Stealthy Inference Attack on DNN via Cache-based
Side-Channel Attacks

Han Wang, Syed Mahbub Hafiz, Kartik Patwari, Chen-Nee Chuah, Zubair Shafiq, and Houman Homayoun
University of California, Davis, CA, USA
{hjlwang, shafiz, kpatwari, chuah, zshafiq, hhomayoun} @ucdavis.edu,

Abstract—The advancement of deep neural networks (DNNs)
motivates the deployment in various domains, including image
classification, disease diagnoses, voice recognition, etc. Since
some tasks that DNN undertakes are very sensitive, the label
information is confidential and contains a commercial value or
critical privacy. The leakage of label information can lead to
further crimes, like intentionally causing a collision with DNN-
enabled autonomous systems, disrupting energy networks with
DNN-based controlling systems, etc. This paper demonstrates that
DNNs also bring a new security threat, leading to the leakage
of label information of input instances for the DNN models. In
particular, we leverage the cache-based side-channel attack (SCA),
i.e., Flush+Reload on the DNN (victim) models, to observe the
execution of computation graphs, and create a database of them
for building a classifier that the attacker can use to decide the
label information of (unknown) input instances for victim models.
Then we deploy the cache-based SCA on the same host machine
with victim models and deduce the labels with the attacker’s
classification model to compromise the privacy and confidentiality
of victim models. We explore different settings and classification
techniques to achieve a high attack success rate of stealing label
information from the victim models. Additionally, we consider two
attacking scenarios: binary attacking identifies specific sensitive
labels and others while multi-class attacking targets recognize all
classes victim DNNs provide. Last, we implement the attack on
both static DNN models with identical architectures for all inputs
and dynamic DNN models with an adaptation of architectures for
different inputs to demonstrate the vast existence of the proposed
attack, including DenseNet 121, DenseNet 169, VGG 16, VGG
19, MobileNet vl, and MobileNet v2. Our experiment exhibits
that MobileNet vl is the most vulnerable one with 99% and
75.6% attacking success rates for binary and multi-class attacking
scenarios, respectively.

Index Terms—Inference Attack, Deep Neural Network, Privacy
Leakage, Side-Channel Attack

I. INTRODUCTION

Deep neural networks (DNNs) have made significant
progress in the past decade and gained increasing popularity in
undertaking different tasks, including image classification [4],
[9], [25], language processing [2], [5], security enhancement
[23], etc. Several successful deep neural network models have
been proposed and received notable success, including but not
limited to VGG [25], DenseNet [14], etc. The advancement
of DNNs magnifies the deployment on both servers and edge
devices with different computation resources and energy re-
strictions [12], [14]. Since then, a number of DNN-enabled
applications have been deployed in past decades across various
critical domains, such as disease diagnosis [8], [21], intelligent
surveillance [16], [32], financial decision [15], and so on.
However, the DNN models also bring new security risks —
the leakage of label information may cause financial loss

and privacy compromise since the label information of such
DNN-enabled applications is directly linked to users’ crucial
decisions and sensitive information. Taking the investment
decision-related applications [15] as an example, the leakage
of label information can expose the big financial decision to
attackers who can take advantage of them and make an illicit
profit out of it.

Hence, it is essential to investigate whether DNN models
are vulnerable in terms of the leakage of label information.
This paper presents a novel inference attack targeting to steal
label information of DNN models by leveraging side-channel
attacks (SCAs). In particular, we show that a cache-based SCA,
e.g., Flush+Reload, can be employed to spy on DNN models’
computations, and the extracted observations can deduce the
label information of DNN models via machine learning (ML)-
based classification techniques. The novelty of our demon-
strated attack is to identify a correlation between the cache-
based side channel of DNN models’ computation trajectory and
label information that may contain the users’ medical, financial
decisions, or other critical information.

