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Abstract—This paper demystifies the adoption and cascading
process of OSN-based applications that grow via user invitations.
We analyze a detailed large-scale dataset of a popular Facebook
gifting application, iHeart, that contains more than 2 billion
entries of user activities generated by 190 million users during
a span of 64 weeks. We investigate: (1) how users invite their
friends to an OSN-based application, (2) what factors drive the
cascading process of application adoptions, and (3) what are the
good predictors of the ultimate cascade sizes. We find that sending
or receiving a large number of invitations does not necessarily
help to recruit new users to iHeart. We also identify a set of
distinctive features that are good predictors of the growth of the
application adoptions in terms of final population size. Finally,
based on the insights learned from our analyses, we propose
a prediction model to infer whether a cascade of application
adoption will continue to grow in the future based on observing
the initial adoption process. Results show our proposed model
can achieve high precision (over 80%) in iHeart as well as in
another OSN-based gifting application, Hugged.

I. INTRODUCTION

The word-of-mouth information diffusion [21] over online
social networks (OSNs) has been regarded as an important
mechanism by which people discover and share a new idea,
technology, or product. Such diffusion mechanism has gained
great attentions not only from research communities but also
from enterprises interested in growing their business. Ac-
cording to the recent New York Times article, traditional
retailers like Target and Walmart have sought partners in OSN
companies [12].

The growing interest in such information diffusion mecha-
nism has attracted the research community to investigate how
information (e.g., a photo, link, or product) are reshared in
OSN s like Facebook, Twitter, Flickr, or Pinterest [4], [5], [10],
[15], [21]. A news, photo, link, or product may get reshared
(e.g., retweet in Twitter or repin in Pinterest) multiple times
over the OSNSs, hence generating a cascade that potentially
reaches a large number of users. These studies have revealed
valuable insights into the macro-level propagation patterns of
messages [15], URLs [21], news [16], and photos [4], [10].
However, most of these studies paid little attention to how user
recommendation of products leads to their actual adoption and
further propagation. This is the key to understand and predict
the growth, popularity, and longevity of OSN-based products
or the ultimate size of the user base.

In this paper, we strive to shed lights on these issues by
performing a detailed investigation of the adoption process
of a gifting application on Facebook. In particular, we seek
answers to the following questions: How do people invite
their friends to use an OSN-based application? What factors
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drive a new user to adopt an invitation? How often does a
recruited user recruit others to the application? Overall, how
does the application adoption evolve over the OSN? What are
the main drivers that determine a large, sustainable cascade of
a new application? Can we predict the growth of the cascading
process of an application?

It has been reported that Facebook gifting applications
only rely on user-invitations (through sending gift items) to
recruit new users [19]. Hence, we believe that by focusing
on the gifting genre, we can minimize the effect of exogenous
factors, including user recruitment through other channels such
as email broadcasts and paid advertisement. As a case study,
we examine the launching and spreading of iHeart, which
was one of the top gifting applications in Facebook in terms
of number of (monthly) active users as of Dec. 2009. We
analyze a detailed large-scale dataset that contains more than
2 billion entries of user activities generated by 190 million
users during a span of 64 weeks. A user in iHeart can send
a gift to other existing iHeart users, or send a gift with an
invitation message (referred to as invitation) to his/her friends
who have not installed the application yet. In the latter case,
the friend who has received the invitation can either accept
(i.e., install the application) or ignore it. Note that a user can
receive multiple invitations from different friends until he/she
accepts the application. If a user accepts the invitation and
gets activated, he/she can also send invitations to other friends.
Finally, these inter-user communications through invitations
form a sequence of adoptions generated by a contagion process
where a node “recruits” its connected nodes with some prob-
ability. We refer to this sequence of adoptions as a cascade.
Using the dataset, we analyze: (1) how users invite their friends
to adopt an OSN-based application, (2) what factors drive the
cascading process of application adoptions, and (3) distinctive
features associated with different sizes of cascades. Based on
our findings, we develop and evaluate a prediction model to
infer whether a cascade of application adoption will continue
to grow in the future, which gives an important implication in
resource allocation of OSN-based product stakeholders, e.g.,
via targeted marketing.

We highlight the main contributions as follows:

e Invitation and adoption behaviors (Section IV): We
found that sending or receiving a large number of invi-
tations does not necessarily help to recruit new users,
which may be due to the spamming phenomenon
where users end up ignoring the invitations.

e  Growth patterns of application adoptions (or cas-
cades)(Section V): We analyzed the growth patterns
of the application adoption process in iHeart from
a graph-theoretical perspective. We found a set of



distinctive features (e.g., structural or evolutionary
properties of cascades, and roles of their seed nodes)
that are good predictors for the final population size of
the cascade. To attain large cascades (e.g., beyond 100
users), effective user recruitment has to continue be-
yond the initial growth phase. In general, we observed
that early adopters (seeds and their recruited users)
play a diminishing role as cascade sizes increase.

e Predicting large cascades (Section VI): We explored
the implications of our findings for predicting the
attainable growth of different application adoption
cascades. We found that the evolutionary properties of
cascades (e.g., initial growth rate) are good predictors
of the ultimate cascade sizes. By observing these fea-
tures during the initial adoption process, our classifier
can achieve over 80% precision for predicting the large
cascades of application adoption. Our learning-based
prediction model performs well when applied to an-
other gifting application, Hugged, which suggests that
our prediction model is generally applicable to gifting
genre of OSN-based applications where the new users
are recruited primarily through user invitations.

