new variants. To understand the
impact of new variants that do not exist in the training
dataset, i.e., transferability of the proposed attack (per
Definition 5.1), we evaluate the classifier’s performance
and feature selection on Test set 2 of Table 1. Test set
2 contains variants of models that do not exist in the
training set. When using all features to perform clas-
sification, the accuracy on Test set 2 drops to 87.2%,
which is an 11.2% decrease compared to accuracy on Test
set 1. For all RAM-included combinations, the accuracy
drop is around 8%-11% compared to on Test set 1. The
best performing feature combination is RAM and CPU.
Similar to the previous feature ablation study, the feature
combinations without RAM suffer a significant accuracy
drop. Notably, when using only GPU usage as an exclusive
feature to build the classifier yields, we achieve the worst
performance on Test set 2. From this experiment, we
identify RAM usage patterns as being essential for the
transferability of our model fingerprinting attack.

We demonstrate the confusion matrices for our best
performing combination (RAM and CPU) and the most
vital single feature (RAM) in Figure 4c. When only using
RAM as input feature, we notice that DenseNet samples
are misclassified predominantly as AlexNet or Inception.
In Figure 2, we observe visually that the pattern or “shape”
of DenseNet (Figure 11d) memory usage resembles that
of Inception (Figure 8d). However, when both RAM and
CPU usages are used to train the classifier, DenseNet can
be more accurately predicted and are mostly misclassified
as Inception. In both scenarios, DenseNet stands out from
the remaining classes, having high precision but low re-
call. This signifies that while the memory usage is a strong
feature, it helps to have CPU/GPU features to distinguish
the DNN families that are closely related.

5.5. Platform Portability

Definition 5.2 (Portability). An attack is portable to a
new platform if the original attack pipeline on the new
platform is comparatively as successful as on the original
platform.

In this section, we evaluate the capacity of our fin-
gerprinting strategy through the lens of platform porta-
bility according to the above definition. We reproduce
all experimentations—performed on Jetson Nano—on two
new platforms, i.e., the Jetson Xavier NX [59] and the
Jetson TX2 [58].

5.5.1. Device Specifications. The Jetson Xavier NX has
a 6-core NVIDIA Carmel ARM CPU, 384-core NVIDIA

Datasat Features |y RAM GPU CPU RAM+GPU RAM+CPU GPU+CPU
NX Test set | 985% 98.6% 945% 83.2% 98.9% 982% 94.7%
NX Test set 2 798% 768% 19% 652% 86.6% 77.4% 772%
TX2 Test set 1 989% 997% 97.5% 908% 99.5% 97.9% 97.1%
TX2 Test set 2 95.6% 88.8% 60.6% 89.6% 93.4% 94.0% 82.0%

TABLE 2: Platform portability classification accuracy results for Jetson Xavier NX and Jetson TX2 for all features.

Volta GPU (with 48 Tensor Cores), and 8GB (128-bit
LPDDR4x, 59.7GB/s) Memory. Furthermore, the device
has two NVDLA Engines, which are the NVIDIA DL
accelerators. There are three power modes: 10W, 15W,
and 20W, which differ in the number of active CPUs.
For instance, at default 15W, only two of six CPUs are
active; the rest are turned off. To avoid testing the various
power modes, we collect data from the Jetson NX using
the default 15W (with two active CPUs) mode. Next, the
Jetson TX2 has a Dual-Core NVIDIA Denver 2 and a
Quad-Core ARM Cortex-AS57 MPCore CPU (hence, total
six cores), a 256-core NVIDIA Pascal GPU, and 8GB
(128-bit LPDDR4, 59.7GB/s) Memory. Similar to the NX,
on the default mode the TX2 only has four active CPUs.
There are two power modes: 7.5W and 15W. For Al
performance, the Jetson NX can deliver 21 TOPS and the
Jetson TX2 can deliver 1.33 TFLOPS.

5.5.2. Experimentations. The experiment setup is iden-
tical to the Nano settings in Section 5.1. The same DL
applications are run as we collect the NX and TX2 system
traces (still using tegrastats) to construct Train, Test set 1,
and Test set 2 of NX and TX2. These sets entail the same
models and variants as the test sets used for the Nano
experiments, only that the system traces are collected
on the NX and TX2 platforms instead. It is important
to note that both the NX and TX2 have a significant
performance boost over the Nano, having more powerful
resources (Section 5.5.1). This means that an attacker has
to re-evaluate suitable sequence lengths to develop its
classifier, as the execution times vary between platforms.
Furthermore, one other difference with the NX lies in
the number of CPUs available. In the Nano experiments,
we leverage the traces from four CPUs while we have
only two in this device as we chose the default power
mode. This is why the attacker needs to know the target
device Section 4.1 and build a new classifier targeting that
device.

5.5.3. Results. We conduct the same experiment as in
Section 5.2, e.g., training the classifier with all RAM,
CPU, and GPU features with a range of sequence lengths
from 1s to 5s (smaller range due to the improved execution
time for DNN applications). Again, we notice a similar
trend as seen in Figure 3a, where the accuracies stabilize
at about 98.5% for sequence lengths of 3.5s-5s. We chose
a sequence length of 4.5s and reproduced classification
accuracy results on Test set 1 and Test set 2 bot both
TX2 and NX.

We observe some akin trends between the fingerprint-
ing results achieved on the Nano, NX, and TX2. We find
that the model fingerprinting method still achieves high
classification accuracy on a different platform. RAM is
again a vital feature, with which accuracy on known model
variants (Test set 1) remains high at around 98% for both
platforms. The combination of RAM and GPU statistics
produces the (marginally) highest accuracy (98.9%) on

NX Test set 1. For TX2 Test 1, the higher accuracies are
achieved using only RAM (99.7%), and the combination
of RAM and GPU (99.5%) as features.

Transferability. We also execute the transferability
experiment (i.e., fingerprinting unseen variants of models)
on the NX and TX2. Here, we observe some differences.
Using the Nano as our platform, we obtained an aver-
age accuracy of 88.4% with RAM-based features com-
binations Figure 5. However, we observe a considerable
decrease in classification accuracy for our transferability
experiment on the NX test set 2 (See Table 2). Only the
combination of RAM and GPU features enables attackers
classifier to obtain performance close to that noticed on the
Nano with an accuracy of 86.6%. The remaining feature
combinations yield an accuracy of about 77%-79%, with
the notable exception of CPU as a standalone feature
(lowest-performing with 65.2%). If we focus on RAM as
a single feature, we notice that the primary performance
degrade stems from the misclassification of DenseNet as
ResNet (see Figure 7a). Observing the memory-usage pat-
terns or “shape” for both ResNet and DenseNet families
on the NX (Figure 9), we discern that they are visually
similar. We encounter the evaluation in Section 5.4, where
when the memory pattern usages for families are very
similar, other system information aids the classification.
Likewise, in our NX experiment, using RAM aided with
GPU statistics as features enables us to improve detecting
DenseNets (Figure 7c).

On the other hand, the TX2 test set 2 classification
performance, i.e., transferability, is excellent (Table 2) and
better than that of Nano and NX. Using GPU alone has the
lowest performance here (60%), but the remaining feature
combinations perform considerably well. In particular,
using all features and combination of RAM and CPU
achieve an accuracy of 95.6% and 94.0%, respectively,
which are close to the performance on Test set 1. From
the confusion matrix for Test set 2 (trained on all features)
we notice that ResNets are the only model that have poor
performance (Figure 7n).

5.6. Robustness to a Background Noise or Appli-
cation

Definition 5.3 (Robustness). A machine learning-
based attack is robust to modifications to the original
pipeline/assumptions if the attack — the original classifier
— is comparatively as effective as after the modifications.

We explore the impact of a background application
running simultaneously with our targeted (victim) appli-
cation. While it is realistic to assume the DL inference
application is the only running program on a resource-
constrained edge device such as the Jetson Nano, other
secondary or housekeeping applications can be running in
the background. These applications could involve image
processing, video encoding/decoding, cryptography-based

— ResNet18
3500 ResNet50
3000 m

2500 ‘

N
3
g
3

N
8
8
3

2000 ‘

Total RAM usage (MB)
Total RAM usage (MB)

1500 !

