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Abstract—Mobile advertisements have become the dominant
source of revenue for mobile application developers, advertisers
and brokers. Using novel sensing techniques and the advanced
sensors of mobile devices, it has become feasible to determine
a user’s fine-grained context such as her location, activity, and
interests. This information can be used by the advertisement
(ad) brokers to provide more relevant ads to the user based
on her context. However, this has led to serious privacy risks,
since a user can be tracked by the broker or an adversary
based on her context. In this paper, we present AnonAd, an ad
delivery scheme that allows users to protect their privacy when
receiving micro-targeted ads from the broker. AnonAd utilizes the
encryption of the user’s context based on a split-secret scheme
that guarantees that the broker can decrypt the context only
when there exists k other users in the same context. This way, a
user’s privacy is protected with k−anonymity during the context
report. We show that the split-secret scheme integrates seamlessly
with existing homomorphic encryption-based schemes that can
provide differential privacy for ad click reports. We implement
AnonAd on Android smartphones and evaluate it with real users
as well as simulated users that follow real mobility traces. Our
results show that AnonAd achieves a balance between user’s
privacy and relevancy of advertisements without the requirement
of any additional proxy servers.

I. INTRODUCTION

As mobile devices become more effective at determining

user context new opportunities are rising to provide micro-

targeted advertisements. Various sensors (such as GPS, ac-

cerelometer, light sensor, etc.) on a mobile device now allow

us to infer a user’s context (e.g. location, activity, interests

etc.) with much higher accuracy. More personalized ads can

increase the chances of a user clicking on the advertisement

which in turn can increase the revenue for the advertisers. In

today’s ad delivery system, brokers such as Yahoo and Google

aggregate the ads from different advertisers. They also profile

the users to understand their interest and context, and (ideally)

serve them with an ad that is likely to be the most useful to

the user. However, over the years, the brokers have become

increasingly aggressive in their profiling, which has led to

serious privacy concerns from users.

The privacy issue becomes even more severe with micro-

targeted ads. In such a case, the broker has access to the user’s

micro-level context. Unlike most other advertising systems

currently in use, which access broad context information (e.g.

city-level location), micro-targeted ads are based on a user’s

micro-level context - their current activity, precise location,

past interest profile, and so on. For example, a user’s device

can determine that the user is a “22 year female” who is

“walking on 2nd street in San Francisco” and is “interested

in Italian food.” With this level of detail, it is possible for the

broker, or an adversary, to determine the user’s true identity.

The infringement of a user’s true identity is a much more

severe problem than the infringement of her online identity

(such as her current IP address). In this paper, we design an

anonymity scheme that can protect a user’s true identity while

still allowing them to receive micro-targeted ads from an ad

broker.

In our work, we achieve user anonymity by obfuscating

the user’s identity among k users - a concept known as k-

anonymity [1]. Most of the current schemes that can achieve

anonymity utilize third-party servers or proxies to aggregate

and hide the user identities before forwarding their context to

the broker [2], [3]. This way, the proxy acts as an intermediate

point between the users and the broker. However, we hold

that the use of these proxy servers is undesirable due to two

main reasons: first, the assumption that such proxy servers

are completely or even partially trusted is unrealistic in the

real world. Offloading crucial security and privacy tasks to

the proxy in fact makes them more vulnerable and does

not necessarily improve user privacy. Second, considering the

current business model of ad delivery systems, there is no

economical incentive for brokers or advertisers to deploy such

proxies, which makes users even more vulnerable to privacy

risks. In this work, we propose a privacy-aware ad delivery

system, AnonAd (Anonymized Advertisements), that does not

require any third party servers or proxies in order to guarantee

user privacy. We design an anonymization scheme based on

split-secret and homomorphic encryption which can guarantee

that user context reports and click reports are anonymized with

bounded privacy guarantees.

AnonAd provides two levels of privacy guarantees. It pro-

tects the user’s true identity by ensuring that broker can only

know the user’s true context when there are at least k − 1
other users in the same context. We use split-secret key-

based encryption where users only report part of the key that

is derived from their context. When the broker has k such

distinct key parts, it can decrypt the context. This ensures

that the users are indistinguishable from k − 1 other users

in the same context. Once the user has received a micro-

targeted ad from the broker, AnonAd protects their click

reports using homomorphic encryption. Here, AnonAd ensures



that the broker can only know the sum of clicks for all users

while hiding the individual click reports of users. AnonAd

protects the privacy of the user’s context and click reports

without requiring any additional proxy servers.