The rest of the paper is organized as follows. We first
review related work in Section II. Section III describes our
cascading model that captures the application adoption process
and our datasets. Sections IV and V present our measurement-
based characterization of the inviters, invitees, and application
cascade process. Based on insights learned from our analyses,
we build and evaluate a learning-based prediction model to
forecast the growth of the cascading process in Section VI.
Finally, we conclude the paper in Section VII.

II. RELATED WORK

Information diffusion over OSNs: There have been many
studies that investigate the patterns of information diffusion in
OSNs, revealing valuable insights into characteristics of infor-
mation spreading [3]-[5], [8], [10], [15], [21]. Rodrigues et
al. analyzed the patterns of word-of-mouth URL exchanges
in Twitter and found that users with geographically similar
locations tend to share the same URL [21]. Goel et al. [8]
investigated the cascades of URLs shared in different micro-
blogging services such as Yahoo! or Twitter. They showed
that multi-step cascading is not frequently observed; the vast
majority of the diffusions occur within one hop from a seed
node. Similar characteristics are also observed in photo-sharing
OSNs like Flickr. Cha et al. [4] reported that even popular
photos do not spread widely in Flickr. We focus on how ap-
plications are recommended, adopted, and propagated over the
OSNs, which is the key to understand the growth, popularity,
and longevity of OSN-based applications or products.

Some of the studies have focused on what drives informa-
tion diffusion in OSNs. There have been increasing attention
to effectively identify special individuals, often referred to as
the “influentials” [2] who can recruit a large number of users,
leading to a large-scale cascade [1]. Cha et al. found that the
most influential users (in terms of generating retweets) are not
necessarily the most followed ones [3]. Wang et al. showed
that information diffusion depends on the social context or
the users’ characteristics [24]. On the other hand, Han et al.
showed that pin propagation in Pinterest is mostly driven by

pin’s properties like its topic, not by user’s characteristics such
as the number of followers [10]. While these studies have
investigated key drivers to spread URLSs, news, or images, we
focus on what factors drive the adoption of new OSN-based
applications, which have not been thoroughly investigated.

Popularity or cascade size prediction: There have been
great interests in predicting the future popularity of a given
content, information, or product to increase sales. For example,
content or web service providers like YouTube may want to
estimate the view counts (or download counts) of their content
in advance, which are directly tied to their ad revenue [23].
This has led to the investigations of the popularities of Digg
stories [23], information on Twitter [26], and YouTube view
counts [23]. Also, several studies have focused on how to
predict the growth of information cascading in Twitter [14] and
Facebook [5]. Cheng et al. showed that temporal and structural
features are key predictors of the size of photo reshare cascade
in Facebook [5]. In this paper, we predict the success/failure
of a seed node (or early adopters) to create a large-scale
cascade of application adoption using a learning-based model
and insights gained from our measurement studies. Such model
has great utility in resource allocation of product stakeholders,
e.g., via targeted marketing.

User interactions in OSN-based applications: Facebook
has become one of the most popular OSN and supported a rich
application ecosystem that has become a $6+ billion industry
(as of 2012) [19]. This has motivated numerous studies on
the popularity of Facebook applications [7], social structures
of Facebook games [13], a probabilistic growth model for
user activities on Facebook gifting applications [19], roles of
users to propagate Facebook applications [25], and a model
of the evolution trend of Facebook gifting applications [17].
Recently, Rahman e al. investigated the role of the seeds
in the adoption process of the Facebook gifting application,
and showed that large-scale adoptions are not correlated to
well-known properties of seeds (such as out-degree or active
lifetime) [20]. In this paper, we perform a detailed analysis
of how user invitations lead to the adoption and propagation
of OSN-based applications. In addition, we apply the insights
learned from our measurement study to develop a learning-
based model to predict whether a cascade of application
adoption will continue to grow in the future.

III. METHODOLOGY

In this section, we describe how new applications are
adopted and propagated over OSN platform, using Facebook
third-party gifting applications as a case study. We first define
a cascading tree generated by a particular seed node. Then we
describe our datasets.

A. Definition of cascading tree

To analyze how a gifting application is adopted (and prop-
agated) in Facebook, we define a cascading tree as a directed
graph, G = (V, E), where V is the set of users and E is the set
of invitations to adopt, based on the Krackhardt’s hierarchical
tree model [11]. That is, if user 7 adopts an application from
user ¢’s invitation, there exists an edge E(V;,V;) from user V;
to user V;. We refer to this event as adoption of an application.
After a user adopts the application, he/she will in turn send
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Fig. 1. Definition of cascading tree.

out invitations to his/her friends, thereby recruiting more users.
A sequence of adoptions is denoted by a cascade. Note that
a not-yet recruited user can receive invitations from multiple
friends before installing the application. The leaf nodes in the
cascading tree are the users who have received one or more
invitations but are (i) silent, i.e., have never installed or used
the applications, or (ii) ineffective, i.e., have sent out invitations
but not successful in recruiting new users.

