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Abstract—We revisit the problem of identifying link metrics
from end-to-end path measurements in practical IP networks
where shortest path routing is the norm. Previous solutions rely
on explicit routing techniques (e.g., source routing or MPLS)
to construct independent measurement paths for efficient link
metric identification. However, most IP-networks still adopt
shortest path routing paradigm, while the explicit routing is not
supported by most of the routers. Thus, this paper studies the
link metric identification problem under shortest path routing
constraints. To uniquely identify the link metrics, we need to
place sufficient number of monitors into the network such that
there exist m (the number of links) linear independent shortest
paths between the monitors. In this paper, we first formulate the
problem as a mixed integer linear programming problem, and
then to make the problem tractable in large networks, we propose
a Monitor Placement and Measurement Path Selection (MP-
MPS) algorithm that adheres to shortest path routing constraints.
Extensive simulations on random and real networks show that
the MP-MPS gets near-optimal solutions in small networks, and
MP-MPS significantly outperforms a baseline solution in large
networks.

I. INTRODUCTION

Network providers need to keep track of the state (e.g.,
delay and loss probability of links) of their network to ensure
they can meet the service level agreements (SLAs). A naive
approach for monitoring network performance is to directly
collect the status information of individual network element.
However, direct measurement is costly and may be not feasible
due to the lack of measurement support at individual network
elements or scalability issues [1]. Thus, an alternative way is
to infer the link metric/status by measuring the performance
of selected end-to-end paths between a subset of nodes with
monitoring capability (monitors), which is referred as end-to-
end path based link metric identification problem [1], [3].

The existing solutions for the link metric identification
problem can be classified into two general categories: sta-
tistical and algebraic approaches. The statistical approaches
[4], [5] assume that the link metrics follow some probability
distributions, and use various statistical inference techniques to
estimate the link metric distributions from measured path met-
rics. In many cases, the link metrics are additive (e.g., delay)
or multiplicative (e.g., loss probability). Since a multiplicative

metric can be expressed in an additive form by using the log(·)
function, we can treat the additive and multiplicative metrics
equivalently. If the link metrics are additive, the algebraic
approaches [6], [7] model the end-to-end path based link
metrics identification problem as a system of linear equations,
where the unknown variables are the link metrics, and the
known constants are the end-to-end path measurements. The
goal of the algebraic approaches is to find an algebraic solution
for the linear system.

Unlike statistical approaches, the algebraic approaches can
accurately and uniquely identify the link metrics. If all nodes
are allowed to participate in the measurement process, the
link metrics can be easily measured by exploiting multicast
trees [8], [9], [10]. But if only selected nodes (monitors)
can participate in the measurement process, as assumed in
this paper, the problem becomes challenging [7], [11], [12],
[13], [14]. Gurewitz and Sidi [7] prove that the directed
network (links in different directions have different metrics)
is unidentifiable unless every node is a monitor. For the
undirected networks, Gopalan and Ramasubramanian [11]
give the necessary and sufficient conditions to identify link
metrics by using cycles and proposes an efficient algorithm
to construct linear independent measurement cycles or paths
containing cycles. The same authors also propose an algorithm
to find maximum number of linear independent paths/cycles
that can be constructed between the given monitors [12]. Since
routing along cycles is always prohibited by routing protocols,
Ma et al. [13] gives the necessary and sufficient conditions
to identify link metrics by using simple paths (paths without
cycles), and develop a monitor placement algorithm based on
these conditions. Ma et al. [14] propose an efficient algorithm
to construct independent measurement paths.

However, the afore-mentioned work [7], [11], [12], [13],
[14] must rely on the explicit routing techniques (e.g., source
routing or MPLS) to establish independent measurement paths.
This is a huge assumption that may render the solutions
impractical since most IP-networks adopt shortest path routing
paradigm, while the explicit routing is not supported by most
of the routers [15]. Thus in this paper, we address the end-
to-end path based link metric identification problem under the

chuah
Cross-Out

chuah
Inserted Text
may not be



shortest path constraint, and to the best of our knowledge, our
work is the first to consider the problem. We first formulate the
problem as a Mixed Integer linear Programming (MIP) prob-
lem. Then to efficiently solve the problem in large networks,
we propose an heuristic algorithm to place monitors and select
linear independent shortest measurement paths between these
monitors. Finally, we evaluate our proposed algorithm through
simulations on both ISP real networks and synthetic networks.