The contributions of this work can be summarized as

follows:

(1) We present a privacy-aware micro-targeted ad delivery

framework (AnonAd) that utilizes split-secrets to ensure user

privacy. In AnonAd, users send their encrypted context to the

broker, but the broker cannot decrypt the context unless there

are k− 1 other users in the same context. By obfuscating the

user’s identity among k users, AnonAd prevents the tracking

of the user while still allowing the broker to provide micro-

targeted ads to the users.

(2) We show that the split-secret scheme of context report-

ing integrates seamlessly with homomorphic encryption-based

privacy protection schemes for click reporting. AnonAd does

not require any additional proxies or communication among

the users to ensure anonymity in either the context or click

reporting phase.

(3) We implement AnonAd as an Android application and

evaluate resource usage and ad relevancy with real users. We

also evaluate AnonAd with simulated users that follow real-

world mobility traces collected from a campus area network.

Our evaluation shows that AnonAd achieves a balance between

privacy and ad relevancy with some overhead of additional

message exchange between the users and the broker.

The rest of the paper is organized as follows. We discuss the

related work in Section II. The details of our system model and

preliminaries of the ad delivery system are provided in Section

III. Section IV provides an overview of the requirements and

challenges in design of AnonAd. The AnonAd scheme is

described in Section V with its security analysis in Section

VI. The performance evaluation of AnonAd is provided in

Section VII. We conclude our paper in Section VIII.

II. RELATED WORK

Over the last few years, there have been a few research

works related to mobile ad delivery systems. [2] presents the

problem of personalized ad delivery as a three-way optimiza-

tion problem. Like [2], our work also uses a tree structure for

contexts. The main limitation of this work is the requirement

for two separate servers to be used in the system. As previously

mentioned, one of our goals is to avoid using any proxies or

other “extra” servers if possible. The problem of personalized

ad delivery has also been addressed in [3], but similarly to [2]

they only solve it by adding an “honest but curious dealer” to

their system. This adds another point of failure to the system,

and allowing for this sort of dealer is an unrealistic assumption

for real-world applications and their ecosystem.

Many other recent research works have used k−anonymity

as a privacy guarantee for a variety of services such as location

services [4], [5], health data [6], etc.

The application of homomorphic encryption with noise

addition to provide differential privacy has been discussed in

[7] and [8]. Such techniques allow sharing of personal data

to untrusted servers such that the servers can only know a

certain statistic (e.g. sum) of the responses from the users

without knowing the actual response of individual users. These

techniques were extended in [9] to address user churn (dy-

namic joining and leaving of users) and in [10] to enable non-

tracking web analytics. In our click-report phase, we borrow

these techniques and show that it can seamlessly integrate

with our context report phase. Finally, we use the advertising

architecture described in [2], [11] as the architecture for our

advertising model.

III. SYSTEM MODEL

AnonAd is designed to address one fundamental shortcom-

ing of all current privacy-aware ad systems [2], [3], [10], which

is that they all rely on third-party servers or proxies in order

to guarantee user privacy. Such systems offload the tasks of

ensuring user privacy from the broker to anonymizing proxies,

which merely shifts the vulnerable end points in the systems

without truly solving the privacy challenges. Additionally,

AnonAd is designed to fit in the current real-world ad delivery

model which has already proven to be economically viable.

We believe that providing privacy guarantees without requiring

any modification to the current ad delivery system is one of

the most salient features of AnonAd. It contains the following

four entities which also constitute most real-world ad delivery

systems:

User: A user represents a mobile client who will receive

a micro-targeted ad based on their context. We assume that

users want to maximize ad relevance (i.e. receive ads that

are relevant to their interests and location), but also want to

maintain a certain degree of anonymity. This tension between

relevance and anonymity is a recurring theme in our work.

Broker: Ad brokers are responsible for delivering adver-

tisements from advertisers to the users. Example of major

ad brokers are Google and Yahoo, among many others. The

broker’s goal is to maximize revenue, which is often - but

not always - correlated with relevance [2]. We consider the

revenue/relevance disparity to be beyond the scope of this

paper, and thus assume that maximizing ad relevance will also

maximize broker revenue. We also assume that the broker is

untrusted - that is, the broker will attempt to learn as much as

possible about the users and attempt to exploit this knowledge.