Though prior works have demonstrated that using side-
channel attacks can steal the architectures of DNN models
[11], [13], [19], [30], our inference attack is more challenging
than reconstructing the architectures of DNN models for the
following reasons. a) The black-box DNN models make it
almost impossible to infer the computation graphs based on
the label information. b) The inference phase takes a much
shorter time than loading DNN models, leaving less time for
extracting computation traces for our attack. c¢) Extracting DNN
model architectures uses multiple traces to remove noises while
attacking label information demands the attacker obtains label
information with only one trace. To address the challenge of
noise from SCAs’ observations and the incurred accuracy de-
crease, we explore the various threshold settings for removing
repeated DNN models’ computation observations and analyze
the impact of using different ML techniques for the attacker
to decide the optimal one. What is more, we select multiple
models with both static neural networks (DenseNet and VGG)
and dynamic neural networks (MobileNet) to illustrate the
attacker’s success rate, i.e., attacker’s classification accuracy
and highlight the vast existence of the introduced attack. Lastly,
this work also identifies the most prominent computations of
victim models for the attack, providing insights into the leakage
source and future mitigation research. The contributions of our
work are categorized as follows:

o To the best of our knowledge, this is the first work to

|
Y
T

Conv 1-1
Conv 1-2
Conv 1-1
Conv 1-2
Pooling
Conv 3-1
Conv 3-2
Conv 3-3
Conv 5-1
Conv 5-2
Conv 5-3
Pooling
Dense
Dense
Dense

Pooling

/| BN-Relu-Conv =

Convl Conv3 Convd Convs FC6, FC7,FC8

a) VGG

Conv2

x1 H

b) DenseNet

2 x2 . Bottleneck Transformation Bottleneck
> % Input Output
-]
=} -
Q = - N e .
S0 . S | Conv x1 | wise | | Convixl |
& 3 | Relu | |_3x3Relu j | Linear |
> @
& S = -

— _— ’/Add)

——— | Add)

¢) MobileNet v2

Fig. 1: Architectures of VGG, DenseNet, and MobileNet v2

introduce a stealthy attack that steals the label information
of DNN models via cache-based SCAs.

o To simulate the attack in the real world, we prototype
two variants of the demonstrated attack: a) binary at-
tacking: identifying the sensitive and non-sensitive label
information; and b) multi-class attacking: deducing the
exact classes of victim models.

e We also identify the most prominent computations of
victim DNN models for the attacker to achieve a high
success rate, providing insights into the leakage source
and future mitigation research.

o« We evaluate the attack with two types of victim DNN
models, i.e., dynamic neural networks and static neural
networks, to manifest the broad existence of the vulnera-
bility.

II. BACKGROUND AND MOTIVATION

A. Deep Neural Network (DNN)

DNN models can be categorized into static neural networks
with the same architectures for all inputs and dynamic neural
networks with an adaption of architectures and parameters for
different inputs. This work selects three DNN families for both
static and dynamic DNN models, detailed in the following.

1) Static Neural Networks: VGG was firstly proposed by
Simonyan and Zisserman in 2014 [25] for localization and
classification tasks. As shown in Figure 1-a), VGG has five
blocks of convolutional layers initially and is followed by three
fully connected layers. Each convolutional layer has a small
kernel size of 3 x 3 with a stride and padding to maintain the
same spatial dimensions as the last layer. The depth of VGG
varies from 16 to 19 layers, and each of them is a variant DNN
model: VGG 16 and VGG 19.

Dense Convolutional Network (DenseNet), as shown in Fig-
ure 1-b), employs a feed-forward fashion to connect each
layer to every other layer in the network. It maximizes the
information flow to alleviate the vanishing gradient problem
and strengthen feature propagation [14]. Specifically, for [th
layer, there are [inputs from all preceding convolutional blocks,
and its output sends to the L — [subsequent layers. This work
chooses two variants of the DenseNet family: DenseNet 121
and DenseNet 169.

2) Dynamic Neural Networks: MobileNet vl [12] and Mo-
bileNet v2 [22] were designed for conducting classification,
detection, and other computer vision-related tasks in mobile
devices. They enable applications installed in mobile devices
to equip more functionalities with human and real-world in-
teraction based on deep learning neural networks. MobileNet
vl [12] mainly leverages depthwise separable filters, width

multiplier, and resolution multiplier to balance the accuracy loss
and computation size. As depicted in Figure 1-c), MobileNet v2
includes another two techniques, a) linear bottlenecks between
layers, and b) shortcut connections between the bottlenecks.