The rest of the paper is organized as follows. In section
II, we first describe the network model and assumptions, and
then we present our MIP formulation. Section III presents the
proposed monitor placement and measurement path selection
algorithm. In section IV, we show the simulation results.
Section V concludes this work.

II. PROBLEM FORMULATION

In this section, we first briefly introduce the network
model and assumptions considered in this paper, and then
we formulate the end-to-end shortest path based link metric
identification problem as a MIP.

A. Network Model and Assumptions

We model the IP network as a connected undirected graph
G(V,L), where V is the set of nodes (routers) and L is the set
of links. Let n = |V | and m = |L| denote the number of nodes
and links, respectively. Each link l ∈ L is associated with an
unknown performance metric xl and a given routing weight
wl. In real networks running shortest path routing protocols,
each link will be traversed by at least one of the shortest paths.

We assume that some nodes in the network can be directly
connected to monitors, which can send and receive probe
packets. Measurement paths, which start and end at distinct
monitors, are the shortest paths determined by the given link
weights. If there are multiple equal cost shortest paths between
two monitors, we assume that the two monitors can measure
all of the equal cost shortest paths between them by sending
probe packets with different five-tuples flow identification.
Let P be the set of all shortest paths in the network. Let
X = (x1, x2, ..., xm)T denote the vector of link metrics
and Y = (y1, y2, ..., yc)

T denote the vector of the available
shortest path measurements, where c is the number of shortest
measurement paths. Based on the above assumptions and
notations, the measurement problem can be represented by the
linear system AX = Y, where A is the routing matrix whose
(i, j)th entry is a binary representing whether link j appears
in path i.

Evidently, to uniquely determine X, A must have full
rank, i.e., rank(A)= m. In other words, we must find m
linear independent shortest paths between monitors to take
measurement. If every node is monitor, A is a identity matrix
and X simply equals Y. But in order to reduce measurement
cost, we need to minimize the number of monitors placed
in the network. So the objective of this paper is to find a
placement of the minimum number of monitors in G(V,L)
that enables the unique determination of all link metrics by

measuring the m linear independent shortest paths between
these monitors.

B. MIP Formulation

For ease of description, we first present parameters and
variables used in the MIP.

ap = [ap1, ap2, · · · , apl, · · · , apm]T : The binary vector for
the shortest path p, where apl is a binary constant used to
indicate whether link l is included by the shortest path p. i.e.,
apl equals 1 if link l ∈ p, and 0 otherwise.

bl = [bl1, bl2, · · · , bli, · · · , blm]T : The binary vector for link
l. bl is a binary vector, where bli equals 1 if i = l, and 0
otherwise.
δpk: A binary constant indicates whether node k is an

endpoint of the shortest path p, i.e., δpk equals 1 if if node
k is an endpoint of the shortest path p, and 0 otherwise.
C: A large constant.
σl
p: A real variable, which denotes the linear commbination

coefficient of vector ap used to linearly represent vector bl.
up: A binary variable, which denotes whether the shortest

path p is chosen for measurement, i.e., up equals 1 if the
shortest path p is selected, and 0 otherwise.
vk: A binary variable, which indicates whether node k is

selected to place monitor, i.e., vk equals 1 if node k is selected
to place monitor, and 0 otherwise.
z: A integer variable, which denotes the number of monitors

needed to be placed in the network.
As discussed in the previous subsection, the objective of our

problem is to minimize the number of monitors placed in the
network. Thus, the objective can be formulated as:

minimize z =

n∑
k=1

vk (1)

To uniquely identify the link metrics, we need to select
m linear independent shortest paths between the monitors. It
means that the binary vector bl for each link l ∈ L can be
represented as a linear combination of the binary vectors of
the m shortest paths.

|P |∑
p=1

σl
p · ap = bl, ∀p ∈ P, l ∈ L (2)

If the shortest path p is selected as one of the m linear
independent paths, at least one of the linear combination
coefficients for the shortest path p (σl

p) is not equal 0. So
we can use the following constraints to ensure that up = 1 if
|σl

p| > 0 ∀l ∈ L.

σl
p ≤ up · C, ∀l = 1, 2, · · · ,m,∀p ∈ P (3)

−σl
p ≤ up · C, ∀l = 1, 2, · · · ,m,∀p ∈ P (4)

To minimize the measuring cost, we only need to select m
linear independent measurement paths.

|P |∑
p=1

up = m (5)



If the shortest path p is selected as a measurement path, the
endpoints of path p must be selected to place monitors.

vk · C ≥
|P |∑
p=1

up · δpk, ∀k = 1, 2, · · · , n (6)

The complexity of a MIP is known to be exponential, i.e.,
O(2N ), where N is the number of integer variables. Thus the
MIP model presented above has an exponential complexity
with N in O(|P |), which makes it computationally expensive
and even infeasible in large networks. Hence, to solve the end-
to-end shortest path based link metric identification problem
efficiently in large network, we propose a heuristic algorithm
in the next section.