One of our goals is to allow the broker to maximize their

revenue without sacrificing user privacy.

Advertiser: Advertisers are corporations, businesses, or

other organizations that want to reach out to a specific de-

mographic of users. In most ad systems, advertisers pay the

ad broker for displaying their ad, as well as for each click on

an ad.

Key Distribution Agency (KDA): The KDA is responsible

for distributing secrets which are used in our algorithms for

context and click reporting. We describe the secrets in more

detail in Section V. We assume that the KDA is untrusted but

honest - users will not trust them with any of their information

(in fact, the KDA doesn’t need any user information in order

to perform its job), but will abide by the rules of the system,



distributing the secrets appropriately. In today’s ad delivery

systems, this job is best suited for a certificate authority (CA).

Note that the KDA can be eliminated when users can generate

secrets in a distributed manner. Because of this, and the fact

that the KDA isn’t ever exposed to any user data, we don’t

count it as a proxy/extra server. However, for simplicity, we’ll

assume that there exists a dedicated KDA for key distribution.

The operations of AnonAd can be divided into two main

phases:

(1) Ad Distribution Phase: This phase involves users

determining their context, encrypting it, and uploading it to

the broker, who may only decrypt this context if there are at

least k − 1 other users who are also in that same context.

If the broker successfully decrypts a context, an appropriate

ad will be distributed to the users in that context; otherwise,

the users will generalize their context and retry. This phase is

considered over once the user has received an ad.

(2) Click Report Phase: Once a user has received and

viewed an ad, they may decide to click on it if it is relevant to

their interests. This phase involves ensuring that this is done

anonymously, since a user’s click patterns could potentially

violate their privacy. For this part, we borrow a solution

proposed by [8], [9], which use homomorphic encryption

along with noise addition to ensure that the user’s identity

is protected under differential privacy guarantees.

Next we outline the privacy requirements of both the phases,

and the threat model.

IV. REQUIREMENTS & CHALLENGES

In this section, we look at the requirements of our model

and also look at how the different entities involved can attempt

to compromise user privacy.

A. Privacy Goals

In order to provide anonymity in the ad distribution phase,

we use the well-known concept of k-anonymity . While k-

anonymity has been shown to have some weaknesses [12],

we hold that it is actually sufficient for our needs. It would

be possible to extend our system to use more advanced

techniques such as ℓ-diversity [12], but many of the attacks on

k-anonymity require the use of outside knowledge which will

mostly be unavailable to potential attackers using our system.

For the click report phase, we use differential privacy

techniques. Differential privacy is a preferred choice here, as

we are aggregating information across a user base (in this

case, the click reports of the users) and want to ensure that

we get reasonable, strongly-bounded results without being able

to identify who actually clicked on the ad.

B. Auxiliary Goals

While anonymity is the main focus of our system, there are

several auxiliary goals that we would like to fulfill as well.

No Proxies: As mentioned before, one of the other main

goals of the AnonAd system is to avoid the use of proxies

or any additional servers. In particular, this includes any extra

entity outside of the four “core” entities mentioned above:

user, broker, advertiser, and KDA.

Using proxies, even proxies that are only “semi-trusted,”

as in [3], allows for aggregation between the users and the

broker/advertiser. Thus, all the users can communicate with

the proxy, eliminating any need for the users to communicate

among themselves thwarting any potential user-user collusion

attacks. The users never need to deal directly with the broker,

protecting their identities and also preventing user-broker

collusion attacks. However, we claim that using this sort of

proxy is unrealistic in the real world, as it would have to be run

by some entity, whether it be an individual or a corporation,

and that entity would then be in a position to violate user

privacy. Some works (e.g. [3]) make use of a “semi-trusted”

or “honest but curious” proxy, but even these proxies still add

another point of failure and vulnerability in the system, thus

weakening the scheme overall.

AnonAd was designed to provide user privacy without

requiring any proxies. Although our scheme does require the

KDA, we show that this could actually just be a certificate

authority (henceforth a “CA”). CAs are already deployed and

widely used and available under the current Internet model.

Additionally, the CA never actually learns anything about the

user, aside from some ephemeral information such as their

IP address. Finally, we also show that it’s even possible to

eliminate the KDA entirely, so long as their exists a scheme

by which all users can derive the key independently (one

possibility uses hashed timestamps, using the resultant hash

as the key).