Fig. 1 illustrates an example of a cascading tree. The
circles represent users who belong to the cascading tree G.
A cascading tree is initiated by a seed user (say, vy in
this example) who already installed the application (before
receiving any invitations) and have sent invitations. The max
depth in a cascading tree is defined as the hop count from the
root (i.e., seed) to the farthest leaf node in the tree. The max
width refers to the number of nodes in the widest generation
in the tree. In Fig. 1, the size, max depth, and max width of
the cascading tree G are 12, 3, and 6, respectively. Since we
focus on adoption process of applications, we consider only
the cascading trees that have at least one invitation-induced
adoption, i.e., whose sizes are at least 2.

Since a not-yet recruited user can receive multiple in-
vitations, his or her set of potential parents is a group of
senders from which the user received invitations before his/her
adoption. To identify the parent who is responsible for the
adoption of a particular user, we first calculate each sender’s
(or inviter’s) success ratio, 7, which is defined as:

)]

where A(7) is the number of activated users who received an
invitation from ¢, and N (%) is the number of total users who
received an invitation from 7. Since the sender whose 7 is the
highest is the most probable sender (or inviter) responsible for
the adoption of a given user, u, we finally select that sender as
the parent of u in a same cascading tree. Note that Rahman et
al. [20] evaluated four other definitions of parents: 1) the first
parent who sent the invitation for the first time, ii) the last
parent who sent the invitation lastly, iii) the parent who sent
invitations most, and iv) the random parent. We find that our
method based on the success ratio shows similar distributions
of cascade sizes with the four methods in [20], but we use
this method (which is based on the success ratio) since we are
studying the application adoption process and are interested in
identifying the most effective sender (or inviter) who succeeds
in recruiting the most number of new users.
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Fig. 2. Frequency of invitations sent and received in iHeart.

B. Datasets

We conduct a detailed measurement-based characterization
of how a popular gifting Facebook application, iHeart, was
adopted and propagated over Facebook platform. iHeart was
launched in June 2009 and operated by Manakki, LLC at the
time of data collection. The dataset was anonymized and do-
nated by Manakki, LLC, which covers the major lifespan of the
application (64 weeks since its initial launch until it declines in
popularity) and contains more than 2 billion (2,027,488,267)
entries of user activities generated by 189,989,307 users.
Each user activity record includes the sender’s and recipient’s
anonymized Facebook user IDs as well as the timestamp
when the sender sends an invitation to the recipient. In this
paper, we do not consider all the interactions among users
(including sending and receiving a specific type of heart), but
we focus on analyzing ‘invitations’ sent to the new users until
they first become activated. To analyze the adoption process
of iHeart, we first identified the seed nodes, i.e., users who
already installed and used the applications without receiving
any prior invitations/gifts from other users. We managed to
uncover 2,384,686 cascading trees (i.e., cascade sizes are
bigger than 1), each rooted at a unique seed. Together, these
cascades contain 186,254,526 recruited users. Note that there
are another 1,350,095 users who installed iHeart without prior
invitations but have not recruited any users in our dataset, and
hence are excluded from our study.

For the purpose of verifying the universality of our pre-
diction model (in Section VI), we use another dataset from
a different Facebook gifting application, Hugged, which was
launched in February 2008 and also operated by Manakki, LLC
at the time of data collection. The dataset, also anonymized
and donated by Manakki, covers the major lifespan of the
application (69 weeks from February 2008) and contains 114
million entries of user activities generated by 34,525,693 users.
We analyzed 461,510 cascading trees generated by unique
seeds and contain 33,967,052 recruited users. Note that there
are another 97,131 seed nodes that fail to recruit any users and
are excluded from our study.

IV. CASE STUDY: INVITATION-BASED ADOPTION AND
PROPAGATION OF IHEART

An iHeart user sends invitations to recruit his/her friends
and some of them may accept the invitations. This results in
an inviter-invitee relationship. For example, if user A sends an
invitation to a friend, B (who has not yet adopted iHeart), then
A becomes the inviter of B and B becomes the invitee of A.
In this subsection, we explore (i) invitation patterns of inviters
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and (ii) adoption behaviors of invitees, both of which are key
to the successful growth of iHeart user base.

A. Invitation patterns of inviters

Fig. 2(a) shows the distributions of the number of invi-
tations sent by an inviter and the number of unique invitees
targeted by the inviter, respectively. We find that more than
50% of the inviters send invitations to 10 or more distinct
invitees. Moreover, 50% of the inviters send more than 13
total invitations. Note that the top 1% of inviters (in terms of
number of sent invitation) send more than 84 invitations.

To investigate how long an inviter is active (i.e., using
iHeart to send invitations to recruit new users), we calculate the
active lifespan of each inviter as the time difference between
the first and the last invitation sent. During the active lifespan,
an inviter may send multiple invitations. We investigate the
correlation between the active lifespan of the inviters and the
number of invitations that are sent to their friends in Fig. 3(a).
As shown in Fig. 3(a), the inviters with longer active lifespan
send more invitations and invite more unique invitees. For
instance, inviters with longer than 300 days of active lifespan
send more than 100 invitations on average. Notice that the
inviters with at least a day of active lifespan send more than
12 invitations to more than 9 distinct invitees on average.