510 15 20 25 30 3 1000, 5 10 15 20 25
Time (s) Time (s)

(a) VGGs + AES (10MB) (b) ResNets + AES (10MB)

4000

VGGL1 — ResNet18
2 39 VGG13 AR ~ 3500 ResNet50
g T | Yy 2 1
= W z Ve
© 3000 n/] uw o 3000 /AK\‘/‘V
g 2 adl
3 a /
5 2500 S 2500 //l
s = A
2 2000 E 2000 A/"V
= (!’ kol e [
B 150011 © 1500 I
1000, 10 20 40 50 5 10 15 20 25 0

Time (s)

T|me3(05)
(¢c) VGGs + AES (50MB) (d) ResNets + AES (50MB)
A

— VGG11 ! /ﬂﬂﬁ — ResNet18

VGG13 Jﬂ b i u ! \j‘ 5 30 ResNet50

4/ b/ \)/L /»LMK)U
A

/ |
2000 A VJ

i

M

w
<3
3
g

e
<3
g
8

g
8

Total RAM usage (M
b
8
S
Total RAM usag;

]
g
H
N

1500 | |

g
8

10 20 30 40 50 60 70 1000 5 10

15
Time (s) Time (s)

(e) VGGs + AES (100MB) (f) ResNets + AES (100MB)
Figure 6: Background noise: Memory usage on Jetson
Nano for the original pipeline (classifier) with a back-
ground application running — AES algorithm on a plain-
text of fixed sizes, e.g., 10MB, 50MB, and 100MB. The
remaining figures are in Figure 13.

20 25

applications for secure communication, etc. Hence, we
choose to explore the impact of such a secondary ap-
plication running in the background, competing with the
system resources needed for our attack. We decided to
explore the AES algorithm (encryption and decryption) on
randomized plaintext of different sizes for the background
application. To simulate this scenario, we run our DL
inference applications (on the Nano) parallel with an AES
application that runs encryption and decryption repeatedly
on plaintext of three distinct fixed sizes, i.e., 10MB,
50MB, and 100MB. We chose these sizes to see how the
system traces are affected by different strain magnitudes
on the main memory (the crucial feature in our model
architecture fingerprinting).

To test the robustness of our attack to the background
noise, we use the trained classifier from Section 5.1
(trained on pretrained models with no noise with all
features) and test on data with our induced background
noise. For these test sets, we collect traces from the same
application pool and test sets (Test set 1 and 2) as shown in
Table 1 under the same experimental setup as Section 5.1
while running the AES application repeatedly in parallel.

Table 3 summarizes the classification accuracy on
these two test sets (Test set 1 & 2) for three scenarios:
10MB (AES BG 10MB), 50MB (AES BG 50MB), and
100MB (AES BG 100MB) plaintexts. As expected, in-
troducing background noise affects our classifier’s perfor-
mance. For AES encryption/decryption running on 10MB
plaintext, the disturbance/noise in memory fluctuates by
10MB (as seen in the memory traces in Figure 6). Since

Dataset
Background app Test set 1 Test set 2
AES BG 10MB 86.4% 69.6%
AES BG 50MB 42.6% 38.6%
AES BG 100MB 16.9% 21.4%

TABLE 3: Robustness classification accuracy results for
traces with a background noise. Model was trained on
original pretrained models pipeline on Jetson Nano (no
noise) and Test set accuraries show classification perfor-
mance on Test sets with background noise of varying
memory-stress (10MB, SOMB, 100MB).

this is not considerable memory stress, we notice from the
confusion matrices (Figure 7e, Figure 7f) that certain mod-
els are harder to distinguish/classify. In particular, ResNets
and DenseNets suffer the most. Since the ResNet fam-
ily consists of varied model sizes (ResNetl8, ResNet34,
ResNet50, ResNetl01, ResNetl152), it is likely that the
bigger models (ResNetl0l, ResNet152) are misclassi-
fied as DenseNets or Inception and the smaller models
(ResNet18) as ShuffleNet. The same can be said about
DenseNets. We also notice that with smaller (10MB)
noise, the classifier performance is better (86.4%) for
model variants that exist in the training set than variations
that the classifier has not seen (69.6%).

The extreme case, AES BG 100MB, results demon-
strate too much noise/disturbance in the data, which
thwarts the classification (to the 17%-21% range for both
test sets). Figure 6 visually shows that we lose the dis-
tinguishability in our memory consumption patterns with
such a larger noise. In practice, running a memory-hungry
application like AES BG 100MB would also affect the
victim model’s performance and inference time signifi-
cantly. Hence, such a background process is unlikely to
co-exist. We include this test case here for completion.
In addition, AES 50MB results show that it is between
10MB and 100MB in terms of classification and appli-
cation runtime performance as expected. However, from
the confusion matrices (Figure 7g, Figure 7h) we see
that AlexNet and VGGs in particular are still classifiable.
This demonstrates the general trend that our classification
performance decreases with increasingly memory-hungry
secondary applications, but the primary running victim
application suffers from decreased runtime performance.

5.7. Robustness to Modified DNN Models

Our attack identifies popular DNN model families on
their pre-trained ImageNet weights. It is realistic for appli-
cations to use these state-of-the-art popular models on var-
ious applications. A user can directly run these pretrained
models in many cases, especially since they are trained
on ImageNet with 1000 classes. However, it may also be
beneficial for these models to be adapted to other tasks or
different classification requirements in certain conditions.
Hence, transfer learning [64] is a popular methodology
that aims to boost the performance of classifiers on new
fields by transferring the obtained learning knowledge of
previous but different and related-source fields. Generally,
model weights are kept as original, and the last few layers
are retrained for the new target field.

The studied state-of-the-art models in this work are
also commonly used for transfer learning tasks. Hence, we
modify our pipeline to adjust for CIFAR10 [65] dataset
in this section. CIFAR10 only has ten output classes, and

the images are smaller in size (32 x 32). Hence, the last
layer of the models was modified to output ten labels,
and CIFAR test set data was shuffled and passed into the
model for inference. The rest of the experiment setup
remains the same as Section 5.1. Only InceptionV3 is
missing from this dataset since the network cannot take
in the smaller input size.

Similar to the background application/noise study in
Section 5.6, we investigate the robustness of our attack to
this variation on our original classifier trained on original
ImageNet pretrained data by testing it on the Test set 1 %
2 from this new CIFARI10 pipeline traces. Our classifier
achieves 71.7% and 82.4% accuracy on Test set 1 & 2
respectively. Again, we turn to the confusion matrices
to observe specifically which model families are being
classified well and which are not. We find that AlexNet
performs poorly in this experiment, which none classi-
fied correctly in Test set 1 (see Figure 7k). This is the
main contributor to drive the accuracy down. The other
models follow similar trends to those already seen in
prior sections, where DenseNets are often misclassified
as Inception and MobileNets as ShuffleNets. The cause
of this misclassification is most likely the similar model
sizes. ShuffleNets, SqueezeNets, and VGGs are predicted
with high accuracy. We notice similar trends in Test set 2
as seen from Figure 71.

5.8. Attacking a Different DL. Framework: Ten-
sorFlow

Other than PyTorch, TensorFlow [66] is the alternative
and popular open-source framework for deep learning.
Both frameworks are optimized for NVIDIA GPUs and
can utilize cuDNN and CUDA kernels for improved per-
formance. One of the key differences between the two
frameworks is code execution. PyTorch natively imple-
ments dynamic computational graphs, while TensorFlow
implements static computational graphs.

We replicate our experimentation done on PyTorch in
Section 5.1 but using TensorFlow and Keras pretrained
models on the Jetson Nano. Keras is a library that runs on
top of TensorFlow, and the Keras Applications API pro-
vides us with popular ImageNet pre-trained models [67],
similar to torchvision for PyTorch. Not all models
available on torchvision are found on Keras, hence
we take the subset of model families and variants that
are available, and divide them into a similar fashion seen
in Table I: Train/Test set 1 including DenseNets (121,
201), MobileNets (MobileNetV2), ResNets (ResNet50),
and Inception (InceptionV3) and test set 2 including
DenseNet201 and MobileNet. Form our original model
families chosen in PyTorch; only a few are available
on TensorFlow. We noticed that while VGG16,19 and
ResNet101,152 were available on Keras, we could not
collect traces from these models since they were too
large. The Jetson Nano faces an out-of-Memory (OOM)
error while running these models — most likely due to
allocation of static graphs requiring more memory, and
the Nano is a memory-constraint device.