Communication Cost: A consequence of not utilizing

proxies is that our system will likely require more message

transmissions. With this in mind, we want to ensure that the

extra cost incurred is not too high, and that our system will

scale well with increasingly large user bases. Naturally, this

is going to have subtle interactions with other parts of our

system. It is also necessary to ensure that there is no need for

direct communication between the users. This precludes the

use of any distributed solutions where users collaboratively

derive the necessary security parameters (secrets, etc.). This

also eliminates the possibility of user collusion attacks wherein

a certain subset of users can coordinate to leak the privacy of

other users in the system.

Since message transmissions tend to be strongly correlated

with other forms of resource usage on smartphones (e.g. more

message transmissions cause the battery to drain faster), we

only consider communication costs in this work, and assume

that the same results apply to other smartphone resources as

well (battery, CPU usage, etc.).

C. Security & Threat Model

In addition to the above requirements, our system must also

be secure. Here, we revisit the four entities from Section III

in order to show how they may attempt to attack user privacy.

User: A malicious user attempts to violate the privacy

of other users, generally by colluding with the broker, or



potentially the advertiser. This can be accomplished by the

release of a secret key to the broker.

Broker: A malicious broker attempts to collect as much

information about the users as possible, in order to exploit

this information. We assume that any information available

to the users is also available to the broker, including public

encryption keys and algorithms. One avenue of attack for

the broker is to attempt an exhaustive search attack across

all possible contexts. They can also collude with users, as

mentioned above.

Advertiser: For the most part, we do not consider the

advertiser as a threat, since they are only connected to the

users through the broker. However, they may be able to collude

with users in order to learn about user preferences, which in

turn would give them an advantage in negotiating with the

broker (since they would know which ads are more likely to

be popular). Nonetheless, we consider this threat to be beyond

the scope of this work.

KDA: We assume that the KDA is untrusted but honest.

This means that the users will never trust them with any per-

sonal data. A malicious KDA can give out mismatched public

keys during the ad distribution phase, but this attack serves

no purpose other than to disrupt the system. Alternatively,

they could provide incorrect integers in the click report phase

that do not sum to zero (which is one of the requirements of

our algorithm in that phase). This will not have any effect on

user privacy but does make it more difficult for the broker to

function properly in that phase.

V. ANONAD SCHEME

As mentioned previously, the AnonAd scheme features two

main phases: Ad Distribution Phase and Click Report Phase.

A. Ad Distribution Phase

In the ad distribution phase, each user reports their context

and receives a corresponding ad if and only if there are enough

other users in the same context to guarantee that their privacy

will be preserved. We consider privacy to be preserved if the

context meets the requirements of k-anonymity - i.e., there are

at least k − 1 other users in the same context. If there aren’t

enough users in the same context, the context is generalized

and the process is repeated again after a delay.

(1) At the start of the phase, every user will query the KDA

in order to receive a public hash key K+.1 Note that this key

is public - that is, we assume that the broker knows what this

key is. As we will show below, this knowledge does not help

the broker violate user privacy. It is critical to our scheme that

this hash key is changed periodically, since a malicious broker

could otherwise store past contexts and break the encryption

(see Step 3 and Step 4, below).

(2) Next, each user u should determine their context, cu.

The context is a set of user attributes that can be used by

the broker to serve a micro-targeted ad. In our system, a

1As mentioned previously, the KDA can actually be eliminated here - the
only requirement is that all users end up with the same key. One possibility
is to hash timestamps, using the hash as the key.

context is a vector of attributes, consisting of an interest and

a location. We concatenate multiple contexts when they are

being reported simultaneously. AnonAd can handle a wide

variety of context representations - the only requirements

are that they are unique, can be encrypted/hashed, and are

“generalizable.” A “generalizable” context is one that can be

generalized to a broader, less specific context. This generalized

context should be a superset of the original one, and should

include other related contexts. As an example, imagine a user’s

context is {Location = 1st Street, Davis, CA & Interest =

Baseball}. This context can be generalized to either {Location

= Davis, CA & Interest = Baseball} or {Location = 1st Street,

Davis, CA & Interest = Sports}, depending on the system

implementation.

(3) Now, each user will hash their context using a cryp-

tographic hash function H and key K+. This results in

HK+(cu), which will henceforth be referred to as K−, or

the “secret key.” If two users are in the same context, they

should both end up with the same key K− - i.e., HK+(ci) =
HK+(cj) iff ci = cj .

(4) Each user then encrypts their context cu using an

encryption function E , with the secret key K− as the key.