We next explore the inviter’s performance in terms of the
success ratio 7 introduced in Eq. 1. We observe that 3% of the
inviters exhibit 7 of 0, which means they may have zero impact
on the growth of iHeart. However, many of these inviters with
7 = 0 (who have not succeeded in recruiting new users) send a
large number of invitations (the average number of invitations
sent by them is 5.37, with a maximum of 892 invitations).
This indicates that sending a large number of invitations does
not necessarily mean that the inviter will succeed in recruiting
large number of new users. In fact, the inviters sending many
invitations tend to have a low average success ratio, as shown
in Fig. 3(b). On the other hand, the inviters who send a small
number of invitations (perhaps to more targeted recipients)
show large success ratios. Note that the Pearson correlation
coefficient between the number of invitations of inviters and
their average success ratio is —0.612.

B. Adoption behaviors of invitees

We next investigate the adoption behaviors of invitees.
Fig. 2(b) shows the distributions of the number of invitations
received by an invitee and the number of unique inviters
from which an invitee receives invitations, respectively. We
find that 86% of the invitees receive less than 10 invitations,
but 1% of invitees receive more than 46 invitations. We also

100

K = Avg. number of received invitations
# K = Avg. number of distinct inviters

A
°
S
3

K

>
Empirical CDF

o

&

3

°
N
X

0 100 . 200 300 400 -10 -0.5 0,0 05 1.0
Adoption delay (Days) Burstiness

(a) Adoption delay vs. recep- (b) Invitees’ reception bursti-
tions ness
Fig. 4. Adoption behaviors of invitees in iHeart.

investigate the time gap between the first time a user gets
an invitation and the time a user gets activated, which we
refer to as adoption delay. For example, if a user gets an
invitation at ¢1 for the first time and she gets activated at ¢2, the
adoption delay is t2 —t1. We find that the adoption delays of
29.7% of the (activated) users are less than a day; this includes
the users who promptly accept the invitations after receiving
them. We also observe that most (85%) of the users have less
than 100 days adoption delays, but around 2.6% of the users
have adoption delays longer than 200 days. Fig. 4(a) shows
the correlation between the adoption delay and the average
number of invitations received by an invitee. Invitees with
longer adoption delays tend to receive more invitations and
are targeted by more unique inviters.

We also investigate how regularly an invitee receives mul-
tiple invitations, i.e., the arrival patterns of the invitations. To
this end, we use the burstiness parameter B [9], [22], which
can be calculated as:

ox — [1X
ox + ux

where X is a set of number of invitations in each time slot,
and ox and pux are the standard deviation and the mean of X,
respectively. That is, z; € X where X = {z1,29,23,...,2+}
indicates that an inviter receives x; invitations during the given
time slot ¢t. We set the time slot as 1 hour. Note that the
burstiness parameter B has values in the range between —1
and 1, where B = —1 means periodic activities, B = (0 means
random activities (Poissonian), and B = 1 means completely
bursty dynamics [22]. We plot the CDF of the burstiness of the
invitations received by the invitees in Fig. 4(b). As shown in
Fig. 4(b), we find that burstiness values of 90% of the invitees
are mostly close to 1, which means the most of invitees receive
invitations in a significantly skewed fashion, e.g., in a burst or
batch, without any regularity.

B= @

Finally, we explore how many invitations (or inviters)
motivate the invitees to adopt iHeart. To this end, we calculate
the probability of adoption after receiving n invitations as:

Na(n)
Ny(n) + Npo(n)

where N, (n) is the number of invitees who received n
invitations and got activated, and N,,,(n) is the number of
the invitees who received n invitations but never got activated.
Similarly, we can calculate the adoption probability p(m) for
m inviters by replacing n in invitations to m inviters. We plot
p(n) and p(m) against n and m in Fig. 5, respectively, where
n stands for the number of invitations, and m is the number of
distinct inviters. As shown in Fig. 5, p(n) and p(m) decrease

p(n) = A3)
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as n and m increase. This indicates that a large number of
invitations may not necessarily help in recruiting more new
users to adopt iHeart; this may be due to the spamming
phenomenon and an important lesson for application recruiters.
When n and m go beyond 100 invitations and inviters, p(n)
and p(m) exhibit diverse patterns, but we observe that most
of the invitees who do adopt iHeart receive only around 4
invitations from 2 distinct inviters on average.

V. CHARACTERIZING CASCADING TREES OF IHEART

In this section, we characterize the cascading trees of
iHeart from a graph-theoretical perspective, and investigate
what factors drive the process of application adoptions.

A. Properties of cascading trees

We first explore the application adoption process by exam-
ining the cascading tree properties that were defined in Sec-
tion III, namely the cascade size, max depth, and max width.
Then we investigate the properties of cascading tree evolutions
during their lifetimes as well as the roles of users based on
their contributions to the growth of the cascade. Recall that
the size, max depth, and max width of a cascading tree are
the number of recruited users, the maximum distance from the
seed to the unadopted users (leaf nodes), and the number of
users in the widest generation of that tree, respectively.

