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ABSTRACT

Traffic matrix measurement provides essential information
for network design, operation and management. In today’s
networks, it is challenging to get accurate and timely traffic
matrix due to the hard resource constraints of network de-
vices. Recently, Software-Defined Networking (SDN) tech-
nique enables customizable traffic measurement, which can
provide flexible and fine-grain visibility into network traf-
fic. However, the existing software-defined traffic measure-
ment solutions often suffer from feasibility and scalability
issues. In this paper, we seek accurate, feasible and scal-
able traffic matrix estimation approaches. We propose two
strategies, called Maximum Load Rule First (MLRF) and
Large Flow First (LFF), to design feasible traffic measure-
ment rules that can be installed in TCAM entries of SD-
N switches. The statistics of the measurement rules are
collected by the controller to estimate fine-grained traffic
matrix. Both MLRF and LFF satisfy the flow aggregation
constraints (determined by associated routing policies) and
have low-complexity. Extensive simulation results on real
network and traffic traces reveal that MLRF and LFF can
achieve high accuracy of traffic matrix estimation and high
probability of heavy hitter detection.

Categories and Subject Descriptors

C.2.0 [Computer Communication Networks]; C.2.3 [Net-
work Operations|: Network monitoring; C.2.4 [Distributed

Systems]: Network operating systems
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Software-Defined Networking, Software-Defined Measuremen-
t, Traffic Matrix Estimation
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Traffic Matrix (TM) plays an important role in many net-
work tasks, such as network design [1], traffic engineering
[1], traffic accounting [2], and performance diagnosis [3], all
of which rely on accurate and timely TMs as critical input-
s. Due to the important role of TM, TM measurement has
attracted extensive attention from the research community
in the past decade [4, 5, 6]. However, it is still challenging
to accurately measure TM for practical networks in a timely
fashion. First, direct measurement of TM on large networks
is infeasible due to the hard constraint of network measure-
ment resources (e.g., TCAM entries, memory capacity and
processing power). Second, even though TM can be esti-
mated from side information that can be readily obtained
such as SNMP link loads and network routing configuration,
the TM estimation problem is typically an under-determined
linear-inverse problem where the number of measurements
are not sufficient to accurately identify the TM. Thus, in
order to improve the estimation accuracy, more related side
information must be incorporated into the problem formu-
lation. However, this is hard to achieve due to the control
plane limitations of traditional networks.

On the other hand, as a promising architecture for future
networks, Software-Defined Networking (SDN) [7] has re-
ceived a significant attention by both industry and academi-
a. SDN paradigm enables the separation of a logically cen-
tralized control plane from the underlying data plane. This
decoupling brings unique opportunities for traffic measure-
ment. Most importantly, the centralized control plane pro-
vides a global view of network resource and enables pro-
grammable traffic measurement. Moreover, the data plane
in each switch provides several counters for each flow rule in
the flow table. Therefore, the SDN has the potential capa-
bility of enabling accurate and dynamic traffic measurement.

Recently, a few research efforts have been made to de-
velop dynamic, accurate and scalable traffic measurement
frameworks in SDN paradigm. In [8], ProgME proposes a
programmable traffic measurement architecture, which al-
lows to collect traffic statistics of user defined sets of flows.
To support various measurement tasks, OpenSketch [9] in-
troduces a variety of hash-based sketches, and can config-
ure the sketches dynamically. However, both ProgME (8]
and OpenSketch [9] assume specialized hardware support
on switches for traffic measurement. In order to avoid us-
ing custom hardware for traffic measurement, [10, 11] pro-
pose practical traffic measurement solutions should run on
commodity network elements, and [12] extends the work in



[10, 11] by enabling concurrent and dynamically instanti-
ated traffic measurement tasks. However, all the solutions
proposed in [8, 9, 10, 11, 12] are targeted for measuring a
specific set of flows (e.g, Heavy Hitters or Distributed Ice-
bergs), and they are not suitable for TM estimation.