We denote the result to be EK−(cu), or E(cu) for short. As

with the hash in Step 3, we expect that E(ci) = E(cj) iff

ci = cj , since [ci = cj ] ⇐⇒ [HK+(ci) = HK+(cj)] with

very high probability.

(5) Next, each user will generate a token tu from the bits

of the secret key K−. The key should be broken down into

k uniformly distributed chunks, each approximately of size

sizeof(K−)/k, where sizeof(K−) is the number of bits

in K−, and k is the constant for k-anonymity. Each user

should select one of these chunks with uniformly random

probability to be their token. This token will be used in a

secret sharing scheme later in the phase. Tokens also include

metadata indicating which part of the secret key they are from

- i.e., the range of bits that the token represents. This will help

the broker re-assemble the key later.

(6) Now, each user will send the message {E(cu), tu}
to the broker. The broker will accumulate these messages,

maintaining a mapping from the encrypted contexts to the

tokens. Each time they receive a token, they should combine

it with the other tokens that they’ve already accumulated for

that context. Once they have collected every token, they can

assemble the secret key K− and decrypt the context E(cu).
This step has one critical property for our system: the broker

will require at least k tokens in order to assemble the key.

This follows naturally from the fact that there are k different

chunks using the pigeonhole principle. This guarantees that by

the time the broker is able to decrypt the context, there are

k users in the same context, which means that the users will

be protected under k-anonymity. Determining how many users

are necessary to decrypt a context is essentially a version of

the coupon collector’s problem.

(7) If, after an implementation-defined timeout, the broker is

unable to decrypt a given context, the users should generalize

their contexts and the process should be repeated from scratch.



Eventually, the users will either receive an ad, or generalize

to a “root” level, indicating that their context is too specific

or unique to be used for generating an ad.

Note that the more a context is generalized, the less specific

- and therefore less relevant - the returned ads will be.

As suggested by [2], there is a trade-off between privacy,

relevancy, and efficiency - more privacy will generally lead

to less ad relevance and/or efficiency.

B. Click Report Phase

Once the broker distributes an ad to the k users in the

same context, it is necessary for the broker to evaluate the

relevancy of the ad by knowing whether the users clicked

on the ad or not. This requires a click report to be sent

from the user to the broker. However, in order to protect the

user’s privacy, it is necessary that the broker only receives

the total sum of clicks as opposed to individual clicks of

the users. [8] presented a solution that uses homomorphic

encryption along with additional noise to protect the user’s

identity while allowing the broker to retrieve the (noisy) sum

of clicks. Let xi ∈ {0, 1} be the click report from user i where

xi = 1 if the user clicked on the ad and xi = 0 otherwise.

In order to ensure that broker can only retrieve the sum of

{x1, x2, · · ·xk}, the KDA assigns k + 1 randoms shares of

0 to k users {r1, r2, · · · , rk} and the broker (r0) such that

Σk
i=0ri = 0. In order to provide differential privacy guarantee

[8], each user first adds a noise ni and the random secret ri
to her xi and finds x∗

i = xi + ni + ri. The response x∗

i is

then sent to the broker. The broker finds the noisy sum by

calculating the sum r0 + Σk
i=1x

∗

i . Due to Σk
i=0ri = 0, the

broker can retrieve the Σk
i=1xi + ni. Because the scheme is

shown to provide differential privacy guarantee [8], [9], we

use this scheme in the click report phase of AnonAd. Note

that the k+1 random share of 0 can be provided by the KDA

to users and the broker after an ad is delivered to the users.

VI. SECURITY ANALYSIS

Here we examine and formalize some of the security

properties of our system. The security properties of the click-

report phase have been analyzed in [8], [9], so we primarily

focus on our context-report phase here.

(1) The broker cannot gain any advantage by using the

public key K+ to derive a user’s secret key K−: In order

to derive a user’s secret key K− by using the public key K+,

the broker would need to first know the user’s context cu,

then hash it using the cryptographic hash function H with

key K+. However, there is no advantage in the broker doing

this, because in order to do this they would have already had

the context cu, defeating the entire purpose of obtaining K−

in the first place. Therefore, the broker gains no advantage by

deriving K− in this manner.

(2) The broker cannot easily derive the secret key

K− through cryptanalysis: Deriving K− using any sort of

cryptography-based attack essentially amounts to the problem

of breaking the cryptographic hash function H . Assuming that

H is a “good” (i.e., collision-intractible) hash function, this is

prohibitively difficult in this context.