1) Properties of tree structure: Fig. 6 illustrates the struc-
tural properties of cascading trees in terms of size, max depth,
and max width. In Fig. 6(a), we observe that 18% of the
cascading trees are of size 2, which indicates that seeds of
a substantial portion of the cascading trees propagate the
application to only one child. Moreover, 93% of the cascading
trees are of size less than 100. Note that the maximum and
average sizes of the cascading trees are 2,850,149 and 79.10,
respectively. The top 10% of the cascading trees (ranked by
size) have at least 70 nodes. We refer to these as the ‘large’
cascading trees. We also observe that only a small fraction
of the cascading trees grow deep in Fig. 6(b). The depths
of 75% of the cascading trees are 1 or 2, while 7% of the
cascading trees span deeper than 5 generations. The maximum
and average depth of the cascading trees are 58 and 2.26,
respectively. We notice that the max depth of the cascading
trees in iHeart is higher than that in Twitter (11) [15] or
Pinterest (35) [10], which implies that the propagation of OSN-
based applications is deeper than that of other information
such as tweets or pins. When we look at the cascade max
width in Fig. 6(c), we find that most of the cascading trees
are narrow; 80% of the cascading trees have less than 10 max
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Structural properties of iHeart cascading trees.

widths. The maximum and average width of the cascading trees
are 171,033 and 17.64, respectively. Note that the largest max
depth and max width are 58 and 171,033; they are four-orders
of magnitude different, which means cascading trees in iHeart
are generally much wider instead of being deeper.

2) Properties of cascade evolution: To understand the
growth of application adoption process, we investigate i) inter-
adoption time, ii) inter-generation time, iii) lifetime, and iv)
burstiness of a cascading tree, as explained below.

Inter-adoption time is the time difference between the
adoption time of a parent and each of its children in a cascad-
ing tree. Let’s say, a node u and its child v in a cascading tree
adopted the application at time ¢,, and t,, respectively, where
t, < t,. Then, the inter-adoption time ., between u and v is
t, — t,. We calculate inter-adoption times for all the inviter-
invitee pairs in a cascading tree. That is, a set of inter-adoption
times [ A of a cascading-tree is {ig1, 02, - - - tuv }- We find that
83.28% of all the inter-adoption times are longer than a day,
and more than 23% of them are longer than 100 days, which
implies that the propagation speed of OSN-based applications
(i.e., iHeart) is slower than that of other information such as
tweets in Twitter [15] and pins in Pinterest [10]. To investigate
the inter-adoption times between two consecutive generations,
we show the 25th percentile, median, 75th percentile, and
average of inter-adoption times from n — 1 hop to n hop in
Fig. 7(a). We find that there is a large variation in the inter-
adoption time at every level of the tree. Between the seeds
and first generation nodes, inter-adoption time spans from
minimum of 2 seconds to maximum of 227 days. This dynamic
range as well as the median decreases for later generations,
i.e., iHeart application propagates from one user to another
at a slightly faster speed for late adopters compared to early
users. This could be due to the fact that the general maturity
and popularity of the application increased in the later stage.
Overall, we observe that the median value decreases from 29-
34 days (about a month to propagate) near the root of the
cascading tree to about 13 days at generation 40.

Inter-generation time is the time difference between
the first adoption time in two consecutive generations. Say,
two consecutive generations g,—; and g, of a cascad-
ing tree include n(g,—1) and n(g,) nodes with adop-
tion times T(gn—1) = {tg, 1,1:tgn 1,20 >lgn_1m(gn 1)}
T(gn) = Atg.1:tgn,2,--->tg, n(gn)}> respectively. Then,
the inter-generation time is defined as IG(n — 1,n) =
min(T(gn)) — min(T(gn—1)). We plot the inter-generation
time in Fig. 7(b). As shown in Fig. 7(b), the median inter-
generation times are below 7 days until the generation 35.
After the generation 35, the inter-generation times fluctuate
widely. In other words, for 50% of the time, the cascading
tree takes about a week to add another level (generation).
Note that the average and median of the inter-generation times
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between the seed and the first generation are 27.2 days and 4.3
days, respectively, which implies that the propagation speed of
iHeart across different generations is much slower than that of
tweets in Twitter [15] or pins in Pinterest [10].

Lifetime of a cascading tree is the duration between the
first time sending an invitation by a seed and the last time any
node in the cascading tree sends an invitation. We show the
distribution of lifetimes of all the cascading trees in Fig. 7(c).
We observe that many cascading trees show long lifetimes,
which signifies that they evolve for a long time during the
adoption process. For instance, 3% of the cascading trees have
lifetime of more than a year, and 58% of the cascading trees
have lifetime of longer than a day. The average lifetime of all
the cascading trees is 81.1 days.

Burstiness of tree evolution measures the regularity in
the evolution process of the cascading trees. We can calculate
the burstiness parameter B for the tree evolution (i.e., how
regularly adoptions emerged in a cascading tree) using Eq. 2.
Instead of the set of number of invitations in each time slot, we
re-define X in Eq. 2 that represents the set of number of nodes
in a cascading tree in each time slot. That is, z; € X where
X = {x1,x2,23,... 2} indicates that x; nodes emerged
during the given time slot ¢. We take time slot as 1 day.
Fig. 7(d) shows the CDF of burstiness B of tree evolution
for each cascading tree. As shown in Fig. 7(d), B of 5% of
the cascading trees are below 0, which means they grow from
regularly (closer to —1) to randomly (closer to 0) during their
lifetimes. However, 80% cascading trees have B value of over
0.45, and the maximum B is 0.897, meaning that they exhibit
very skewed (or bursty) growth; e.g., their growths happen
predominantly during the beginning of their lifetimes.