B. Cache-based Side-Channel Attacks

To bridge the latency between memory and CPU, cache
hierarchies are introduced and shared among applications.
The shared cache gives the attacker opportunity to influence
applications’ memory access and infer their cache access
pattern by measuring its accessing latency, termed as cache-
based side-channel attacks (SCAs). The existing cache-based
SCAs, including [18], [27], [28], [31], spy on shared cache
activities and steal critical information, including passwords,
secret keys, etc. In this work, we leverage Flush+Reload to
observe the computation behaviors of victim DNN models.
Flush+Reload [31] exploits the vulnerability of the page de-
duplication technique by monitoring the memory access lines
in the shared pages. This attack targets the Last-Level Cache in
the CPU, flushes out victim applications’ data in the cache and
waits for the victim application to execute. After flushing the
cache, the attacker tries to access the data and measures the
accessing time (latency). Shorter accessing time denotes that
the victim application has accessed the data; otherwise, it has
not been accessed.

C. Motivation of the Attack

DNNs have been increasingly used for critical domains,
from financial decisions [15], energy control [24], autonomous
systems [26], medical treatment [7], etc. Their label information
either contains critical information or impacts significant deci-
sions, which attackers can steal and make an undesired profit
out of them or conduct crimes based on them. In the finance
domain, attackers can misuse the investment suggestions stolen
from victim DNNSs. Energy controlling systems [24] leverage
DNNs to design the optimal online power control policy while
the attacker with label information can take advantage of the
policy information to deliberately overload the energy network
and cause a denial-of-service attack on customers. Autonomous
systems [26] with DNNs for an image classification task
might suffer from collisions caused intentionally by the attack
since the label information empowers attackers to locate them.
Hence, we believe that the leakage of such label information
of sensitive DNNs-enabled applications can allow attackers to
cause undesirable damages.

III. OVERVIEW OF ATTACK

This work demonstrates a novel attack that stealthily spies
side-channel information to deduce labels of inputs. As de-

Off-line Preparation

Mimicked Victim Model

I On-line Deployment
1

. |
1
1

i All Weights et
Victim Model | --+---o-nee o vicum SAN
Architecture | r-—------777----oo

Flush+Reload
.

|

Collecting Traces Deep Learning Framework

Functions Traces TensorFlow:

Bias, Average Pool, MergeAdd, ...,

Flush+Reload

Building Attacker’s
Classifier

‘ Shared Memory ‘

1
1
1
1
1
1
1
1
1
1
1
1
1
: Shared last level Cache
1
1
1
1
1
1
1
1
1
1
1

*+ Preprocessing . .
|

Fig. 2: Design of the presented attack

picted in Figure 2, the whole attack contains two parts: offline
preparation and online deployment. Offline preparation firstly
mimics the victim model based on architecture and weights
knowledge. And then, it collects Flush+Reload traces during the
inference phase of the mimicked model to build the attacker’s
classifier. Once trained and tested, Flush+Reload is launched
online to collect the traces of the victim model and send it to
the attacker’s classifier for deducing the label information of
inputs. We introduce the details of the attack in the following
sections.

A. Threat Model

The attacker’s goal is to infer the labels of instances sent to
the victim DNN models secretly. We assume that the attacker
(without sudo access) resides in the same physical machine
with DNN models (also referred to as victims) and can launch
a software program on the machine. The victim is a DNN model
and takes images as input, the output of which is labels and
needs protection. We assume that the attacker does not have
direct access to the input images and label information.

1) Assumption: The attack aims to obtain the label infor-
mation of instances sent to victim DNN models and has the
knowledge of victim models’ weights or untrainable weights.
We also assume that the attacker knows the label candidates
of victim models and the type of dataset victim models are
targeting, e.g., flowers classification [1]. As for the knowledge
of victim models’ architectures and parameters, we have two
assumptions: setting A and B, as listed below.

« Setting A: the attacker has the full knowledge of the victim
model, including architectures, weights, and parameters,
which can be acquired based on approaches studied in
prior research [13], or victim models use public weights.

o Setting B: the attacker has the knowledge of the victim
model and the pretrained weights used while not knowing
the newly added layers at the end of the model. Addi-
tionally, victim models freeze pretrained parameters and
weights and only train the newly added layers.

2) Target of the Attack: We consider two attacking scenarios

as detailed in the following.

o Binary Attacking: the attacker targets stealing one particu-
lar class of labels and categorizes the rest classes of labels
as “others.” The binary classification accuracy can directly
reflect the ability to steal the labels from victim DNN
models with a specific value that attackers are interested
in.

e Multi-class Attacking: the attacker tries to identify all
classes of labels just as victim models do.