Using our RF classifier trained on Train/Test set 1 on
all features, we achieved 99.1% and 94.0% accuracy when
testing this trained model on Test set 1 and 2, respectively.
One possible reason for having a comparatively higher

accuracy on Test set 2 is fewer classes and models in
our TensorFlow dataset. We observe from these results
that TensorFlow’s system utilization for DL inference can
also exhibit differences amongst different model families.
Thus, we still can identify that the traces are classifi-
able with this preliminary study on TensorFlow. We also
present the confusion matrix for both Test set 1 (Figure 70)
and Test set 2 (Figure 7p) experimentation.

5.9. Enhancing Adversarial Attacks

Adversarial attacks involve adversaries manipulating
an input by adding imperceptible perturbations to deceive
a machine learning system (e.g., DNNs) [68], [69]. For
example, non-targeted attacks [2] modify inputs such that
the victim model produces an arbitrary incorrect output,
while targeted attacks [12] lead the models to produce a
specific (incorrect) label. In a black-box setting, the adver-
sary generates the adversarial examples without knowing
the victim model. In some instances, the adversary may
have limited knowledge, such as the model’s architecture,
referred to as a semi-black-box attack [68]. Therefore, in
the black-box (and semi-black-box) setting, the adversary
builds a substitute (or an ensemble of) model(s) to gen-
erate the adversarial examples. In our case, the attacker
does not know what model (architecture) is running on
the device but knows that it is a popular state-of-the-art
readily available model (i.e., limited knowledge). In our
case, the attacker generates adversarial examples from an
ensemble of models. Here, we illustrate that the proposed
model family fingerprinting attack boosts the adversarial
attack performance with the extracted knowledge of the
model family in the semi-black-box setting.

5.9.1. Experimental Setup. DeepSniffer [9] conducted
experiments to show that the knowledge of model archi-
tecture improves the success rate of (targetted) adversarial
attacks [9]. We take inspiration from their work to develop
our testing pipeline. For experimentation, we develop
our pipelines using TensorFlow [66] for the pretrained
models and the Adversarial Robustness Toolbox (ART)
library [70] for the adversarial attack. All models are
trained using transfer learning on CIFAR10 dataset. In our
experiments, we use DenseNetl21 as our victim model.
We use the DeepFool [18] attack from the ART library
to attack the model by generating adversarial examples
from an ensemble of different models and scenarios —
which we refer to as a set. In the first scenario sets,
the ensemble examples were generated using the mod-
els belonging to the same family: 1) ResNet Family
(ResNet50, ResNet101, ResNet152), 2) MobileNet Family
(MobileNet, MobileNetV2), and 3) VGG Family (VGG16,
VGG19). The second scenario sets include ensemble
examples generated from a random mix of models: 4)
Mix 1 (MobileNet, ResNet50, EfficientNet), 5) Mix 2
(MobileNet, VGG16, EfficientNet), 6) Mix 3 (MobileNet,
DenseNet121, EfficientNet), and 7) Mix 4 (ResNetl152,
MobileNetV2, DenseNet201).

Lastly, we generate adversarial examples from an
ensemble of the victim model’s architecture fam-
ily, 8) DenseNet Family (DenseNetl21, DenseNetl169,
DenseNet201). For each ensemble, we randomly select
6000 images from the CIFARIO test set, with an even
distribution amongst models inside an ensemble (e.g., for

Adversarial examples generated by DeepFool on Classification accuracy of victim model DenseNet121 Accuracy drop (%)
the ensemble of W/o adv. perturbation (%) [W/ adyv. perturbation (%) y p (%
ResNets (ResNet50, 101, 152) 84.14 61.02 23.12
MobileNets (MobileNet, V2) 83.43 59.46 23.97
VGGs (VGG16, 19) 82.73 51.07 31.66
Mix 1 (MobileNet, ResNet50, EfficientNet) 83.85 63.9 19.95
Mix 2 (MobileNet, VGG16, EfficientNet) 83.69 58.08 25.61
Mix 3 (MobileNet, DenseNet121, EfficientNet) 83.72 53.55 30.17
Mix 4 (ResNet152, MobileNetV2, DenseNet201) 83.07 52.02 31.05
enseNets (DenseNet121, , . . .
DenseNets (DenseNet121, 169, 201) 83.13 28.23 54.9

TABLE 4: The knowledge of the victim model family, DenseNet, strengthens the adversarial attack, DeepFool [18].

ResNet Family, 2000 images each from all three chosen
ResNet models). From these selected images, we generate
adversarial examples using the DeepFool attack. This pro-
cess is repeated for all sets. Finally, we feed the sets with
and without the adversarial attack to the victim model,
DenseNet121, to analyze the classification performance.

5.9.2. Results. Table 4 summarizes our findings. The
baseline classification accuracy for benign examples, i.e.,
without adversarial perturbation, is around 83% for each
set. We notice that adversarial examples generated from
the wrong model family sets are less efficient. Using the
ResNet family or MobileNet family to generate the adver-
sarial examples drops the victim model accuracy by about
23%-24%. Adversarial examples from the VGG family
perform slightly better, managing to drop the accuracy by
31.66%. We also demonstrate the effect of using a random
mix of models to generate adversarial examples in Mix
sets 1-4. We notice that mix sets without having a variant
of DenseNet (Mix 1 & 2) reduce the accuracy by 19.95%
and 25%, respectively. On the other hand, if a variant of
the victim model exists in the set, the examples generated
are more effective but still only able to decrease the victim
model accuracy by 30%-31%. Finally, we notice that with
the adversarial examples generated from the DenseNet
family set (from which the victim model belongs), the
victim model accuracy dropped by a substantial 54.9%,
i.e., almost double than all other cases.

To conclude, with the knowledge of the victim model
family, an adversary can generate much more effective
adversarial examples from an ensemble of that family.
We demonstrate that this knowledge of model architecture
family in our semi-black-box scenario has a greater suc-
cess at degrading victim model classification performance
than an attacker using either a random mixture of models
or guessing the wrong model family.

6. Discussion
6.1. DNNs and Memory Usage Distinguishability

We observe that memory usage is a vital feature for
distinguishing between DNN families explored in our
paper. This is intuitive and corroborates the recent findings
that DNNs are significantly different in terms of their
memory utilizations [71], [72]. Biano et al. [71] presents
a thorough analysis of state-of-the-art DNNs for image
classification tasks in terms of computational cost and
accuracy. Specifically, they explore accuracy rate, model
complexity, memory usage, computational complexity,
and inference time. The most exciting finding for our work
complements their observation of a linear relationship
between model complexity (i.e., the initial static allocation
of the model parameters) and the total memory utilization.

Especially, Biano et al. claim that “model complexity can
be used to estimate the total memory utilization reliably.”
Therefore, the core observation of our introduced attack
demonstrates the opposite direction of the statement is also
true, such as we estimate the model complexity employing
the total memory utilization. Furthermore, we notice that
the variants of a family of DNN models are grouped from
this work.

6.2. Disturbances in Memory Utilization

We assume that only one application would be running
at a time on the edge device. We consider this realistic,
as many edge devices are dedicated to a specific DNN
task. However, there may be cases where a device can be
running other background applications or even multiple
DNN tasks. The OS periodically performs context switch-
ing (to achieve concurrency), typically ranging from 10-50
milliseconds. The initial task is halted (and its progress is
saved), and the OS switches to a new task for execution.
The initial task is resumed from where it was halted.
This would cause disturbances or interruptions in mem-
ory utilization. Furthermore, modern CPUs have multiple
cores, which can also exploit parallelism for processes
and tasks. For tasks running in parallel, it introduces more
disturbances in memory utilization.