(3) The system is resistant (but not immune) to client-

broker collusion attacks: Users have no incentive to partic-

ipate in a client-broker collusion attack (e.g., revealing their

secret key K−), as they are only violating their own privacy

in doing so. The broker could set up a “rogue” client in an

attempt to obtain K−, or alternatively traverse the context tree

and hash each context manually. However, this attack has two

flaws:

(a) The cost of this attack is proportionate to the number of

contexts in the context tree. If more contexts are added, the

broker has to perform more computations in order to break

them.

(b) The public key K+ is constantly changing, thus making

previously-derived secret keys invalid after a timeout.

This attack can also be mitigated by using a scheme inspired

by BitCoin/Hashcash [13], [14]: instead of using the hash

HK+(cu) as the secret key K−, a chain of hashes could be

created, with the result of the final hash in the chain being

used as K−. In order to derive the secret key, the entire chain

would have to be traversed. This does require the clients to

perform additional computation, but they only have to do it

for a small subset of the contexts - the broker would have to

do it for the entire tree, which would become prohibitively

expensive.

(4) Users are protected under k-anonymity: In order to

assemble the secret key K−, the broker must have at least k
tokens from k different users - as mentioned previously, this

follows naturally from the pigeonhole principle.

It should be noted that the closer the broker is to accu-

mulating the full key, the easier a brute-force attack becomes

- for example, if there are only 10 bits of entropy left, the

broker only has to guess from 210 = 1, 024 combinations in

order to derive K− and decrypt the context. One solution to

this problem is to make the key chunks smaller, and force the

broker to brute-force the remainder of the key. For example,

with a 128-bit key and k = 4, 24-bit chunks could be used.

Once the broker has accumulated the four 24-bit chunks (a

total of 96 bits), they would need to guess the remaining 32-

bits. This does create additional work for the broker, but it

also means the individual chunks will not affect the entropy as

much, making the system more resistant to brute-force attacks.

As with other parts of our system, there is a trade-off between

privacy and efficiency here.

VII. EVALUATION

In this section, we describe the details of the AnonAd app

implementation, experiment setup and performance evaluation.

Since the ad distribution phase is our central contribution in

this work, we primarily focus on that phase in our evaluation.

A. Implementation

We implemented the AnonAd scheme as a stand-alone

application on Android smartphones (Android version 4.1+).

Figs. 1a and 1b show the app implementation. As shown in



(a) Interest selection on
AnonAd app

(b) Ad received by the
user in the AnonAd app

Fig. 1: AnonAd Android App Implementation

Fig. 2: A sampling of nodes from our entertainment context

tree. The boxed nodes are leaves. Each round, the app starts

from the leaves and generalizes upwards until either an ad is

received or no further generalization is possible.

Fig. 1a, when the app is run for the first time, it prompts

the user to select their interests for five different interest

categories. The categories are “entertainment,” “food & drink,”

“healthcare,” “shopping,” and “sports.” These interest cate-

gories are arranged in a tree format, with the “higher” elements

of the tree being generalizations of their children. For example,

“Italian Restaurant” is a type of “European Restaurant,” which

can be generalized to “Ethnic Restaurants,” then just “Restau-

rants,” and finally “Food & Drink” - the “root” element of the

tree. In order to ensure there is sufficient ad variety for our

experiments, the user is required to select at least one interest

from each category, and up to three total per category. The

user is also only allowed to select from the leaf elements of

the tree (i.e., in the above example, they cannot select “Ethnic

Restaurants” - only “Italian Restaurants”). These interests will

be combined with location information in order to obtain a

context for each user.

The AnonAd app runs in the background and reports its

context periodically. In our implementation, we configured

the app to report user’s context every half an hour (i.e. 3PM,

3:30PM and so on) for a “round.” The reason we choose to

synchronize the context reporting is because of the limited

number of users participating in our experiments. If AnonAd

is deployed at a large scale (hundreds to thousands of users),

this syncronization would not be necessary. Each ad round has

an associated interest category, which we determined based on

what we expected the user to be interested in at that time. For

example, from 5:30-7pm, the app will use the “food & drink”

category, based on the assumption that the user is most likely

interested in dinner restaurants at that time.