OpenTM [13], DCM [14] and iSTAMP [15] aim to measure
TM in SDN. OpenTM and DCM are per-flow based mea-
surement solutions, which directly measure and estimate T-
M by tracking statistics of each flow. Evidently, OpenTM
and DCM are not scalable since the measurement resources
(e.g., CPU and TCAM) are limited while the number of
flows is large. To meet constraints on the available measure-
ment resources and improve measuring accuracy, iSTAMP
infers TM based on both aggregated and the k largest (i.e.
the most informative flows) per-flow measurements. iISTAM-
P seems to make a good tradeoff between the used measur-
ing resources and accuracy, but it also faces the following
issues. First, the priority and wildcard based matching s-
trategy used by SDN switches implies that only the flows
with a same prefix can be potentially aggregated by one
rule, but iISTAMP ignores the flow aggregation constraints,
leading to infeasible aggregated measurements. Second, to
find out the k largest flows, iSTAMP uses all of the TCAM
entries to measure all individual flows over multiple time
intervals, which will introduce non-negligible measuremen-
t cost. Most recently, [16] investigates the TM estimation
problem in SDN capable data center networks. The feasi-
bility issue of traffic aggregation is considered in [16] based
on the assumption that the traffic measurement/aggregation
only takes place at the ToR SDN switches of data center net-
works. The assumption makes the method proposed in [16]
hard to apply in general networks. In addition, the com-
plexity of choosing feasible aggregation paths in [16] is also
high for large-scale networks.

Based on the shortcomings of existing works, we revisit
the TM estimation problem in SDN paradigm, and aim to
propose accurate, feasible and scalable traffic measurement
strategies in this paper. Here, we say a traffic measurement
strategy is feasible if it satisfies the measuring resource and
flow aggregation constraints. We assume that to save T-
CAM entries, the rules used for routing flows in each SDN
switch are aggregated whenever possible. In theory, the TM
can be estimated based on the statistics of these aggregated
routing rules. However, to improve the estimation accuracy,
we generate traffic measurement rules by deaggregating the
aggregated rules, and install the traffic measurement rules
in the available TCAM entries of each SDN switch. The
controller collects the measurement statistics of TCAM en-
tries periodically, and estimates the per-flow sizes based on
these statistics. The main contributions of this paper are
summarized as follows:

1) We propose a simple traffic measurement rule genera-
tion strategy named Maximum Load Rule First (MLRF) to
efficiently generate feasible traffic measurement rules.

2) To further improve the TM estimation accuracy, we
also propose another traffic measurement rule generation s-
trategy named Large Flows First (LFF), which uses the TM
estimation results of MLRF as the inputs.

8) We evaluate the performance of MLRF and LFF using
traffic traces from real ISP networks. The results verify that
MLRF and LFF can achieve feasible and accurate traffic
estimation.

2. THE TRAFFIC MATRIX ESTIMATION
IN SDN

2.1 System Model and Assumptions

In this paper, we consider a hybrid SDN network, where
only a subset of the nodes are SDN switches while the rest
of the nodes are traditional routers. The TM estimation
system of SDN contains two parts. In the data plane, the T-
CAMs in SDN switches match and count packets with wild-
card rules. In the control plane, the controller: 1) fetches
flow statistics (TCAM counters and SNMP link loads); 2) es-
timates the TM based on the statistics; 3)designs new mea-
surement rules based on the quality of estimated TM; and
4) installs the new rules in the SDN switches. Since TCAMs
are expensive and power hungry, the SDN switches have a
limited number of TCAM entries. We assume that part of
the TCAM entries in each SDN switch are used to imple-
ment routing rules. To save TCAM entries, the routing rules
are aggregated based on the destination prefixes. To avoid
forwarding disruption to network traffic, the routing rules
cannot be modified during the traffic measurement process.
We assume that the network operators will assign a set of IP
prefixes to each node, and this mapping is known a priori. A
flow can be indicated by a source and destination IP prefix-
es pair <src_prefir, dst_prefiz>, where src_prefix/dst_prefix
is one of the prefixes assigned to source node/destination
node.