We explored such a case in Section 5.6, where we
test our trained model on traces collected with a parallel
secondary background application with varying memory-
stress. We notice that while with significant disturbances
in memory usage, the classification performance degrades,
we also see that the application performance is negatively
impacted. Especially for compute-constraint edge devices
such as the Jetson Nano, running multiple memory-hungry
applications is not realistic, especially when runtime per-
formance is an essential factor. Furthermore, since the
attacker can run the DNN models without noise on a
targeted device, they may be able to identify if the victim
traces collected are with or without noise (statistically)
and discard those traces since the predicted model family
may not be as accurate. However, with minor amplitude
noise, the classifier is still able to get about 86% accuracy
(see Section 5.6).

6.3. Stronger Attacker against the Odds

In Section 5.6 and Section 5.7, we explore variations
and noise and their impact on our classifier’s performance.
Since our attacker builds their own labeled dataset, they
can build a stronger classifier to account for some vari-
ations, especially if the attacker gains some more prior
knowledge. For instance, if the attacker knows that the vic-
tim model inputs an image of a specific size or knows the
output labels (which is possible if the model is available

to the public to run on or the attacker can query it). Any
additional knowledge may facilitate the attacker to encom-
pass it into creating a labeled dataset closer to the targeted
victim and build a stronger classifier. We also already
discussed how an attacker may even be able to identify
disturbances and noise in the observed traces from the
victim since they know how the ideal/clean traces would
look. A stronger attacker may be able to incorporate any
additional knowledge available to their advantage when
fingerprinting the model. This is an interesting future work
to explore.

6.4. Generalization to Other DL Applications

We explore the idea of fingerprinting model archi-
tecture families through global system statistics. In this
paper, we target image classification tasks using different
DNN model architectures. Our proposed attack pipeline
can be generalized to other learning tasks (e.g., object or
behavior detection) as long as the attackers have access
to commonly used DNN models and inference pipelines
deployed on CPU-GPU edge devices (refer to the threat
model in Section 4.1). This is a reasonable assumption
given that DL application developers tend to reuse well-
known DNN models with publicly available code from
public repositories (e.g., GitHub) or online development
forums (e.g., Jetson Community Projects page [73]).

6.5. Differences in Application Runtimes and Per-
formance

Even though we define and use a typical model infer-
ence pipeline (Section 4.2.1), the run time performance
of the applications, such as execution time, can be unpre-
dictable since various factors may influence it.

From high-level programs, compilers generate instruc-
tions at runtime. As a result, compilers transform the
programs in a complex and optimized manner, making
it challenging to identify deterministic execution times
of high-level statements. Furthermore, it is challenging
to determine the execution time of instructions due to
the variations in CPU performance like concurrency, data
hazards, resource availability, etc. Memory systems are
another source of variance— cache hits and misses can
hugely impact programs’ performance and execution time.

In our case, we explore the (global) memory usage
in terms of the total RAM in use by the system. The
pattern for the total memory usage may not be drastically
invariant, with programs needing to use fixed amounts of
memory during execution. However, the time taken for
memory usage can differ on various accords. For instance,
we utilize our device on performance mode to collect
traces. This mode provides a performance boost (improv-
ing execution time) for the Jetson devices to perform
computationally expensive tasks such as DNN inference.
In addition, it acts to make instruction execution quicker
with a higher clock rate. Our observation is that with
and without performance mode, the applications exhibit
similar memory usage patterns (as seen in Figure 2), with
the primary difference being the execution time.

6.6. Potential Countermeasures

Our proposed method relies on profiling system statis-
tics to fingerprint model architectures. The victim DNN

application being the sole running process on the victim
system allows us to exploit the system-level traces. There-
fore, we can introduce noise to the system CPU, GPU,
and memory profiles to disrupt the attack as a counter-
measure. As discussed earlier in this paper, this may
introduce a security-performance trade-off. Furthermore,
while running tegrastats is stealthy and passive from the
victim’s perspective, it is still a running process that the
OS can identify. Our proposed fingerprinting attack runs
the utility tool in the background to avoid detection. A
potential defense against this is to introduce an applica-
tion/software that constantly checks all running processes
and terminates suspicious use of the utility tool. Another
solution is to disable tegrastats or make the utility acces-
sible only with sudo access. This is similar to disabling
hardware performance counters (HPCs) in android devices
to prevent side-channel leakage-based attacks [61].

7. Conclusion and Future Work

The proliferation of GPU-enabled embedded sys-
tems such as NVIDIA Jetson devices has made DL
applications—such as image recognition, object detection,
and so on—deployable on edge. Nevertheless the popu-
larity it gains, there remains potential tension for users to
protect their sensitive data and for developers to preserve
the intellectual property of the DNN model, including its
architecture. We introduce a novel supervised machine
learning-based attack to identify the running DNN model
architecture family on CPU-GPU shared memory edge de-
vices. We exploit a stealthy collection of system-level side
information, including memory, CPU, and GPU usage,
accessible from the user-space level to detect the victim
DNN model architecture without physical or privileged
access. Our rigorous feature analysis shows that sole RAM
utilization can detect a model architecture with high clas-
sification accuracy. Furthermore, for DNN applications
with similar memory usage patterns, combining external
features such as GPU and CPU usage can give better
classification.

Our results illustrate that a Random Forest-based at-
tackers classifier built on RAM usage time-series feature
alone can recognize a DNN model architecture with a
98.3% success rate. Furthermore, our presented attack
has three exciting properties. Firstly, Transferability—
it can detect an unknown DNN model variant with an
89.8% success rate using RAM+CPU aggregate statis-
tics. Secondly, Platform portability—we clone the attack
successfully to a different GPU-enabled edge device and
obtain similar classification accuracy in stealthy finger-
printing. Lastly, because of the robustness of the attack,
we employ the original attacker classifier to detect the
DNN model family type when there is another memory-
hungry application running and when the last layer of
the DNN model is modified to adapt transfer learning.
Furthermore, we assess how the extracted knowledge of
the model architecture boosts the success rate of a semi-
black-box adversarial attack.

A potential avenue for future work is extending our
proposed attack on an open-world scenario. It would be
interesting to inspect building a more robust classifier that
generalizes well for more modifications and noise.

Acknowledgments

We thank the anonymous reviewers for their valuable
comments. This material is based upon work supported in
part by the Robert N. Noyce Trust.

References

[1] “Jetson modules.” https://developer.nvidia.com/embedded/
jetson-modules. Accessed: 2021-06-21.

[2] “Jetson benchmarks.” https://developer.nvidia.com/embedded/
jetson-benchmarks. Accessed: 2021-06-21.

[3] R. Hadidi, J. Cao, Y. Xie, B. Asgari, T. Krishna, and H. Kim,
“Characterizing the deployment of deep neural networks on com-
mercial edge devices,” in 2019 IEEE International Symposium on
Workload Characterization (IISWC), pp. 35-48, IEEE, 2019.

[4] A. Zankl, H. Seuschek, G. Irazoqui, and B. Gulmezoglu, “side-
channel attacks in the internet of things: threats and challenges,”
in Research Anthology on Artificial Intelligence Applications in
Security, pp. 2058-2090, IGI Global, 2021.

[5] M. Devi and A. Majumder, “Side-channel attack in internet of
things: a survey,” in Applications of Internet of Things, pp. 213—
222, Springer, 2021.

[6] D. R. Gnad, J. Krautter, and M. B. Tahoori, “Leaky noise: New
side-channel attack vectors in mixed-signal iot devices,” JACR
Transactions on Cryptographic Hardware and Embedded Systems,
pp. 305-339, 2019.

[71 Y. Xiang, Z. Chen, Z. Chen, Z. Fang, H. Hao, J. Chen, Y. Liu,
Z. Wu, Q. Xuan, and X. Yang, “Open DNN box by power side-
channel attack,” IEEE Transactions on Circuits and Systems II:
Express Briefs, vol. 67, no. 11, pp. 2717-2721, 2020.

[8] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership
inference attacks against machine learning models,” in 2017 IEEE
Symposium on Security and Privacy (SP), pp. 318, IEEE, 2017.