III. THE MONITOR PLACEMENT AND MEASUREMENT
PATH SELECTION ALGORITHM

In order to uniquely identify the link metrics in the IP
network, we need to place some monitors on the network
nodes and select m linear independent shortest measurement
paths between these monitors. This section introduces our
proposed Monitor Placement and Measurement Path Selection
(MP-MPS) algorithm for shortest routing based IP networks.

A. Algorithm Description

MP-MPS places monitors and selects measurement paths
simultaneously. For ease of description, we first introduce the
following definition.

Definition 1 (identifiable and unidentifiable link) Given
a set of linear independent paths, if the metric of a link can
be uniquely inferred by measuring the set of paths, the link is
identifiable, otherwise, the link is unidentifiable.

Algorithm 1 shows the detailed description of MP-MPS.
Initially, MP-MPS uses MMP (Minimum Monitor Placement)
algorithm [13] to place the minimum number of monitors
needed to identify link metrics when explicit routing is al-
lowed. However, under the shortest path routing constraint,
it is generally impossible to identify all link metrics by
only using the monitors placed by MMP, i.e., the number
of linear independent shortest paths between these monitors
is less than m. Therefore, MP-MPS will select more nodes
to place monitors in the following steps. Firstly, MP-MPS
selects the linear independent paths from the shortest paths
between the placed monitors and adds these paths to linear
independent shortest path set P (lines 2-4). To select a set of
linear independent paths, we use the Algorithm 2, which is a
variant of QR decomposition with column pivoting [6], [16].
In Algorithm 2, ‖·‖22 denotes square of the 2-norm of a vector.
Algorithm 2 incrementally decomposes the routing matrix A
into QR (Q ∈ Rm×h, R ∈ Rh×h), where Q is a matrix with
orthonormal columns, R is an upper triangular matrix and h is
the number of linear independent paths that have been selected.
Then for an unidentifiable link (u, v) (the path only traversing
link (u, v) is linear independent with the paths in set P ) ,
MP-MPS will sequentially select nodes u and v as monitors
(lines 8-18), and the shortest paths, which are starting from
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Fig. 1: An Illustrative example for MP-MPS

u or v to the selected monitors and linear independent with
selected paths, will be added to set P (lines 19-21). MP-MPS
terminates when the number of selected linear independent
paths equals m (lines 6 and 23).

B. An Illustrative Example

We demonstrate how the MP-MPS algorithm works with
an example shown in Fig. 1, where the numbers on the
links represent the link weights used by shortest path routing
protocols. MP-MPS first uses the MMP proposed in [13] to
place monitors on nodes A, D and F (Fig. 1(a)). If the explicit
routing is allowed, the link metrics can be uniquely identified
by constructing nine linear independent paths starting and
ending at nodes A, D and F [14]. However, if only the shortest
measurement paths are allowed, there are only five linear
independent shortest paths (paths 1-5 in Fig.1(a)) starting
and ending at nodes A, D and F. So in order to uniquely
determine the link metrics, MP-MPS needs to select more
nodes to place monitors. In the following steps, MP-MPS
checks the links sequentially to find an unidentifiable link.
We assume the first unidentifiable link found by MP-MPS
is (A, C). Thus, node C is selected as a monitor (MP-MPS
ignores node A since it is already selected as a monitor), and
four linear independent shortest paths (paths 6-9 in Fig.1(b))
between nodes A and C are added to the measurement path
set. After that, MP-MPS terminates since the number of linear
independent measurement paths equal to the number of links.

C. Complexity Analysis

In Algorithm 1, line 1 takes O(n + m) time [13]. The
complexity of checking whether a path is linear independent
with a set of paths by using Algorithm 2 is O(m2). In the
worst case, MP-MPS will check all of the shortest paths in
the network (lines 4, 10, 11 and 20). Therefore, the entire
algorithm has time complexity of O(K ·m2), where K is the
number of shortest paths in the network. It is notable that in
real IP networks, the routing matrix A is very sparse. We can
leverage this property to speed up the implementation of the
algorithm.