2.2 Problem Formulation

We can model the network as a directed graph G = (V, L),
where V' and L are the sets of nodes and links, respec-
tively. Let Vspny C V denote the set of SDN nodes and
Vnspn = V\Vspn denote the non-SDN nodes. Let ns and
ms be the total number of TCAM entries and the number
of available (i.e. unused or reserved) TCAM entries in SDN
node s(s € Vspn), respectively. Let Rs be the set of flow
rules of SDN node s (s € Vspn). Ys denotes the vector of
TCAM statistics, and Yz denotes the vector of link loads.
For ease of formulation, we use a vector X € RN to repre-
sent the traffic matrix, where N is the number of flows. Ygs
and Y7, have the following relationship with X.

Ys =AsX and Y.L =ALX, (1)

where As = (AY) and Ay = (AY) are binary aggregation
matrices. The element AY € {0,1} indicates whether flow
j (4 £ N) is forwarded by rule i (i < > oy« 7s), and

the element A% € {0,1} indicates whether flow j (j < N)
is going through link ¢ (¢ < |L|). Ar is given and it is fixed
while Ag is determined by the flow rules designed by the
controller to provide the most informative aggregate mea-
surements adhering to the routing policy. Having measure-
ments Ys and Y7, as well as aggregation matrices As and Ar,
the traffic matrix X can be estimated using the following op-
timization formulation (2), which is a convex optimization
problem that is effective for estimating highly fluctuating
network flows [15].

X = minimize || X ||
X

s.t. YL = ALX (2)
Ys = AsX
X>0



Algorithm 1 The Maximum Load Rule First Measurement
Rule Generation Strategy

Input: Network topology G(V, L).

Output: The rule sets R for the SDN switches.
1: R+ 0
2: for each node s € Vsppy do

3: add the routing rules in node s to set Rs
4: compute the load of each rule rs € Rs and the set of flows
matching the rule rg
5: while |Rs| < ns + ms do
6: ro1d — the rule with the maximum load in R
7 Tnew < Told
8: Trew -Priority < royq.priority + 1
9: lotg < load(ro1q)  //load(r) denotes the load of rule r
10: Amin < %‘lold //Amin is an indicator of load balance
between Tpnew and roiq, and A, = 0 represents that
the loads of rpew and 7,4 are balanced
11: Ttemp < Tnew
12: while load(riemp) > & - loia do
13: Présre < Ttemp.Src_prefix
14: preﬁrc <« left child of presrc on the prefix trie
15: pre?rc < right child of presrc on the prefix trie
16: rt — rnew
17: TR < Tnew
18: rL.src_prefiz < prel,.
19: ritsrc_prefic + prell.,
20: if Apin > |load(rl) — % - loiq| then
21: Tnew-STC_prefix <— pref,.c
22: Amin «— \load(rL) — % . lold‘
23: end if
24: if Apin > |load(r®) — 1 .1,4] then
25: Tnew-STc_prefiz « prell.
26: Amzn «— \load(rR) — % . lold‘
27: end if
28: if load(r’) > load(r™) then
29: Ttemp = rL
30: else
31: Ttemp = rB
32: end if
33: end while
34: Rs + Rs UTnew
35: update the loads of the rules r,;q and rpc.w respectively,

and update the sets of flows matching the rules r,;4 and
Tnew respectively.

36: end while

377 R+ R;sUR

38: end for

39: return R

Considering the optimization formulation (2), we can im-
prove the estimation accuracy by generating better Ag. S-
ince Ag is determined by the measurement rules installed
in the SDN switches, we can get a better As by installing
carefully generated traffic measurement rules on the avail-
able TCAM entries, which will provide more inputs to the
optimization formulation (2). To this end, we generate some
measurement rules by deaggregating the routing rules (i.e.,
use some rules with longer prefixes to offload the traffic flows
from the rules with shorter prefixes), and install the newly
generated measurement rules in the available TCAM en-
tries. In this paper, we mainly focus on the measurement
rule generation strategies.