TABLE I: Monitored function list

Bias Sigmoid RunHelper | Average Pool
Relu6 Depthwiseconvop End Conv Max Pool
MatMul Depthwiseconv2d Tanh LaunchConv
Elementwise Mulop Elu Concat
Merge Add Selu Softsign Softplus

B. Collecting Training Traces

To observe the computations of victim DNN models, we se-
lect functions listed in Table I and each function corresponds to
the specific architecture of victim DNN models. Though there
are 20 functions selected during the offline preparation, only
a subset of the functions is chosen for the online deployment.
Our attacker and victims run at the user level on the same
operating system and the host machine. The attacker runs the
mimicked DNN model with a similar database as the victim
while Flush+Reload is initiated to monitor the target functions
simultaneously.

C. Building Attacker’s Inference Model

1) Prepossessing: Since traces obtained via Flush+Reload
are noisy due to transient execution, we need to take a
further step to clean traces and filter out some functions.
Since Flush+Reload might suffer from repeated observations
when the computations of DNNs continue, we employ the
number of cycles between two computations to clean noises
in traces, referred to as “threshold” in the following sections.
In Section IV-C, we demonstrate the influence of threshold on
the classification accuracy of the attacker’s inference model.
After removing noises, all observations are converted into the
occurrences of each computation.

TABLE II: Prominent functions for the introduced attacker

Mobilenetvl | Mobilenetv2 | DensetNet121 | DensetNet169 VGG16 VGG19
Bias Bias Maxpool Mulop Bias Mulop
Mergeadd Mergeadd LaunchConv Mergeadd Mulop Mergeadd
LaunchConv | LaunchConv Concat LaunchConv Maxpool | LaunchConv

2) Feature Evaluation: Though the introduced attack has
access to monitor several functions as listed in Table I, we
conduct an importance evaluation for each function for two
reasons: a) to minimize the number of monitored functions
to incur the least the influence of our attack on victims and
reduce the possibility of being detected; and b) the importance
of functions reveals the leakage source and can provide more in-
sights for future mitigation works. To achieve this, we leverage
the correlation-based feature selection (CFS) with the greedy-
stepwise search algorithm [3] approach to select the optimal
subset functions for implementing an attack with a high success
rate, i.e., high classification accuracy. After the importance
evaluation, we observe that Bias, Merge Add, Launch Conv
are commonly effective for attacking all six victim models.

Hence, only the prominent functions are monitored for online
deployment.

3) Training Classifier: We consider two types of attacking
purposes: identifying the sensitive inference model (binary
attacking) and identifying the precise class of victim’s inputs
(multi-class attacking). To build a robust classifier with higher
accuracy, we split the whole dataset into training and validation
in case of an over-fitting issue. Furthermore, we consider a vast
range of ML classifiers in this work to select the optimal one
with the highest accuracy. Five classifiers are selected: OneR,
J48, SVM-based SMO, KNN, and Multi-Layer Perceptron
(MLP). The rationale for selecting these ML models is that they
are from different branches of ML, including rule-based, tree-
based, support vector machine, lazy learning-based, and neural
network techniques covering various learning algorithms.

D. Online Deployment

As presented in Figure 2, we deploy the Flush+Reload on the
same host machine as victim models and send the observations
to the remote attacker’s classifier to extrapolate the labels of
victim models’ inputs. The detailed steps are listed below:

o Step 1: Launch Flush+Reload on the same host machine
as victim models and collect traces of function calls once
the victim model is started.

o Step 2: Preprocess the data collected online with the same
preprocessing approach (III-C1) as the one in preparation.

e Step 3: Send processed data to the attacker’s classifier
for deducing the inputs’ label information of the victim
model. The deduced label information can be further lever-
aged by other malicious activities, like stealing investment
decisions, as discussed in Section II-C.

IV. EVALUATION
A. Experiment Setup

1) Attack Platform: All evaluations are done on a Dell
server with 32 cores Intel(R) Xeon(R) CPU E5-2683 v4 and
a three-level cache system. L3 cache memory is inclusive
and shared among all cores meaning that flushing out the
data in the last-level cache could remove the data in the L1
cache. The inclusiveness of the L3 cache creates a potential
vulnerability surface for last-level cache attacks to be exploited.
Our proposed inference attack should be effective on other
platforms which are also vulnerable to Flush+Reload platforms.