B. What are the distinct features and driving factors for
successful adoption?

We next explore what factors drive the growth of the
cascading trees and whether there are distinctive features asso-
ciated with different cascade sizes. To this end, we investigate
i) structural factors (e.g, max depth or width of a cascading
tree), ii) evolutionary factors (e.g., burstiness), and iii) roles of
nodes (e.g., contribution of a seed to a cascading tree).

1) Structural properties of cascading trees: We first show
the average max depth and max width corresponding to the
different cascade sizes in Fig. 8. We only find a weak positive
correlation between the cascade size and the average depth of
the cascades (Pearson correlation coefficient is 0.365); not all
big cascading trees span deep. In particular, the cascading trees
whose sizes are bigger than 1000 have at least 9 generations
on average. On the other hand, the average max width shows a
significantly high correlation with the size; Pearson correlation
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Fig. 8. Avg. max depth and width corresponding to different cascade sizes.

coefficient is 0.985. This suggests that big cascading trees are
wide but small cascading trees are narrow on average.

2) Evolutionary properties of cascading trees: We investi-
gate how the following three evolutionary properties of cascad-
ing trees vary with respect to cascade sizes in Fig. 9: i) inter-
adoption time, ii) lifetime, and iii) busrtiness. Since the inter-
generation time shows similar patterns with the inter-adoption
time, we do not include the results for the inter-generation
time due to space limitation. First, we plot the average, 25th
percentile, median, and 75th percentile of the inter-adoption
times of the cascading trees based on the cascade sizes in
Fig. 9(a). We find that the inter-adoption time and the cascade
size have a positive correlation until the cascade size is 1000.
Surprisingly, the dynamic range of the average inter-adoption
time changes sharply, ranging from 26 days to 77 days, after
the cascade size reaches 1000. However, there is no clear
correlation between the inter-adoption time (or inter-generation
time) and the ultimate cascade size. Fig. 9(b) shows the
correlation between the average lifetime and the cascade size.
We find that smaller cascading trees have shorter lifetimes
on average compared to the big ones. The average lifetime
increases as the cascade size increases until the cascade size is
close to 700, but it converges to around 1 year after the cascade
size reaches 700. We next investigate the correlation between
the average cascade size and the burstiness values of cascading
trees in Fig. 9(c). Interestingly, we observe two clusters in
Fig. 9(c): i) burstiness range between —1 to —0.22 and ii)
burstiness range between —0.22 to 1. If a cascading tree has a
uniform burstiness (closer to —1), its size tends to be less than
100. We observe that there is a negative correlation between
the average cascade size and the burstiness. That is, the size
of a cascading tree decreases as the burstiness increases. This
implies that skewed growing patterns, such as initial spikes
followed by inactivity, fails to sustain the population growth,
leading to smaller cascades. We find that large cascading trees
tend to have a burstiness value around zero, which implies the
adoption process for large cascades tend to follow a random
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Fig. 10. Exploring the role of early adopters (seed and first-generation nodes) in the cascade growth.

(but sustainable) growth patterns over time.

3) Roles of initial adopters: Lastly, we explore whether
the seeds and early adopters play a significant role in driving
the growth of the cascading trees in Fig. 10. We analyze:
i) the contribution ratio of the seed (i.e., founder of the
cascading tree), ii) the contribution ratio of the nodes in the
first generation (which may be the co-founders of the cascading
tree), and iii) the success ratio (defined in Section III) of
the seed. Here, the contribution ratio of a node is defined as
the ratio of number of its children to the total population of
the cascading tree. We observe that the average contribution
ratio of the seeds decreases as the cascade size increases,
as shown in Fig. 10(a). This implies that the seeds play a
diminishing role in growing the user base as the cascade size
increases. In fact, for large cascade sizes (70 or above), the
average contribution ratio of the seeds are generally small
(75th percentile is 0.012), i.e., the seeds are only responsible
for recruiting a tiny fraction of the total population in the
large cascades. The initial expansion of user base due to the
seed is generally not a strong indicator of the ultimate size of
the cascading tree. Fig. 10(b) plots the average contribution
ratio of the first generation nodes, which initially increases
with respect to cascade size until 31 and then it decreases as
cascade size increases. On the other hand, Fig. 10(c) shows that
the average success ratio of the seeds is somewhat positively
correlated with the cascade size up till around 1000. Note that
the Pearson correlation coefficient till the cascade size of 1000
is 0.63 while that beyond the cascade size of 1000 is 0.04,
which implies that the success ratio of seeds alone may not be
only the important factor for generating large cascading trees.