3. THE FLOW MEASUREMENT RULE GEN-

ERATION STRATEGIES

In practical networks, the rules used for routing are al-
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Figure 1: Prefix trie of source IPs.

ways aggregated to save TCAM entries [17] (e.g., the rules
for routing the flows to a same prefix can be aggregate into
one rule); consequently flow aggregation measurements are
used for TM estimation. However, due to the ill-conditioned
and under-determined nature of TM inference problems [18],
the direct estimation of TM based on the statistics of those
aggregated routing rules may suffer from significant estima-
tion errors. Hence, in order to improve the TM estimation
accuracy, we can generate additional rules to measure the
traffic under the resource and flow aggregation constraints.
In this section, we will present the proposed measurement
rule generation strategies called Maximum Load Rule First
(MLRF) and Large Flow First (LFF), respectively.

3.1 The Maximum Load Rule First Strategy

For a flow (defined by a source and destination prefixes
pair) going through SDN switch ¢, the controller can easily
find out the flow rule matching the flow in SDN switch ¢ by
simply checking each rule installed in SDN switch . Thus,
given the set of flows and the routes of the flows, the num-
ber flows matching each rule in a SDN switch can be easily
computed. Here, we define the load of a rule as the number
of flows matching the rule in a SDN switch.

The detailed procedures of MLRF are described in Algo-
rithm 1. The basic idea of MLRF is trying to generate a new
flow measurement rule that can offload half the load from
the rule with the maximum load in a SDN switch in each
step. MLRF first greedily selects the rule with the maxi-
mum load in a SDN switch, and then based on the selected
rule (we call it old rule below), it generates a new rule with
a higher priority and a longer source IP prefix. It is notable
that except the priority and the source IP prefix fields, all
other fields of the new rule are the same as the old rule (lines
7, 8,21 and 25 in in Algorithm 1). Evidently, if the new rule
is added into the SDN switch, some of the flows matching
the old rule will be offloaded to the new rule. The load of
the new rule is determined by its source IP prefix. MLRF
tries to choose a source IP prefix for the new rule such that
the load of the new rule and the old rule are balanced. To
do that, MLRF searches the prefix trie of source IPs using
width first strategy (lines 12 - 33 in Algorithm 1). Figure 1
shows an example prefix trie for four bits. The number on
each prefix node is the load of the rule if it uses the associ-
ated source IP prefix. In this example (Figure 1(a)), MLRF
will choose 00** as the source IP prefix for the new rule,
and the loads of the new rule and the old rule are 17 and
13 respectively when the new is added into the SDN switch.
Figure 1(b) shows the loads of the rules using the associated
source IP prefixes on the prefix trie when the new rule is



Figure 2: Illustration of flow measurement alloca-
tion.

added to the SDN switch.
3.2 The Large Flow First Strategy

It has been shown that in real networks, a small number
of large flows may account for more than 80% the traffic
volume [8]. Therefore, accurately measuring the large flows
can yield the best improvement of overall TM estimation
performance. However, how to find out the expected large
flows is a problem. To solve this problem, iSTAMP [15] uses
a two-phase approach, which measures the sizes of all the
flows using available TCAM entries over multiple epochs in
the first phase, and selects the k largest flows to measure
in the second phase. However, measuring the per-flow sizes
is costly and time consuming, especially when the available
TCAM entries are limited and the number of flows is large.
LFF is also a two-phase approach. But instead of accurately
measuring the per-flow sizes, LFF estimates the per-flow
sizes based on the statistics of the rules generated by MLRF
in the first phase. Although the estimated per-flow sizes may
not accurate, they are sufficiently informative for us to find
out the real large flows. The simulation results show that we
can find out the real large flows with very high probability
by using the estimated per-flow sizes.