2) Victim Models for Evaluation: As discussed in Section II,
we select three prevalent deep learning model families, each
with two variants as victims: DenseNet 121, DenseNet 169,
VGG 16, VGG 19, MobileNet v1, and MobileNet v2 with
implementation in Tensorflow 1.10.0 and Keras with the default
weights, “ImageNet.”

3) Datasets: Flowers dataset [1] is used in this work for
evaluating the success rate of the proposed attack. Since we
consider two attacking scenarios as detailed in Section III-A
which demand no training and retraining, respectively, we split
the dataset with two approaches. For setting A (no training), all
data are split into 10%-90% to build the attacker’s classifier and
evaluate the attack online. For setting B (retraining), we split

the dataset into 50%-10%-40% for retraining the last layer of
the victim models, building the attacker’s classifier, and testing
the proposed attack.

100 - ~2.5%

40 Y SSESS bl b i
(OneR J48 SMO KNN MLP OneR J48 SMO KNN MLP

Classification Accuracy
(%)

Multi-class Binary

Fig. 3: Classification accuracy for binary and multi-class with
various classifiers with the attack on MobileNet v1

B. Attacking Success Rate with Various Classifiers

We explore different classification algorithms to select the
optimal one for deducing label information from the victim
model based on Flush+Reload observations. As shown in Fig-
ure 3, we present the binary and multi-class attacking success
rate, i.e., classification accuracy, of our attack on MobileNet
v1. Generally, multi-class attacking is more complicated than
the binary attacking scenario with around a 20% accuracy
difference. Selecting an appropriate classifier for multi-class
attacking is more critical for our attack since OneR yields
35% less accuracy than J48 with 75% multi-class classification
accuracy. By comparison, classification accuracy is less critical
for binary attacking scenarios, while J48 is better than OneR
by around 2.5%. For both binary and multi-class attacking
scenarios, J48 and MLP outperform the rest three classifiers.

C. Binary Attacking Evaluation

As seen in Table III, we consider the classification accuracy
with six different victim models under noise removal thresholds
ranging from 0 to 500 cycles under both setting A and setting
B detailed in Section III-A. We observe that similar results are
found for setting A and setting B, indicating that introducing
customized layers with pre-trained weights freeze does not
cause an obvious impact on our attack. For all six victim
models, we observe a noticeable influence of changing noise
removal threshold on classification accuracy under setting A
and B while the impact varies from models. We can observe that
the attacking success rate on both MobileNet v1 and MobileNet
v2 receive the highest value when the threshold is set at
100 cycles. By comparison, the static neural network models,
DenseNet and VGG, demand a higher threshold value at 500
cycles. The difference is that the filter shape of MobileNet
convolutions is generally smaller than VGG and DenseNet,
having less execution time. Across all six models from three
DNN families, MobileNet v1 is the most vulnerable one and
suffers over 99% attacking success rate when the noise removal
threshold is set at 100 cycles. Though DenseNet and VGG are
less vulnerable, we still observe 78.5% and 70.6% success rates
under setting A and similar results under setting B, indicating
the attacker can still devise the label information from the
victim static neural network models. Another observation is that
static models from the same DNN family, i.e., DenseNet and

TABLE III:

Binary attacking success rate: sensitive labels (daisy) vs others (dandelion, roses, sunflowers, and tulips)

‘ Settings ‘ Threshold (Cycles) ‘ MobileNet vI ‘ MobileNet v2 ‘ DenseNet 121 ‘ DenseNet 169 ‘ VGG16 ‘ VGG 19 ‘

0 94.3 69.4 73.9 449 58.8 56.9

Setting A 100 99.0 71.3 737 52.4 60.5 65.5
200 98.8 66.3 73.6 51.6 60.5 68.7

500 96.1 65.6 78.5 66.6 70.6 69.9

0 93.9 69.0 73.0 522 58.5 56.2

Setting B 100 98.3 76.9 73.6 449 60.4 65.3
200 98.4 66.1 73.0 50.7 60.3 69.4

500 95.5 65.4 78.3 66.4 69.7 69.8

daisy

500

500 daisy
400

dandelion 400 dandelion
300

roses
L 200 -200
sunflowers
100 -100
tulips
-0 -0
w
3
3

51.0%

roses

sunflowers

lips

daisy
roses
daisy
roses
tulips

dandelion
sunflowers
«dandelion
sunflowers

a) MobileNet v1: 75.6% b) MobileNet v2:

500 500
daisy -
400 400
dandelion
300 300
roses
200

- 200
sunflowers
- N
-0

daisy
dandelion
roses

sunflowers
b -

- 100
tulips

'y

daisy
dandelion
roses
sunflowers
tulips
daisy
dandelion
roses
sunflowers
tulips

¢) DenseNet 121: 51.5%

daisy

d) DenseNet 169: 31.4%
500 500
daisy
. dandelion o

300 300
- roses
-200

-200

sunflowers
- N

-0

dandelion

roses

sunflowers
-100

'y

tulips tlips

daisy
dandelion
roses
sunflowers
tulips
daisy
dandelion
roses
sunflowers
tlips

e) VGG 16: 37.7% f) VGG 19: 37.4%

Fig. 4: Heatmap of multi-class attacking success rate under set-
ting A of six models: MobileNet vl, MobileNet v2, DenseNet
121, DenseNet 169, VGG 19, and VGG 16.

VGG, experience similar attacking success rates with various
threshold cycles. Though MobileNet v2 are from the same
DNN family as MobileNet vl, the attacking success rate is
77.3% because its short cuts between bottlenecks and depthwise
causes the occurrences of LaunchCony function challenging for
attackers’ classifier. In conclusion, binary attacking can receive
up to around 99% success rate and yield a significant difference
in success rate on the six victim DNN models.

D. Multi-class Attacking Evaluation

Besides the binary classification that helps our attacker
identify sensitive labels from victim models’ execution, we also
evaluate the attack to steal all possible labels individually from
victim models. We plot the predicted labels from our attacker’s
classification results and ground truth labels with heatmaps as
shown in Figure 4 for setting A with accuracy included. Similar
to binary classification, our attack yields similar accuracy

under the two settings, while results for setting B are not
presented for the brevity of space. Compared to the binary
attacking, inferring the multiple labels, i.e., five in this work, is
more challenging for the attack, suffering over 20% attacking
success rate decrease for almost all victim models. Still, the
multi-class attacking on MobileNet v1 also receives a 75.6%
success rate. Most classification errors are from sunflowers
and tulips, meaning the attack receives high confidence for
the other three classes samples. Similar to the binary attacking
scenario, MobileNet v2 is less vulnerable since the occurrences
of LaunchCony function are less separable caused by shortcuts
and depthwise. Still, we find that most samples from daisy,
sunflowers, and tulips are classified correctly by the attacker’s
classifier. By comparison, the four static DNN models, i.e.,
DenseNet 121, DenseNet 169, VGG 16, and VGG 19, are less
likely to suffer from multi-class attacking.

V. RELATED WORK

Privacy issues in DNNs have raised increasing attention from
both industry and academia. Prior works have demonstrated
the exploit of side-channel attacks that can recover the model
architectures, parameters, or inputs [11], [13], [20], [29], [30].

Hong et al. [10], [11] exploit the cache-based SCAs,
Flush+Reload, to steal information during the inference phase
to reconstruct the crucial architectures of DNNs. It proposes an
algorithm that generates candidate computational graphs from
Flush+Reload observations, and the parameter estimation pro-
cess removes incompatible candidates with 0% error for Mal-
Conv and ProxylessNAS-CPU. Yan et al. [30] take advantage of
the DNNs’ reliance on Generalized Matrix Multiply (GEMM)
and employs Prime+Probe and Flush+Reload to obtain DNN5s’
architectures. It reduces the search space from 5.4 x 1012 to
16 for VGG and 6 x 1046 to 512 for ResNet-50, respectively.
Hua et al. [13] investigate the leakage from memory and side
channels on hardware accelerators even with secure techniques.
They find that the memory access patterns can enable reverse-
engineering of the structures and weights of CNN models. It
highlights the importance of hiding memory access patterns,
especially for CNN models conducting critical tasks.