[91 X. Hu, L. Liang, S. Li, L. Deng, P. Zuo, Y. Ji, X. Xie, Y. Ding,
C. Liu, T. Sherwood, et al., “Deepsniffer: A DNN model extraction
framework based on learning architectural hints,” in Proceedings of
the Twenty-Fifth International Conference on Architectural Support
for Programming Languages and Operating Systems, pp. 385-399,
2020.

[10] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and
A. Swami, “Practical black-box attacks against machine learning,”
in Proceedings of the 2017 ACM on Asia conference on computer
and communications security, pp. 506-519, 2017.

[11] “Windows developer: About performance counters.”
https://docs.microsoft.com/en-us/windows/win32/perfctrs/about-
performance-counters. Accessed: 2021-09-22.

[12] Y. Liu, X. Chen, C. Liu, and D. Song, “Delving into transfer-
able adversarial examples and black-box attacks,” arXiv preprint
arXiv:1611.02770, 2016.

[13] W. Hua, Z. Zhang, and G. E. Suh, “Reverse engineering convo-
lutional neural networks through side-channel information leaks,”
in 2018 55th ACM/ESDA/IEEE Design Automation Conference
(DAC), pp. 1-6, 2018.

[14] Y. Liu and A. Srivastava, “GANRED: Gan-based reverse engineer-
ing of DNNs via cache side-channel,” in Proceedings of the 2020
ACM SIGSAC Conference on Cloud Computing Security Workshop,
pp. 41-52, 2020.

[15] M. Yan, C. W. Fletcher, and J. Torrellas, “Cache telepathy: Lever-
aging shared resource attacks to learn DNN architectures,” in 29th
USENIX Security Symposium (USENIX Security 20), pp. 2003—
2020, 2020.

[16] A. Akram, M. Mushtaq, M. K. Bhatti, V. Lapotre, and G. Gogniat,
“Meet the sherlock holmes’ of side channel leakage: A survey of
cache sca detection techniques,” IEEE Access, vol. 8, pp. 70836—
70860, 2020.

[17] G. Sangeetha and G. Sumathi, “An optimistic technique to detect
cache based side channel attacks in cloud,” Peer-to-Peer Network-
ing and Applications, vol. 14, no. 4, pp. 2473-2486, 2021.

[18]

[19]

(20]

(21]

(22]

(23]

[24]

(25]

[26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

[34]

S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “Deepfool:
a simple and accurate method to fool deep neural networks,”
in Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 2574-2582, 2016.

“DNN Model Fingerprinting Library.”
https://github.com/kartikp7/DNN-Model-Fingerprinting.

S. Hong, M. Davinroy, Y. Kaya, S. N. Locke, I. Rackow, K. Kulda,
D. Dachman-Soled, and T. Dumitrag, “Security analysis of deep
neural networks operating in the presence of cache side-channel
attacks,” arXiv preprint arXiv:1810.03487, 2018.

L. Batina, S. Bhasin, D. Jap, and S. Picek, “CSI NN: Reverse en-
gineering of neural network architectures through electromagnetic
side channel,” in 28th USENIX Security Symposium (USENIX Se-
curity 19), (Santa Clara, CA), pp. 515-532, USENIX Association,
Aug. 2019.

L. Wei, B. Luo, Y. Li, Y. Liu, and Q. Xu, “I know what you
see: Power side-channel attack on convolutional neural network
accelerators,” in Proceedings of the 34th Annual Computer Security
Applications Conference, pp. 393-406, 2018.

L. Chmielewski and L. Weissbart, “On reverse engineering neural
network implementation on gpu,” in International Conference on
Applied Cryptography and Network Security, pp. 96—113, Springer,
2021.

V. Duddu, D. Samanta, D. V. Rao, and V. E. Balas, “Steal-
ing neural networks via timing side channels,” arXiv preprint
arXiv:1812.11720, 2018.

G. Dong, P. Wang, P. Chen, R. Gu, and H. Hu, “Floating-point
multiplication timing attack on deep neural network,” in 2019 I[EEE
International Conference on Smart Internet of Things (SmartloT),
pp- 155-161, IEEE, 2019.

J. Wei, Y. Zhang, Z. Zhou, Z. Li, and M. A. Al Faruque, “Leaky
DNN: Stealing deep-learning model secret with gpu context-
switching side-channel,” in 2020 50th Annual IEEE/IFIP Inter-
national Conference on Dependable Systems and Networks (DSN),
pp. 125-137, IEEE, 2020.

H. Naghibijouybari, A. Neupane, Z. Qian, and N. Abu-Ghazaleh,
“Rendered insecure: Gpu side channel attacks are practical,” in
Proceedings of the 2018 ACM SIGSAC conference on computer
and communications security, pp. 2139-2153, 2018.

K. Yoshida, T. Kubota, S. Okura, M. Shiozaki, and T. Fujino,
“Model reverse-engineering attack using correlation power analysis
against systolic array based neural network accelerator,” in 2020
IEEE International Symposium on Circuits and Systems (ISCAS),
pp. 1-5, IEEE, 2020.

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-
Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative adver-
sarial networks,” Communications of the ACM, vol. 63, no. 11,
pp. 139-144, 2020.

N. Matyunin, Y. Wang, T. Arul, K. Kullmann, J. Szefer, and
S. Katzenbeisser, “Magneticspy,” Proceedings of the 18th ACM
Workshop on Privacy in the Electronic Society - WPES’19, 2019.

N. Chawla, A. Singh, M. Kar, and S. Mukhopadhyay, “Application
inference using machine learning based side channel analysis,” in
2019 International Joint Conference on Neural Networks (IJCNN),
pp. 1-8, 2019.

Q. Yang, P. Gasti, G. Zhou, A. Farajidavar, and K. S. Balagani, “On
inferring browsing activity on smartphones via usb power analysis
side-channel,” IEEE Transactions on Information Forensics and
Security, vol. 12, no. 5, pp. 10561066, 2016.

Y. Qin and C. Yue, “Website fingerprinting by power estimation
based side-channel attacks on android 7,” in 2018 17th IEEE Inter-
national Conference On Trust, Security And Privacy In Computing
And Communications/12th IEEE International Conference On Big
Data Science And Engineering (TrustCom/BigDataSE), pp. 1030—
1039, IEEE, 2018.

H. Naghibijouybari, A. Neupane, Z. Qian, and N. A. Ghazaleh,
“Side channel attacks on gpus,” IEEE Transactions on Dependable
and Secure Computing, 2019.

https://developer.nvidia.com/embedded/jetson-modules
https://developer.nvidia.com/embedded/jetson-modules
https://developer.nvidia.com/embedded/jetson-benchmarks
https://developer.nvidia.com/embedded/jetson-benchmarks

[35]

(36]

(371

[38]

(391

[40]

[41]

[42]

[43]

[44]

[45]

[46]

(471

(48]

[49]

[50]

[51]

[52]

(53]

T. van Ede, R. Bortolameotti, A. Continella, J. Ren, D. J. Dubois,
M. Lindorfer, D. Choffnes, M. van Steen, and A. Peter, “Flowprint:
Semi-supervised mobile-app fingerprinting on encrypted network
traffic,” in Network and Distributed System Security Symposium
(NDSS), vol. 27, 2020.

N. Chawla, A. Singh, M. Kar, and S. Mukhopadhyay, “Application
inference using machine learning based side channel analysis,” in
2019 International Joint Conference on Neural Networks (IJCNN),
pp. 1-8, IEEE, 2019.

A. Shusterman, L. Kang, Y. Haskal, Y. Meltser, P. Mittal, Y. Oren,
and Y. Yarom, “Robust website fingerprinting through the cache oc-
cupancy channel,” in 28th USENIX Security Symposium (USENIX
Security 19), pp. 639-656, 2019.

S. Jana and V. Shmatikov, “Memento: Learning secrets from pro-
cess footprints,” in 2012 IEEE Symposium on Security and Privacy,
pp. 143-157, 2012.

N. Zhang, K. Yuan, M. Naveed, X. Zhou, and X. Wang, “Leave me
alone: App-level protection against runtime information gathering
on android,” in 2015 IEEE Symposium on Security and Privacy,
pp- 915-930, 2015.