In hybrid SDN networks, a flow may go through several
SDN switches. Thus, allocating which SDN switch to mea-
sure an interested large flow is also an important problem,
which is called Flow Measurement Allocation (FMA) in this
paper. The solution of FMA has impact on the measurement
results. Let us consider the example in Figure 2. There are
four flows: A— F, B— F, C — F, and D — F. The routes
of the flows are indicated by dotted lines with different col-
ors. We assume that both SDN switches B and D have two
available TCAM entries. So if flows A — F and B — F' are
allocated to be measured at SDN switch D, the flow C — F
and D — F cannot be measured. Nevertheless, we can mea-
sure flows A — F' and B — F' at SDN switch B and measure
flows C — F and D — F' at SDN switch D.

In order to achieve the best improvement of overall esti-
mation accuracy, LFF needs to get an optimal solution of
FMA. For facilitating the discussion of how to find an op-
timal solution of FMA, we first give the definitions for the
feasible solutions and optimal solutions of FMA.

Definition 1. (Feasible solutions of FMA) Given the
set of flows F' = {f1, f2,- -+, fm } and the set of SDN switches
Vspn = {v1,v2, -+, vk}, a solution of FMA is denoted as
U= {53,y ik ) where ¢y = 1if flow f;
is allocated to be measured at SDN switch v;, and ¥} =0
otherwise. We say an allocation solution is feasible if it

Vf uF Vf BF vf cr vf DF
S, =50Mbps S, =30Mbps S, =20Mbps S, =10Mbps

Figure 3: The auxiliary bipartite graph and a maxi-
mum weight matching denoted by red dashed lines.

satisfies the following constraints.
c1) If w;j =1, flow f; must go through SDN switch v;.
c2) For Vv; € Vspn, 21 cp w;z < My, , where m,; is the
number of available TCAM entries in SDN switch v;.
c3) Forvf, ¢ F, %<1

v;€EVsDN d)fi

Definition 2. (The utility of a feasible solution) The
utility of a feasible solution ¥ is denoted by f(¥), which is

defined as:
Do D vy Sh

v;€VspN fi €F

() =

where Sy, is the size of flow f;.

Definition 3. (The optimal solution of FMA) A feasi-
ble solution ¥* is optimal if it meets the following condition.
For any feasible solution ¥, f(¥*) > f(V).

In order to represent the relationship between flows and
SDN switches, we construct an auxiliary bipartite graph.
We denote the auxiliary bipartite graph as Ga(Va = Vg U
Vs, La), where V4 represents the node set and L 4 is the link
set. Each node vy, € Vp corresponds to a flow f; € F', and
each node v € V, corresponds to an available TCAM entry
j in SDN switch s € Vspn. If a flow f; € F goes through a
SDN switch s € Vspn, there is a directed link (vf“vg) from
node vy, to each node v} (j < my). The weight of the link
(vy,,v3) is set to the estimated size of flow f; (denoted as
St,). The auxiliary bipartite graph of the example in Figure
2 is illustrated in Figure 3.

THEOREM 1. A maximum weight matching of the auwil-
iary bipartite graph is an optimal solution of the FMA prob-
lem.

PROOF. See [19] [J

Based on the discussions above, we design the LFF traffic
measurement strategy for SDN networks as in Algorithm 2.
Since a maximum weight matching of the constructed aux-
iliary bipartite graph is an optimal flow measurement allo-
cation solution, LFF will generate a rule for each flow (lines
9-15) that corresponds to a link of the maximum weight
matching. Accordingly, the generated flow rules are installed
in SDN switches and the flow statistics are used to accurate-
ly estimate the TM using network inference framework (2).
The red dashed lines in Figure 3 denote a maximum weight
matching of the auxiliary bipartite graph. In the example,
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Algorithm 2 The Large Flow First Measurement Rule Gen-
eration Strategy

Input: Network topology G(V, L).
Output: The rule sets R for the SDN switches.