At the start of each ad round, the app determines the interest

category associated with the timeslot, and then retrieves all

of the interests the user selected for that category. The app

then determines the current user location using both GPS and

network data. Like the interest categories, the user locations

are also represented by a tree - so the bottom level elements

represent fine-grained locations (e.g., street/block level), and

the higher level elements are less precise (e.g., district level).2

Initially, the most precise location available is used.

Once the user has determined their location, this information

is combined with their interests to form the contexts. The

contexts are then encrypted and uploaded to the “broker”

(implemented on a Linux server). Since the public KDA key is

actually only necessary to prevent what we refer to as “broker

memory” attacks (in which the broker remembers past context

encryptions and maps them back to a previously decrypted

context), we chose to use a constant public key for Step 1

in order to simplify the app design. The encryption algorithm

we use is AES with the CBC mode of operation and a 128-bit

key, and the hashing algorithm we use is HMAC-SHA1. The

secret keys used for encryption are generated by running the

context through multiple rounds of hashing; in each round, the

first 32-bits of the resultant 160-bit hash are used as a piece

of key, and the remaining 128-bits are used as the key for

the next round of hashing. The k-value is retrieved from our

server and can be dynamically altered during the experiments.

If the context is successfully decrypted (there are at least

k − 1 other users in the same context), the broker will send

out an ad to the k users. The ad appears as a notification

which the user can respond to based on whether the received

ad is relevant to their interests or not. If the context cannot be

decrypted, the app generalizes the context and tries to get an

ad using the generalized context. If no further generalization

is possible (i.e., the app has generalized to the root node),

the entire process is restarted from scratch after a timeout (5

minutes in our case).

The ads deployed by the server once the context has been

decrypted are based on the Google Places API [15]. The API

is queried by the server using the context and user location as

reported by the user. The API responds with businesses that

are related to the search string and are within a certain pre-

defined distance of the location. This business information is

pushed as an ad to the users.

B. Experiment Setup

Since only a limited number of users can evaluate the

AnonAd scheme using the Android app, we simulated ad-

ditional clients to evaluate larger values of k. For the ex-

periments, we installed the app on seven different Android

devices, and one-hundred additional users were simulated.

The user interests of the simulated users were generated

2For the purposes of our app and experiments, only locations within Davis,
California are used.
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Fig. 3: (a) Number of messages sent from client before it receives an ad, (b) Upstream bytes from client to server before an

ad is received and (c) Delay between the first context reporting and an ad being received
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uniformly at random by the simulator. We use real mobility

traces collected from the university campus network during

our previous study [16] for the locations of the simulated

users. The mobility traces provide the user’s location based on

which WiFi access points the user connects to on the university

campus network. We have anonymized the mobility traces to

remove any personally identifiable information from the traces

[17]. We apply direct scaling on the mobility traces to emulate

city-level mobility. Since the locations were generated from

real mobility data, the simulated users would cluster at certain

locations, which accurately reflects reality (e.g., people tend

to cluster at supermarkets, cafés, etc.).

The simulated users allow us to evaluate large values of k,

and the impact of different k-values on resource usage and

delay. However, for evaluating ad relevancy, we only rely on

the AnonAd app users, as the simulated users cannot provide

any meaningful relevancy response.

C. Numerical Evaluation

In this section, we present some of the results of the

experiments performed using our implementation, using the

set-up described above. Specifically, we will evaluate how the

anonymity requirement impacts the performance of ad delivery

and resource utilization on client devices.

Number of messages/bytes: We first evaluate the number

of messages that a client device needs to send the broker before

it can receive an ad. Fig. 3a shows the cumulative distribution

function of number of messages for different values of k. In

our application protocol, a message is an encrypted context

(or multiple contexts) sent from the client to the broker, or

a reponse from the broker. However, the broker only sends

messages in response to queries for the k-value, to send an

ad, or in acknowledgement of something sent by the client.
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These messages are actually only a small fraction of the total

messages sent in our system, so we focus on upstream client

messages. Fig. 3b shows the number of bytes sent from the

client to the broker before it received an ad. Note that we

only included the application-layer messages and bytes and

ignored the underlying TCP connection overhead (which is

only a small, constant fraction of the overall traffic).