R. Spreitzer, F. Kirchengast, D. Gruss, and S. Mangard, “Prochar-
vester: Fully automated analysis of procfs side-channel leaks on
android,” in Proceedings of the 2018 on Asia Conference on
Computer and Communications Security, pp. 749-763, 2018.

X. Zhang, X. Wang, X. Bai, Y. Zhang, and X. Wang, “OS-
level side channels without procfs: Exploring cross-app information
leakage on i0s,” in Proceedings of the Symposium on Network and
Distributed System Security, 2018.

Y. Tu, Z. Zhang, Y. Li, C. Wang, and Y. Xiao, “Research on the
internet of things device recognition based on rf-fingerprinting,”
IEEE Access, vol. 7, pp. 37426-37431, 2019.

K. Yang, Q. Li, and L. Sun, “Towards automatic fingerprinting
of iot devices in the cyberspace,” Computer Networks, vol. 148,
pp. 318-327, 2019.

H. Liu, M. Long, J. Wang, and M. Jordan, “Transferable adver-
sarial training: A general approach to adapting deep classifiers,” in
International Conference on Machine Learning, pp. 4013-4022,
PMLR, 2019.

F. Tramer, N. Papernot, I. Goodfellow, D. Boneh, and P. McDaniel,
“The space of transferable adversarial examples,” arXiv, 2017.

“Torchvision models.” https://pytorch.org/vision/stable/models.
html. Accessed: 2021-09-14.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, et al., “Pytorch:
An imperative style, high-performance deep learning library,” Ad-
vances in neural information processing systems, vol. 32, pp. 8026—
8037, 2019.

A. Krizhevsky, “One weird trick for parallelizing convolutional
neural networks,” arXiv preprint arXiv:1404.5997, 2014.

K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” arXiv preprint arXiv:1409.1556,
2014.

S. Xie, R. Girshick, P. Dollar, Z. Tu, and K. He, “Aggregated
residual transformations for deep neural networks,” in Proceedings
of the IEEE conference on computer vision and pattern recognition,
pp. 1492-1500, 2017.

G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger,
“Densely connected convolutional networks,” in Proceedings of
the IEEE conference on computer vision and pattern recognition,
pp. 4700-4708, 2017.

N. Ma, X. Zhang, H.-T. Zheng, and J. Sun, “Shufflenet v2: Practical
guidelines for efficient cnn architecture design,” in Proceedings of
the European conference on computer vision (ECCV), pp. 116-131,
2018.

F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J.
Dally, and K. Keutzer, “Squeezenet: Alexnet-level accuracy with
50x fewer parameters andj 0.5 mb model size,” arXiv preprint
arXiv:1602.07360, 2016.

[54]

[55]

(56]

(571

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]
[67]

[68]

[69]

[70]

(71]

[72]

[73]

C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna,
“Rethinking the inception architecture for computer vision,” in Pro-
ceedings of the IEEE conference on computer vision and pattern
recognition, pp. 2818-2826, 2016.

M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“Mobilenetv2: Inverted residuals and linear bottlenecks,” in Pro-
ceedings of the IEEE conference on computer vision and pattern
recognition, pp. 4510-4520, 2018.

“Nvidia edge computing - embedded systems with
jetson.” https://www.nvidia.com/en-us/autonomous-machines/
embedded-systems/. Accessed: 2021-09-10.

“Edge Computing: Jetson Nano Developer
https://developer.nvidia.com/embedded/jetson-nano-developer-
kit. Accessed: 2021-09-22.

“Edge Computing: Jetson TX2.” https://www.nvidia.com/en-
us/autonomous-machines/embedded-systems/jetson-tx2/.
Accessed: 2021-09-22.

Kit.”

“Edge Computing: Jetson Xavier NX.” https://www.nvidia.com/en-
us/autonomous-machines/embedded-systems/jetson-xavier-nx/.
Accessed: 2021-09-22.

“Edge Computing: Jetson AGX Xavier.”
https://www.nvidia.com/en-us/autonomous-machines/embedded-
systems/jetson-agx-xavier/. Accessed: 2021-09-22.

“Android open source project: Simpleperf.”
/fandroid.googlesource.com/platform/system/extras/+/master/
simpleperf/doc/README.md. Accessed: 2021-09-22.

M. Loning, A. Bagnall, S. Ganesh, V. Kazakov, J. Lines, and F. J.
Kiraly, “sktime: A unified interface for machine learning with time
series,” arXiv preprint arXiv:1909.07872, 2019.

“sktime: Time series forest classifier.” https://bit.ly/3uUsP79. Ac-
cessed: 2022-02-14.

F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong, and
Q. He, “A comprehensive survey on transfer learning,” Proceedings
of the IEEE, vol. 109, no. 1, pp. 43-76, 2020.

“The CIFAR-10 dataset.” https://www.cs.toronto.edu/ kriz/cifar.html.
Accessed: 2022-02-16.

https:

“Tensorflow.” https://www.tensorflow.org. Accessed: 2022-02-14.

“Keras applications: Available models.”
applications/. Accessed: 2022-02-14.

N. Akhtar and A. Mian, “Threat of adversarial attacks on deep
learning in computer vision: A survey,” leee Access, vol. 6,
pp. 14410-14430, 2018.

A. Kurakin, I. Goodfellow, and S. Bengio, “Adversarial machine
learning at scale,” arXiv preprint arXiv:1611.01236, 2016.

M.-1. Nicolae, M. Sinn, M. N. Tran, B. Buesser, A. Rawat,
M. Wistuba, V. Zantedeschi, N. Baracaldo, B. Chen, H. Ludwig,
et al., “Adversarial robustness toolbox vl. 0.0,” arXiv preprint
arXiv:1807.01069, 2018.

https://keras.io/api/

S. Bianco, R. Cadene, L. Celona, and P. Napoletano, “Benchmark
analysis of representative deep neural network architectures,” IEEE
Access, vol. 6, pp. 64270-64277, 2018.

H. Zhu, M. Akrout, B. Zheng, A. Pelegris, A. Jayarajan, A. Phan-
ishayee, B. Schroeder, and G. Pekhimenko, “Benchmarking and an-
alyzing deep neural network training,” in 2018 IEEE International
Symposium on Workload Characterization (IISWC), pp. 88-100,
IEEE, 2018.

“NVIDIA Jetson Community Projects.”
https://developer.nvidia.com/embedded/community/jetson-projects.
Accessed: 2022-02-14.

Appendix A.
Additional evaluations

https://pytorch.org/vision/stable/models.html
https://pytorch.org/vision/stable/models.html
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/
https://android.googlesource.com/platform/system/extras/+/master/simpleperf/doc/README.md
https://android.googlesource.com/platform/system/extras/+/master/simpleperf/doc/README.md
https://android.googlesource.com/platform/system/extras/+/master/simpleperf/doc/README.md
https://www.tensorflow.org
https://keras.io/api/applications/
https://keras.io/api/applications/

AlexNet, 0 0 0 0

DenseNet| 0 4 o 0
Incepton. 0 0 0 0

2 MobileNet| 0 O 0 0

k3

®

2 Restet 0 0 0 0
ShuffleNet 0 0 1 7
SqueezeNet 0 O 0 0

VGG 2 0 o 1 0
T T £ T % 3
2 3 g
2 2 g5 & g
s £ 2 &
predicted label

(a) NX on TS2 for RAM
AlexNet 12
DenseNet: 9
Inception 1

2 MobileNet 0

E)

2 Reshet 13
ShuffileNet| 0 0 0 0 0
SqueezeNet| 0 0 o o

VGG 0 o o 1 0
5 8 5 8 8 B
£ 2 s 2 2 2
T 333 3§z
2 ¢ ¢ 3 & §
8 £ 2 H
predicted label
(e) AES BG 10MB
MexNet|11 2 0 0 1 2
DenseNet| 0 4 11 4 8 30
Inception| 0 14 6 4 15 33

Z wMobileNet 1 13 9 6 26 21

g ResNet: 0 12 1 2 14 32
ShuffleNet| 1 10 11 1 36 27
SqueezeNet| 0 11 26 5 5 | 36