1: R+ 0

2: estimate the flow sizes based on the statistics of the rules
generated by MLRF strategy (Algorithm 1)

3: sort the flows according to their estimated sizes in decreasing
order

4: for each node s € Vsgpy do

5: add the routing rules in node s to Rg

6: end for

7: construct the auxiliary bipartite graph Ga(Va = Vg U
Vs,La), based on the estimated flow sizes and the routes
of the flows

8: find a maximum weight matching M on Gao(Va = Vg U
Vs, La) _

9: for each link (vy,,vl) € M do

10:  rgq < the rule matching flow f; in set Rg

11: Tnew < Told

12: Tnew -PTiOTitY < Tpew.priorvity + 1

13: Tnew-STC_prefix < f;.src_prefic

notes the source prefix of flow f;

14: Rs + Rs U Tnew

15: end for

16: for each node s € Vgpn do

17: R+ RUR;

18: end for

19: return R

/] fi.sre_prefiz de-

two rules will be generated and installed in node B to mea-
sure flow far and flow fpr, and two rules will be generated
and installed in node D to measure flow fcr and flow fpr.

4. PERFORMANCE EVALUATION
4.1 Simulation Setup

Networks topologies and traffic dataset: We use two
well known real network topologies: Geant (23 nodes and 37
links) and Abilene (12 nodes and 15 links). We assume only
a subset of nodes are deployed with SDN switches. The n-
odes with higher degree have higher priority to deploy SDN
switches. If there is a tie, the nodes are ordered arbitrarily.
Unless specified, the number of SDN switches in Geant and
Abilene is set as 6 (6/23 ~ 24%) and 4 (4/12 ~ 33%), re-
spectively. We assume the number of TCAM entries (n) is
the same for all of the SDN switches. Since the IP prefixes
assigned to each node are unknown in Geant and Abilene
networks, we randomly select a set of IP prefixes from the
IP prefixes owned by China Telecom for each node. The
number of prefixes assigned to each node is uniformly dis-
tributed in [2, 5]. The traffic matrices of Geant and Abilene
for a specific time period are publicly available. We ran-
domly choose 100 traffic matrices from the dataset, and we
use X" to denote the ith traffic matrix. The traffic matri-
ces provide the traffic sizes between nodes in the networks.
However, in our simulation, we need fine-grained traffic ma-
trices, which provide the traffic sizes between the prefixes.
To get the fine-grained traffic matrices, we use the following
equation:

g, — len(f;.src_prefix) len(f;.dst_prefir)
fi = afsa” S len(pref) >, len(pref)’

pref€Py

®3)

pref€Ps

where S,¢,, denotes the size of aggregated flow between n-
odes s and d (given in the dataset), len(-) operator returns
the length of an IP prefix, and Ps; and P; denote the set
of prefixes owned by nodes s and d, respectively. In the
simulations, we use r to represent the flow aggregation ra-
tio, which is defined as ratio between the number of total
TCAM entries and the number of flows, i.e., r =n - W.

Performance Metrics: The metrics used in our perfor-
mance evaluation are defined in equation (4). Pl’;,.ge is the
average probability of accurately finding out the k largest
flows by using the measurement rules generated by MLRF.
From the presentation in Section 3.2, we know that the per-
formance of LFF is closely related to P, ... In equation (4),
I(-) returns the indices of flows, sorted in descending order
of the flow sizes. NMAE is widely used performance metric
for measuring the accuracy of traffic matrix estimation.

Phroe = 57 2o pr(I(X) < HIXY) < k)
- @

M i 5
1 XX
NMAE = ;:1 X7

4.2 Simulation Results

To yield the best improvement of overall estimation per-
formance, LFF chooses the k largest flows to measure di-
rectly. The key challenge here is that the per-flow sizes are
unknown. LFF solves the problem by estimating the per-
flow sizes based on the statistics of the rules generated by
MLRF. So the probability (lefwge) of accurately finding out
the k largest flows by using estimated per-flow sizes is criti-
cal for LFF. Figure 4 shows P/nge under different k£ in both
Geant and Abilene topologies. From Figure 4, we can see
that Pl’f”.ge increases with the flow aggregation ratio r. Be-
cause higher » means that more TCAM entries can be used
for traffic measurement, and thus the traffic size estimation
accuracy can be improved. Moreover, we can observe that
even when the r is low (e.g., 10%), the majority of large
flows (more than 75%) included in the k largest flow set can
also be found out successfully. It is demonstrated that using
the estimated per-flow sizes based on the statistics of the
rules generated by MLRF, we can also achieve sufficiently
accurate inputs for LLF, and thus we do not need to directly
measure every per-flow size in the first phase of LFF.