Figs. 3a and 3b show that the number of messages and bytes

sent increases with an increase in the value of k. This shows

the trade-off between the resource usage (communication cost)

and the achievable privacy. Typically, user devices have to

send more encrypted context messages in order to achieve

stronger privacy guarantees. This is consistent with the privacy

and relevance/efficiency trade-off detailed in [2]. A closer

examination shows that the efficiency penalties are much

higher in comparison with the relevance penalities, since at a

higher value of k, communication cost increases much faster

than the decrease in ad relevancy (see Fig. 5). However, we

also see that even with a higher k-value, the efficiency impact

is not as serious as one might think - regardless of the k-value,

the majority of users (80+%) needed to send no more than

4,000 bytes of data in order to receive an ad. For comparison, a

240x200 pixel JPEG ad downloaded from the internet was 4.15

kilobytes, or approximately 4,150 bytes. For lower k-values (5

and 7, which we claim is still sufficient for maintaining user

privacy), most users only needed to send around 2,000 or fewer

bytes of data to receive an ad.

Delay: Another consideration for our system is the time it

takes before an ad is received by the end user. Fig. 3c shows

the cumulative distribution function of delay between the time

when the first context report was sent and when an ad was

received. We observe that it is relatively uncommon for it to

take more than 100 seconds to receive an ad, regardless of the



k-value (over 80% of users received an ad within 100 seconds).

For the low-to-mid k-values (5 to 10), most users would

receive an ad in less than a minute. Clients who attempted

to fetch an ad after the initial burst of requests would often

receive a response within a few seconds, since most of the

common contexts would have been decrypted by then. Note

that the shape of the time graph - steep inclines followed by

long stretches of flatness - comes from our system’s timeout

system: when an ad isn’t received after the first attempt, the

system will back off for a certain amount of time (5 minutes)

and then make another attempt. The incline at 400 seconds

represents the users who are receiving an ad after a retry, which

typically would happen about 6 minutes after the round’s start

(accounting for an extra minute or so to communicate with the

server), and the flat stretches are the periods where the users

are waiting for the timeout.

Both the number of messages sent and the delay before an

ad can be received are related to the number of attempts a

client device has to perform in order to receive the ad. Fig. 4

shows the distribution of the number of tries it required for

clients to receive an ad. Note that for a higher value of k,

more attempts are expected given that more generalization is

required to guarantee anonymity. We can observe from Fig. 4

that the majority of the time, an ad is received with a single

attempt. Although relatively rare, there are some cases where

an ad is not delivered to the user. Since this is necessary to

guarantee user privacy, we suggest configuring the broker to

deliver a generic ad (irrelevant to user context) in cases where

the user’s context cannot be decrypted within a given time

period.

Ad relevance: Lastly, we take a look at the relevancy of

the ads provided by the AnonAd broker while protecting user

anonymity. Because the simulated clients cannot attest to an

ad’s relevance, we only rely on the AnonAd Android app

clients for the evaluation. Fig. 5 shows the fraction of ads users

found relevant for different values of k. As expected, a higher

value of k means more generalization is required which in turn

leads to less relevant ads. The same phenomenon is observed

in Fig. 5. We also observe that the variation in relevance

reduces significantly at higher values of k (e.g. k ≥ 10), likely

indicating a sharp drop in ad quality beyond that point. The

decrease in relevance at k = 12 followed by the minor increase

is believed to be an anomaly introduced by how the context is

generalized in our implementation. Specifically, if the k-value

is sufficiently high and the majority of users are in a relatively

small subset of the possible contexts (which would be the case

due to our simulator’s use of real location traces), users outside

of that subset would generally not receive an ad at all. On the

other hand, users in that subset of contexts would receive a

relevant ad, since there are so many other users clustered in

that same context. Thus, instead of receiving less relevant ads,

it would seem our users are either receiving no ad, or an ad

that is still relevant to their interests. The problem can be

solved by context pipelines, where multiple distinct contexts

are reported simultaneously by the clients in order to allow

parallel generalization that can benefit many clients in those

contexts.

VIII. CONCLUSION

In this work, we presented AnonAd, a system for delivering

micro-targeted ads without violating user privacy. We show

that using split-secret based solution for context report, it is

possible to eliminate proxy servers while still protecting user

privacy. AnonAd provides k−anonymous privacy guarantees

for the context report phase and differential privacy guarantee

in the click report phase. We implemented and evaluated

the AnonAd scheme as an Android app and with simulated

users following real mobility traces collected from a university

campus network. In our future work, we plan to explore user

churn (dynamic joining and leaving of users) and its impact

on AnonAd privacy. We will also explore user-user and user-

broker collusion attacks to extend our AnonAd framework.
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