Ve 1 3 9 3 9 17

5 % 5 % 8 8

223 %3

2 ¢ ¢35 &g

s £ 2 &

predicted label

(i) AES BG 100MB
AlexNet
DenseNet
Inception

2 MobileNet

s

Pl

2 ResNet:

ShuffleNet

SqueezeNet

VGG

1

AlexNet
DenseNet
Inception
MobileNet
ResNet
ShuffleNet

predicted label

g
F
8
b
$
3
z
3

SqueezeNet

= T N
< = w ~ b o

v N e

VGGH o = B ~ M =

@

SqueezeNet

SqueezeNet

(m) TX2 on TS1

VGG

VGG

on TS1

on TS1

VGG

100

MexNet{ 0 0 0 0 0 0 0 0
DenseNet| 2 6 1 7 2 0 8
Inception) © 0 0 0 0 0 0 0
Z MobieNet 0 0 0 0 0 0 0 0
S ResNet/ 3 4 1 0 42 1 0
ShuffieNet| 0 2 0 9 0
SqueezeNet| 0 0 0 1 0
V6| 1 0 0 2 0 o
= £ T © T T ®©
2 2 2 2 2 2 2 ¢
P 3 s 2 3 &%
2 2 g 3 & g 3§
5 ¢ 3 5 ¢
o = = ﬁ g_
&
predicted label
(b) NX on TS2 for GPU
MexNet{ 0 0 0 0 0 0 0 0
DenseNet| 0 a 13 0 0 32 0 0
Inception) © 0 0 0 0 0 0 0
g Mobileet 0 0 0 0 0 0 0 0
S ResNet) 0 27 7 3 18 39 3 3
ShuffieNet| 0 0 0 15 0
SqueezeNet| 0 0 0 o
VGG 0 0 0 0 2 o
st ¢ = % 3 5o
£ 2 2 2 2 2 2 ¢
$ T 2 3 % 3 3
3 3 s 2T %o
2 2 g 3 & g 3§
§ ¢ 3 R
8 £ 2 2 3
&
predicted label
(f) AES BG 10MB on TS2
MexNet| 0 0 0 0 0 0 0 0
DenseNet 0 2 9 4 11 E 2 ‘
Inception © 0 0 0 0 0 0 0
g MobileNet 0 0 0 0 0 0 0 0
H ResNe(‘ 7 8 4 1 15 14 15 B3
ShuffieNet| 1 15 9 5 9 1
SqueezeNet| 0 6 3 3 13 o
VG| 0 9 6 2 10 22 6 [
3 ©
3
z g
&

AlexNet
DenseNet
Inception
MobileNet
ShuffleNet
SqueezeNet

predicted label

(j) AES BG 100MB

AlexNet| 0 0 0 o o 0 0

DenseNet| 0 RULE 0 o o 0 0

Inception| 0 0 0 o] 0 0

3 Mobileet: 0 0 0 0 0 0 0
£ ResNet 0 20 0 0
ShuffleNet| 0 0 0 o
SqueezeNet 0 0 0 0

VGG 0 1 0 0 0 0 o
8 8§ 5 8 % 8 %
$ 3233 33
§ ¢ 535 & £ §
T g8 2 8 2 g

&
&

predicted label

(n) TX2 on TS2

on TS2

8
g

20

20

100

20

MexNet; © 0 0 0 0O 0 0 0
DenseNet| 0 0O 0 48 0 0 1 80
Inceptionj 0 0 0 0 0 0 0 0
= 60
£ MobileNet 0 0 0 0 0 0 0 0
F ResNet 0 0 0 0
2 esNet 0
ShuffleNet| 0 0 0 1
0 o 0 20
VGG 1 0 0 1
T £ £ £ = 5 £ © 0
2 2 2 2 2 2 2 ¢
5 3 5 2 3 2%
2 £ g 3 & g §
g g8 " 24
“n =3
&

predicted label

(c) NX on TS2 for RAM+GPU

AlexNetZ o 0 3 0 o 7 80

DenseNet| 0 20 M 1 0 13 o0 1 70
Inception| 0 il 2 1 14 4 o 60
2 MobileNet| 0 9 3 2 2 5 o0 50
kK
g ResNet| 18 6 H 1 1 10 0 1 40
ShuffleNet; O 36 3 4 2 30 25 0 30
0 s 1 0 |43 0 20
VGG| 0 5 0 7 8 15 4 10
T £ = © =& £ ® 0
£ 2 2 2 2 2 2 g
s 282 3 % 3 % >
R 2 O
2 ¢ ¢ 3 & § 3§
8 £ 2 2 s
«w =3
&
predicted label
(g) AES BG 50MB on TS1
— 100
AlexNet| 0 12 150 13 0 24 0 1
DenseNet| 0 E 31 0 6 0 0 0 80
Inception| 0 0 0 0 0 0 0 0
b 60
2 MobileNet| 0 1 1 H 0 29 3 o
H ResNet‘ B 7 1 0
= 40
ShuffleNett 0 0 0 1
SqueezeNet| 0 0 20
VGG 0 0 0 0
t g5z z3zsg °
5 35 2T 32 Y
B EEEE
a £ 2 & 2
&
predicted label
(k) CIFAR10 on TSI
80
DenseNet 70
60
_ Inception 50
T
K
; 40
2
~ MobileNet 30
20
ResNet 10
0

DenseNet
ception
ResNet

]
=
T
3
]
=

£
predicted label

(o) TensorFlow on TS1

AlexNet| 0 0 0 0 0] o o
DenseNet; 0 2 1 /46 0 o

Inceptionf 0 0 0 0 0O 0 0 0

= 60
& MobileNet 0 0 0 0 0 0 0 0
F 0o 1 0 o
2 ResNet ”
ShuffleNetf © 0 0 5 0
SqueezeNet| 0 0 0o o0 20
VGG 0 0 0 1 4
0

AlexNet
DenseNet
Inception
MobileNet
ResNet
VGG

kol
z
]
€
H
z
7]

SqueezeNet

predicted label

(d) NX on TS2 for All features

AlexNet| 0 0 0 0 0 0 o o

60
DenseNet| 0 5 0 0 2 7 o0

50
Inceptionf 0 0 0O 0 0 0 0 0
MobileNetf 0 0 0 0 0 0 0 0 40

true label

ResNet| 10

ShuffleNet| 0

E
o ~
IS
-
w
o
N
S

-
o
w
8

SqueezeNet| 0 0

o
IS
IS
®
-
v

VGG

AlexNet
DenseNet
Inception
MobileNet
ResNet
ShuffleNet
SqueezeNet
VGG

(h) AES BG 50MB on TS2

100
MexNetf 0 0 0 0 0 0 0 O

DenseNet| 0

Inception| 0 0 0 0 0 0 0 0

5 60

2 MobileNett 0 0 O 0 0O 0 0 O

kK

2 Reswet 2 1 0 0 0 0 20

= 40
ShuffleNett 0 1 0 24 0 2 0
SqueezeNet| 0 o o o 1 0 20

VGG| 0 o o o o o 0

AlexNet
DenseNet
Inception
MobileNet
ResNet
ShuffleNet
SqueezeNet

predicted label

(1) CIFAR10 on TS2

DenseNe! 2 3 1 80
_ Inception 0 0 0 0 60
2
s
v
2 40
MobileNet: 0 1 9 5
20
ResNet| 0 0 0
= = P z 0
i f 7
B 3 2
g 3 <
a 2

g
predicted labe

(p) TensorFlow on TS2

Figure 7: Confusion Matrix: Figures 7a to 7d and 70, 7p show confusion matrices for the platform portability
experimentations— 7a to 7d are for experiments conducted on NX Test set 2—RAM (7a), GPU (7b), and RAM+GPU
(7c), and All features. Figures 70 and 7p are for experiments conducted on TX?2 with classifier trained on all features
and on Test set 1 (TS1) and Test set 2 (TS2). Figures 7e to 7j show the confusion matries for the background noise
experimentations—for AES on plaintext sizes 10MB, 50MB, and 100MB on TS1 and TS2. Figures 7k and 71 show the
confusion matricies for the modification to DNNs experimentation—classification on CIFARI10 pipeline on TS1 and
TS2. Figures 70 and 7p shhow the confusion matricies for the different framework experimentation—trained and tested
with TensorFlow data on TS1 and TS2.