Figure 5 compares the NMAE of MRLF, LLF, iSTAM-
P (with BAT) and iSTAMP (with EAT) [15], where EAT
(Exponential Aggregation Technique) and BAT (Block Ag-
gregation Technique) are two different aggregation matrix
design strategies used in iSTAMP. In BAT, each TCAM en-
try aggregates an equal number of flows. While in EAT,
more TCAM entries are allocated to larger flows by adjust-
ing parameters p and o [15]. It is notable that both BAT
and EAT do not consider the flow aggregation feasibility. So
though the aggregation matrix generated by EAT and BAT
are good for traffic matrix estimation, it may not be feasible
in practice. From Figure 5, we can observe that as expected,
the NMAE of the four methods decreases with the increasing
of the flow aggregation ratio r. Most importantly, we also
can observe that the NMAE of our proposed LFF is very
close to that of iSATMP+BAT (the differences are with-
in 0.1) and iISTAMP+EAT, and in Abilene, the NMAE of
LFF is even much better than that of iISATMP+EAT. Our
results demonstrate that LFF can generate feasible traffic
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Figure 5: NMAE in Geant and Abilene topologies
when r varies.

measurement rules that can achieve high traffic matrix esti-
mation accuracy. Comparing with LFF, MRLF has higher
NMAE. However, MRLF is a simple algorithm with low-
computational complexity and it can provide useful infor-
mation for the LFF (as shown in Figure 4). So MRLF is
also a meaningful approach for HH detection and providing
the outline of the traffic matrix.

Figure 6 shows the NMAE of different methods when the
number of SDN switches varies in Geant. Since the capacity
of TCAM is very limited, the flow aggregation ratio is low in
real networks. In order to evaluate the performance of our
proposed approaches under low flow aggregation ratio, the
number of TCAM entries in each SDN switch is set as 75.
Under this setting, the flow aggregation ratio of Geant net-
work is about 15% when 50% of the nodes are SDN-capable.
In Figure 6, the NMAE of all the methods decreases quick-
ly with the increasing number of deployed SDN switches.
When 50% of the nodes are SDN-capable (the flow aggrega-
tion ratio is about 15%), the NMAE of LFF is about 0.1 for
Geant. This demonstrates that even if a small number of
SDN switches are deployed in the network, the traffic ma-
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Figure 6: NMAE in Geant topology when the num-
ber of SDN switches varies.

trix estimation accuracy can be significantly improved. We
obtain similar results in Abilene network, which which is
included in our technical report [19].

In addition, MLRF and LFF can also be used for Heavy
Hitter (HH) detection. To evaluate the effectiveness of us-
ing MLRF and LFF for HH detection, we also compute the
average probability of detection (Pfy) [15] of MLRF and
LFF. The results indicate that both MRLF and LLF can
achieve very high probability of detection even when the ag-
gregation ratio 7 is low (e.g., r = 0.1). Detailed results can
be found in our technical report [19].

S.  CONCLUSIONS

In this paper, we leverage the re-configuration capability
and flexible flow rules of SDN to enhance the accuracy of
traffic matrix estimation. In SDN, the accuracy and feasi-
bility of traffic measurement are closely related to the flow
rules installed in SDN switches. To achieve feasible and
accurate traffic matrix estimation, we proposed two traf-
fic measurement rule generation strategies, named MLRF
and LFF. MLRF and LFF generates traffic measuremen-
t rule by de-aggregating the aggregated routing rules. The
flow aggregation feasibility is guaranteed in MLRF and LFF,
and the complexity of MLRF and LFF is also low. Finally,
we have conducted extensive performance evaluation on real
networks and traffic traces; the results have confirmed that
MRLF and LFF can achieve feasible and accurate traffic
matrix estimation.
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