Xiang et al. [29] illustrate an attack that extracts power traces
on FPGA-based accelerators to reconstruct the input image.
To achieve this, it filters out noises and distortion in power
measurement with low-pass filters, power, and curve fitting.
The capability of the attack is evaluated in the hand-written
digits of the MNIST dataset [17], achieving 89% accuracy.
Dong et al. [6] measure the execution time of floating-point
multiplications from the power consumption traces, which are
used to infer the pixel values of images without the knowledge

of neural network’ parameters. It shows 96.2% accuracy for
the MNIST dataset. Luo et al. [20] show that using the cache-
based SCA, Prime+Probe, to extract the cache access patterns
can help to reveal the route or the location of a vehicle with the
adaptive Monte-Carlo localization (AMCL) algorithm. It builds
the correlation between the cache access pattern observed by
Prime+Probe and the label information with statistical learning
models.

VI. CONCLUSION

The progress made in DNNss boosts its application in various
sensitive domains, including financial decisions, disease diag-
nosis, surveillance, etc., making the label information stealing
attractive for attackers. This work demonstrates a stealthy attack
that leverages a cache-based SCA, Flush+Reload, to spy on
DNN models’ computations and deduce the label information.
To achieve it, we build an effective classifier that predicts the
label information with Flush+Reload traces by investigating
different noise removal settings and exploring a broad range of
classification techniques. Additionally, we illustrate both binary
attacking and multi-class attacking capability with six DNN
models from both static and dynamic neural networks. Our
experiments exhibit that the attack achieves up to 99% binary
attacking success rate and 75.6% multi-class attacking success
rate on MobileNet v1.

ACKNOWLEDGMENT

This research was funded in part by the Robert N. Noyce
Trust.

REFERENCES

[1] Flower dataset. In https://storage.googleapis.com/download.tensorflow.
org/example_images/flower_photos.tgz.

[2] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared
Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish
Sastry, Amanda Askell, et al. Language models are few-shot learners.
arXiv preprint arXiv:2005.14165, 2020.

[3] Rich Caruana and Dayne Freitag. Greedy attribute selection. In Machine
Learning Proceedings 1994, pages 28-36. Elsevier, 1994.

[4] Dan Ciregan, Ueli Meier, and Jiirgen Schmidhuber. Multi-column deep
neural networks for image classification. In 2012 IEEE conference on
computer vision and pattern recognition, pages 3642-3649. IEEE, 2012.

[5] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
Bert: Pre-training of deep bidirectional transformers for language under-
standing. arXiv preprint arXiv:1810.04805, 2018.

[6] Gaofeng Dong, Ping Wang, Ping Chen, Ruizhe Gu, and Honggang
Hu. Floating-point multiplication timing attack on deep neural network.
In 2019 IEEE International Conference on Smart Internet of Things
(SmartloT), pages 155-161. IEEE, 2019.

[7] Matthew Fredrikson, Eric Lantz, Somesh Jha, Simon Lin, David Page,
and Thomas Ristenpart. Privacy in pharmacogenetics: An end-to-end
case study of personalized warfarin dosing. In 23rd USENIX Security
Symposium (USENIX Security 14), pages 17-32, 2014.

[8] Shayan Hassantabar, Mohsen Ahmadi, and Abbas Sharifi. Diagnosis and
detection of infected tissue of covid-19 patients based on lung x-ray
image using convolutional neural network approaches. Chaos, Solitons
& Fractals, 140:110170, 2020.

[9] Kaiming He, Xiangyu Zhang, Shaoging Ren, and Jian Sun. Deep residual

learning for image recognition. In Proceedings of the IEEE conference

on computer vision and pattern recognition, pages 770-778, 2016.

Sanghyun Hong, Michael Davinroy, Yigitcan Kaya, Dana Dachman-

Soled, and Tudor Dumitras. How to Own nas in your spare time. arXiv

preprint arXiv:2002.06776, 2020.

Sanghyun Hong and et al. Security analysis of deep neural networks

operating in the presence of cache side-channel attacks. 2018.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(171

[18]

[19]

[20]

(21]

[22]

[23

—

[24]

[25]

[26]

[27])

[28]

[29]

[30]

[31]

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko,
Weijun Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam.
Mobilenets: Efficient convolutional neural networks for mobile vision
applications. arXiv preprint arXiv:1704.04861, 2017.