VI. PREDICTION ON CASCADE GROWTH

Our measurement-based characterization of iHeart adop-
tion process suggests that there exist a set of distinctive features
(e.g., structural or evolutionary properties of cascades and
success ratio of their seed nodes) that can be combined to

predict the final cascade size. In this section, we seek to
answer the following questions: (1) How can we predict the
growth of the cascading process of an application? (2) How
long (e.g., 2 weeks or 1 month) do we need to observe the
initial growth of a cascade? and (3) What features can we
exploit to forecast the cascade growth with an acceptable
precision? Leveraging insights gained from our measurement
study, we propose a learning-based prediction model to identify
large-scale cascades of application adoption by observing the
relevant features of the cascades in the initial adoption process.

A. Prediction as a learning problem

1) Problem definition: Our goal is to identify large cascad-
ing trees whose sizes are 70 or above; this accounts for the
top 10% of the cascading trees in terms of size. We cast this
as a learning problem, where we observe the initial growth
patterns of a cascade and forecast whether an adoption will
reach a certain cascade size (i.e., 70). Note that the top 10%
of the cascading trees are responsible for 86.5% of the newly
recruited users in iHeart.

2) Observation window: To investigate the sensitivity of
our prediction result with respect to the length of the learning
phase, we vary the observation window w from one week to
four weeks. For example, if the w is two, we observe the initial
characteristics of a cascade until the second week. At the end
of each observation window, we extract a set of features (which
will be described later) associated with the cascading trees that
capture the initial adoption process of iHeart. Note that we do
not assume the growth of a cascade has stopped at the end
of the observation window. Instead, we predict whether the
observed growth will remain small (i.e., with cascade size less
than 70) or grow large in the future.

3) Factors driving cascade growth: To forecast the cascade
growth, we observe a set of distinctive features associated with
the adoption process during a given observation window. The



Categories Features | Descriptions
Structural duw (z) Max dejpth of the cascade z at the end of the observati.on Wi.ndow w
wyw(?) | Max width of the cascade 7 at the end of the observation window w
Evolutionary bw(z:) Daily burstiness of the casca}de i_during the given obse.rvatio.n window w
Guw (1) Growth rate of the cascade ¢ during the given observation window w
cs,w () | Contribution ratio of the seed s of the cascade ¢ during the given observation window w
Early adopters | c¢y,,(i) | Contribution ratio of the nodes f in the first generation of the cascade i during the given observation window w
ss,w(%) | Success ratio of the seed s of the cascade ¢ during the given observation window w

TABLE L.

candidate features described in Table I are selected based on
their demonstrated predictive power in our measurement study,
i.e., how well these features can help to identify the large
cascades. Note that we do not consider inter-adoption time and
inter-generation time here as distinctive features for learning
because of the lack of correlation between these features and
cascade size. We also do not consider lifetime further since it
may not be a proper measure in the initial stage; instead, we
use the growth rate of the cascade i, g, (i), as a distinctive
feature for evolutionary properties. g,,(¢) can be calculated as
the cascade size of ¢ (during the observation period) divided by
w. Note that ¢, ,,(¢) and ¢y, (2) are calculated as the number
of children of s and f in ¢ divided by the initial size of cascade
1 during w, respectively.

We first identify the specific features that contribute most
towards predicting large cascades, and then we use them to
create the model. For this purpose, Chi-squared (x?) statistic
evaluation [18] is applied to all of the above mentioned
features and a score is assigned to each one of the features,
which symbolizes the relationship between the feature and the
cascade size. x2 statistic is used to evaluate the “distance”
between the distribution of the large and small cascades for an
attribute. The bigger the value, the more effective is the feature
in identifying the large cascades. We find very high y? values
for each of the aforementioned features, which are normalized
by the highest value. Then we rank the features according to
their normalized x? value. The most important feature is g,
which means the growth rate of a cascade is a good indicator of
the ultimate cascade size. Max depth (d,,) and max width (w,,)
are the next two important features for w > 1. The contribution
ratio of the seeds is the most important feature among the three
properties of early adopters. Both of the contribution ratio of
the first generation users and the success ratio of the seeds
have similar predictive power with respect to large cascade.
Interestingly, the x2 values of the properties of early adopters
decrease (i.e., Csw, Cfw, and S5 ,,) as w increases, meaning
that early adopters (seeds and their recruited users) play a
diminishing role as time goes on. The burstiness factor has
the lowest score and, if used alone, is the least effective in
predicting the large cascades.

Features w=1 w=2 w=3 w=4
Juw 1.000 1.000 1.000 1.000
duw 0.910 0.907 0.900 0.892
Way 0.695 0.723 0.738 0.750
Cs,w 0.740 0.708 0.688 0.673
Cfw 0.615 0.551 0.514 0.486
Ss,w 0.673 0.542 0.475 0.432
bw 0.598 0.490 0.434 0.397

TABLE II. FEATURE IMPORTANCE WITH NORMALIZED X 2.

B. Performance

We build logistic regression models based on the above
features measured/estimated during the observation window
from the first to fourth week of every cascade: (i) “Structural”

FEATURE DESCRIPTIONS.