4000 4000 4000 4000
ShuffleNet V2 0.5 AlexNet MobileNetV2 Inception V3
5 3500 ShuffleNet V2 1.0 2 3500 2 3500 & 3500
= = S =
%\ 3000 ///T %; 3000 ’ M % 3000 \ %\ 3000 J\\
i1 Ve 1t I @
3 2500 s \ 3 2500 3 2500 3 2500
E B : E \ E /
§ 2000 /’ﬁ \ © 2000 § 2000 / é 2000
: - : : el
2 1500 3 i k 12 1500 © 1500 ‘—,J/ 1 1500 |
1000, 2 4 6 8 10 12 1000, 5 10 15 20 25 30 1000, 2 4 6 8 10 12 1000 5 10 15 20 25
Time (s) Time (s) Time (s) Time (s)
(a) ShuffleNet Family (b) AlexNet (c) MobileNet (d) Inception
Figure 8: Jetson Nano: (Remaining) Observed memory usage patterns on Jetson Nano
5500 5500 5500 5500
VGG11 1 ResNet18 SqueezeNet 1.0 DenseNet121
z 5000 VGG19 /] z 5000 ResNet50 s 5000 SqueezeNet 1.1 = 5000 DenseNet169
: / H 5 / S i : e
o 4500 4 @ 4500 o 4500 @ 4500
=) % o o <) /
2 @ P @ &
8 /] p \ @ / 3 —
3 4000 / 3 4000 // 3 4000 3 4000
= = ; s =
§ 3500 // \ é 3500 //V § 3500 é 3500 /
= s / E s /
g | 8 ya g g 4
12 3000 — ! = 3000f l = 3000 F 30000 /
2500 2 4 6 8 10 2500 2 4 6 8 10 2500 2 4 6 8 10 2500 2 4 6 8 10
Time (s) Time (s) Time (s) Time (s)
(a) VGG Family (b) ResNet Family (c) SqueezeNet Family (d) DenseNet Family
Figure 9: Jetson Xavier NX: Observed memory usage patterns on Jetson Xavier NX.
5500 - - - 5000 5000 - - - 5000 -
VGG11 ResNet18 — DenseNet121]
—_ VGG13 //‘ —_ ResNet50 —_ DenseNet169 —_
m 5000 o o o
= L /—‘ = 4500 ‘ = 4500 — = 4500
e
é}‘ 4500 | 7 1 % // é)\ / é\
=1 /< ; 4000 // ; 4000 ; 4000
= / /
3z 4000 / g Y, 2 K,/ 3 //
s ' 3500 / T 3500 s T 3500 e
8 3500 /-/ kel / {) V4 s} /
\ - |- — —
3000 2 4 6 8 10 3000 2 4 6 8 10 3000 2 4 6 8 10 3000 2 4 6 8 10
Time (s) Time (s) Time (s) Time (s)

Figure 10: Jetson TX2: Observed memory usage patterns on the Jetson TX2. Similar to our observations with the Jetson

NX.

(a) VGG Family

(b) ResNet Family

(c) DenseNet Family

(d) MobileNet

4000 . . . 4000 4000 - . 4000 .
— VGG11 ResNet18 — DenseNet121
— 3500 VGG13 -~ 3500 ResNet50 — 3500 DenseNet169 -~ 3500
o o o o
3 Vr ﬁ = = =
© 3000 © 3000 © 3000 © 3000
&)] & /])]
5 2500 3 2500 / 35 2500 3 2500
= = J = = y
§ 2000 § 2000 /‘/' § 2000 s § 2000 /
= = S = =
12 1500~ 2 1500 f/r \ 2 1500f \ S 1500J \
1000, 5 10 15 20 25 30 35 4 1000, 10 15 20 1000, 10 15 20 1000 5 10 15 2
Time (s) Time (s) Time (s) Time (s)
(a) VGG Family (b) ResNet Family (c) DenseNet Family (d) MobileNet
Figure 11: CIFARI0: Observed memory usage pattern on Jetson Nano for CIFAR10 pipeline.
4000 4000 4000 4000
InceptionV3 ResNet50 DenseNet121 MobileNetV2
—~ 3500 ~ 3500 ~ 3500 DenseNet169 ~ 3500 MobileNet
o o o o
s = s — =
"o 3000 (\di‘ "o 3000 "o 3000 1 "o 3000
o o o o
g /\J g) g f g
3 2500 3 2500 3 2500 3 2500
s — s s s f
§ 2000 :E(2000 § 2000 4”_J § 2000 B
E [E 5 / B /-
'Q 1500 Q 1500 ‘ 'g 1500 // }9 1500 ’_//J
1000, 10 20 30 40 50 1000, 10 20 30 40 50 0 1000, 10 20 30 40 50 60 1000 5 10 15 20 25 30 35 A
Time (s) Time (s) Time (s) Time (s)
(a) Inception (b) ResNet (c) DenseNet Family (d) MobileNet Family

Figure 12: TensorFlow: Memory consumption pattern for original ImageNet pre-trained DNN inference pipeline on the

TensorFlow2.x framework.

— DenseNet121
—~ 3500 DenseNet169
)
B
3000 m
>
3 A,\quw"/M
3 2500 o ‘
g g
2000 el
T e \
2 /
12 1500 gy {
5 10 15
Time (s)

(a) DenseNets + AES (10MB)

4000

(c) DenseNets + AES (50MB)

— DenseNet121
3 3500 DenseNet169
z Ay
© 3000 p /U
g s
8 Al
3 2500 /'
= H/ﬁ;
ES 2000 i
= A
R P
F 1500 | 1

5 10 15 20 25
Time (s)

4000

—~ 3500

e (MB
8
8
8

Total RAM usag
ISR
g 2
g 8

g
8

1000,

— MobileNetV2

5 10 15
Time (s)

(b) MobileNets + AES

b
g
g

Total RAM usage (MB
15
g
g

1500

(10MB)

— MobileNetv2

v

1000,

5 10 20 25

15
Time (s)

(d) MobileNets + AES

4000
5 B0 DenseNet169 /)“ r(‘ Z 300 /‘*—‘ d
= | : e
© 3000 “/')1‘ 3000 ﬂ
g [y g 14
§ y g /
5 2500 | 3 2500
= 7 = /Jl‘
& o L, 2o,
g Y o \
12 1500 © 1s00[|
1000 5 10 15 20 £ 1000 5 10 15 20 %5 3
Time (s) Time (s)

(e) DenseNets + AES
(100MB)

(f) MobileNets + AES

(100MB)

Figure 13: Background Appliication: (Remaining) Mem-
ory usage patterns on Jetson Nano for the original pipeline
(classifier) with a background application running — AES
algorithm on a plaintext of fixed sizes: 10MB, 5S0MB, and
100MB.

	Introduction
	Related Work
	Background
	DNN Architecture Families
	CPU-GPU Embedded Edge Devices

	Model Fingerprinting Attack
	Threat Model
	Attack Overview
	Offline Preparation
	Online Fingerprinting

	Feature Description
	Feature Analysis
	Memory
	GPU
	CPU

	Classification

	Experimental Evaluation
	Experiment Setup
	Device Specifications
	Inference Pipeline Implementation
	Data Collection
	Dataset

	Training with Complete Feature Set
	Feature Ablation Study
	Transferability
	Platform Portability
	Device Specifications
	Experimentations
	Results

	Robustness to a Background Noise or Application
	Robustness to Modified DNN Models
	Attacking a Different DL Framework: TensorFlow
	Enhancing Adversarial Attacks
	Experimental Setup
	Results

	Discussion
	DNNs and Memory Usage Distinguishability
	Disturbances in Memory Utilization
	Stronger Attacker against the Odds
	Generalization to Other DL Applications
	Differences in Application Runtimes and Performance
	Potential Countermeasures

	Conclusion and Future Work
	References
	Appendix A: Additional evaluations