Weizhe Hua and et al. Reverse engineering convolutional neural networks
through side-channel information leaks. In 2018 55th DAC, pages 1-6.
IEEE, 2018.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q
Weinberger. Densely connected convolutional networks. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages
47004708, 2017.

Gyeeun Jeong and Ha Young Kim. Improving financial trading decisions
using deep g-learning: Predicting the number of shares, action strategies,
and transfer learning. Expert Systems with Applications, 117:125-138,
2019.

Cheng-Bin Jin and et al. Real-time human action recognition using cnn
over temporal images for static video surveillance cameras. In Pacific
Rim Conference on Multimedia. Springer, 2015.

Yann LeCun. The mnist database of handwritten digits. http://yann. lecun.
com/exdb/mnist/.

Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B Lee.
Last-level cache side-channel attacks are practical. In 2015 IEEE
symposium on S&P, 2015.

Yuntao Liu and Ankur Srivastava. Ganred: Gan-based reverse engineering
of dnns via cache side-channel. In Proceedings of the 2020 ACM SIGSAC
Conference on Cloud Computing Security Workshop, pages 41-52, 2020.
Mulong Luo, Andrew C Myers, and G Edward Suh. Stealthy tracking of
autonomous vehicles with cache side channels. In 29th USENIX Security
Symposium (USENIX Security 20), pages 859-876, 2020.

Antdnio H Ribeiro, Manoel Horta Ribeiro, Gabricla MM Paixado, Der-
ick M Oliveira, Paulo R Gomes, Jéssica A Canazart, Milton PS Ferreira,
Carl R Andersson, Peter W Macfarlane, Wagner Meira Jr, et al. Automatic
diagnosis of the 12-lead ecg using a deep neural network. Nature
communications, 11(1):1-9, 2020.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov,
and Liang-Chieh Chen. Mobilenetv2: Inverted residuals and linear
bottlenecks. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 4510-4520, 2018.

Joshua Saxe and Konstantin Berlin. Deep neural network based malware
detection using two dimensional binary program features. In 2015 10th
MALWAR), pages 11-20. IEEE, 2015.

Mohit K Sharma, Alessio Zappone, Mérouane Debbah, and Mohamad
Assaad. Deep learning based online power control for large energy har-
vesting networks. In ICASSP 2019-2019 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pages 8429-8433.
IEEE, 2019.

Karen Simonyan and Andrew Zisserman. Very deep convolutional net-
works for large-scale image recognition. arXiv preprint arXiv:1409.1556,
2014.

TIMOTHYB.LEE. Tesla’s autonomy event:impressive progress with an
unrealistic timeline. 2019.

Han Wang, Hossein Sayadi, Setareh Rafatirad, Avesta Sasan, and Houman
Homayoun. Scarf: Detecting side-channel attacks at real-time using low-
level hardware features. In 2020 IEEE 26th International Symposium on
On-Line Testing and Robust System Design (IOLTS), pages 1-6. IEEE,
2020.

Han Wang, Hossein Sayadi, Avesta Sasan, Setareh Rafatirad, and Houman
Homayoun. Hybridg: Hybrid dynamic time warping and gaussian
distribution model for detecting emerging zero-day microarchitectural
side-channel attacks. In 2020 19th IEEE International Conference on
Machine Learning and Applications (ICMLA), pages 604-611. IEEE,
2020.

Lingxiao Wei, Bo Luo, Yu Li, Yannan Liu, and Qiang Xu. I know
what you see: Power side-channel attack on convolutional neural network
accelerators. In Proceedings of the 34th Annual Computer Security
Applications Conference, pages 393—406, 2018.

Mengjia Yan and et al. Cache telepathy: Leveraging shared resource
attacks to learn dnn architectures. In 29th Security Symposium USENIX
Security 20), pages 2003-2020, 2020.

Yuval Yarom and Katrina Falkner. Flush+ reload: A high resolution, low
noise, 13 cache side-channel attack. In USENIX Security Symposium,
volume 1, pages 22-25, 2014.

Liang Zhou and et al. Cyber-attack classification in smart grid via deep
neural network. In Proceedings of the 2nd International Conference on
Computer Science and Application Engineering, pages 1-5, 2018.