Features measures w=1 w=2 w=3 w=4
Structural Precision 0.741 0.775 0.796 0.810
TPR 0.344 0438 0492 0.535
FPR 0.013 0.014 0.014 0.014
AUC 0.860 0.890 0907 0.921
Evolutionary Precision 0.736 0.791 0.811 0.826
TPR 0.332 0433 0494 0.539
FPR 0.013 0.013 0.013 0.013
AUC 0.901 0926 0.938 0.947
Early adopters ~ Precision 0.431 0.613 0.667 0.694
TPR 0.102 0.226 0299 0.354
FPR 0.015 0.016 0.017 0.017
AUC 0.812 0.842 0.861 0.877
All Precision 0.745 0.793 0.813 0.828
TPR 0415 0495 0548 0.587
FPR 0.016 0.014 0.014 0.014
AUC 0.929 0945 0954 0.960

TABLE III. PREDICTION PERFORMANCE ON IHEART.

considers two structural properties (i.e., d,, and w,,), (ii) “Evo-
lutionary” considers two evolutionary properties (i.e., b,, and
gw), (i) “Early adopters” considers three properties of initial
adopters (i.e., €, Cfw, and sg ), and (iv) “All” collectively
considers all the features. We used various classifiers including
SVM and decision trees, but we only report the performance
of the logistic regression classifier since it performs similar or
slightly better than other classifiers in most cases. We randomly
set 2/3 of the 2,384,686 cascades (in iHeart) to train the model,
and then we test our model with the other 1/3 of the cascades.
Finally, we report the prediction precision, the true positive
rate (T'PR, or recall), the false positive rate (F'PR), and area
under the ROC curve (AU C') [6]. To calculate precision, T PR,
and F'PR, we use a cutoff probability as 0.5 to discretize
continuous probabilities into binary decisions. Note that AUC'
resembles effectiveness of a prediction model; a perfect model

has AUC = 1.
Table III summarizes the performance of our prediction

model. As shown in Table III, our model performs better as
the observation window increases. We observe that the model
based on the evolutionary properties outperforms other two
models base on the structural properties and initial adopter
properties, which confirms that evolutionary features are im-
portant predictors to identify the large cascades. On the other
hand, the precision of the model based on the properties of
early adopters is lower than other models; with four weeks of
observations, the precision is only 0.694. Note that precision
and TPR are already high for the observation windows w = 1
in our final model (i.e., “All”), meaning that one week of
observation can provide a good prediction for identifying large
cascades. After observing 4 weeks (w = 4), the precision and
the recall of our final model is 82.8% and 58.7%, respectively.
The AUC values of our final model for observation window
w = 4 reaches to 0.960.

C. Universality of prediction model

We finally explore whether our learning-based prediction
model can be applied to predict the large cascades observed




Features measures w=1 w=2 w=3 w=4
Structural Precision 0.695 0.739 0.764 0.786
TPR 0.252 0356 0417 0.460
FPR 0.012 0.014 0.014 0.014
AUC 0.817 0.858 0.880 0.895
Evolutionary Precision 0.687 0.762 0.783  0.806
TPR 0.238 0.368 0.435 0.483
FPR 0.012 0.013 0.013 0.013
AUC 0.874 0913 0930 0.941
Early adopters  Precision 0.599 0.626 0.648 0.666
TPR 0.061 0.170 0.241 0.296
FPR 0.005 0.011 0.014 0.016
AUC 0.776  0.817 0.841 0.856
All Precision 0.704 0.756  0.775 0.805
TPR 0.316 0425 0482 0.527
FPR 0.015 0.015 0.015 0.014
AUC 0.907 0932 0945 0.953

TABLE TV. MODEL PERFORMANCE ON HUGGED.

in other gifting applications. To this end, we use the second
dataset from Hugged application described in Section III-B.
We followed the same methodology outlined in Section III to
extract the unique seeds and construct the different cascading
trees for Hugged. For each cascade, we measure the above
seven features over different observation windows, w = 1,
2, 3, and 4, respectively. Likewise, we define the top 10%
(ranked based on size) of the cascades whose sizes are 99 or
above as large ones. Again, we train our model with randomly
chosen 2/3 of the 461,510 cascades, and test with 1/3 of the
cascades in Hugged. The prediction results for Hugged are very
similar to iHeart, as shown in Table IV; the model based on
the evolutionary properties of cascades outperforms the others.
Our models achieve very high precision in identifying the large
cascades also in Hugged. Note that the AUC value of our
final model for observation windows w = 4 reaches to 0.953.
Based on the prediction results for iHeart and Hugged, we
believe our prediction model is generally applicable to gifting
genre of OSN-based applications where new users are recruited
primarily through user invitations.

VII. CONCLUSION

We investigated the adoption process of a popular Facebook
application, iHeart. In particular, we analyzed: (1) how users
invite their friends to an OSN-based application, (2) what
factors drive the cascading process of application adoptions,
and (3) what are the good predictors of the ultimate cascade
sizes. We found that sending or receiving a large number of
invitations does not necessarily help to recruit new users to
iHeart, which may be due to the spamming phenomenon where
users end up ignoring the invitations. We also discovered that
the initial growth rate and shape of cascading trees (max depth
and max width) are strong predictors of the final population
size of the cascade. Finally, based on the insights learned from
our analyses, we proposed a prediction model for identifying
the large-scale cascades based on observing the initial growth
process. Results showed our proposed model can achieve high
precision (over 80%) with four weeks of observation period.
Our model also can achieve high precision when applied to
Hugged, suggesting that our prediction model is generally
applicable to gifting genre of OSN-based applications where
the new users are recruited primarily through user invitations.
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