Algorithm 1 Monitor Placement and Measurement Path Se-
lection (MP-MPS)

Input: Network topology G(V,L)
Output: A subset M of nodes in V as monitors, and a set P of m

linear independent shortest paths between monitors.
1: Invoke MMP algorithm [13] to select monitors and add these

monitors to M
2: add all of the shortest paths between monitors in M to set SP
3: A← NULL, R← NULL
4: (P,A,R)← Algorithm 2 (SP,A,R)
5: if |P | == M then
6: return (M,P )
7: end if
8: for each link (u, v) ∈ L do
9: Let path p← {u, v}

10: R12 ← R−1T AaT
p = QT aT

p

11: R22 ←
∥∥aT

p

∥∥2
2
−
∥∥R12

∥∥2
2

12: if R12 6= 0 then
13: Push nodes u and v to stack S
14: end if
15: while S is not empty do
16: z ← pop(S)
17: if z /∈M then
18: Select z as a monitor and put z into M
19: Let SP ← ∅ and add the shortest paths from node u to

the nodes in M to set SP
20: (TP,A,R)← Algorithm 2 (SP,A,R)
21: P ← P

⋃
TP

22: if |P | == m then
23: return (M,P )
24: end if
25: end if
26: end while
27: end for

IV. PERFORMANCE EVALUATION

To evaluate the performance of MP-MPS, we conduct a
set of simulations on randomly generated topologies and real
network topologies obtained from the Rocketfuel project [17].
To demonstrate the optimality of MP-MPS, we first compare
the performance of the MIP model and MP-MPS in small
random topologies. Afterwards, similar to [13], we use the
Random Monitor Placement and Measurement Path Selection
(RMP-MPS) as a benchmark for MP-MPS in large random
and real topologies, where the MIP model becomes intractable.
Given the number of monitors k (k is greater or equal to the
number of monitors needed when explicit routing is allowed),
RMP-MPS uses the following steps to place monitors and
select measurement paths:

Step 1: Use MMP [13] to place monitors in G(V,L) and
put the nodes with monitors into set M

Step 2: Randomly select k− |M | nodes from set V \M to
place monitors and append these nodes to set M .

Step 3: Select the linear independent measurement paths
from the shortest paths between monitors.

Step 4: Remove the nodes that are not the termination nodes
of the selected measurement paths in Step 3 from M .

Evidently, RMP cannot guarantee to uniquely identify the
metric of every link for arbitrary G(V,L) and k. Therefore,
similar to [13], we evaluate its performance by the fraction

Algorithm 2 Linear Independent Path Selection (LIPS)

Input: A set CP of candidate paths, and matrices A and R
Output: A set LP of linear independent paths in CP , and the

updated matrices A and R
1: for each path p ∈ CP do
2: if A == NULL then
3: A←

[
ap

]
and R←

[∥∥ap

∥∥2
2

]
4: else
5: R12 ← R−TAaT

p = QT aT
p

6: R22 ←
∥∥aT

p

∥∥2 − ∥∥R12

∥∥2
2

7: if R12 6= 0 then
8: Add path p to set LP

9: Update R←
[
R R12

0 R22

]
and A←

[
A
ap

]
10: end if
11: end if
12: end for
13: return (LP,A,R)

of random placements achieving full link metric identifiability
over multiple Monte Carlo runs, which is referred as proba-
bility of achieving full identifiability.

A. Random Topologies

We use ERdős-Rényi (ER) and Barabási-Albert (BA) mod-
els to generate random topologies. In ERdős-Rényi model,
a topology is constructed by independently connecting each
pair of nodes by a link with a fixed probability p. BA model
generate random topology by beginning with an initially con-
nected topology of n0 (n0 = 4 in our simulations) nodes and
adding new nodes sequentially. Each new node is connected
to dmin existing nodes with a probability that is proportional
to the degree of the existing nodes. For simplicity, we set the
weight of every link to 1. In each simulation, we use the 100
randomly generated topologies to evaluate the performance of
the algorithm.

(1) Comparison of MP-MPS and MIP
Since the complexity of MIP is exponential, MIP can

only get optimal solutions within acceptable time in small
topologies. We generate random topologies with 11 nodes.
To evaluate the performance of the algorithms under different
topology characteristics, we conduct simulations on two types
of random topologies: sparsely connected topologies (for ER
model, p = 0.2 and for BA model, dmin = 2) and densely
connected topologies (for ER model, p = 0.4 and for BA
model, dmin = 3). Fig. 2 shows the simulation results on
sparsely connected random topologies. As shown in Fig. 2,
the probability that MP-MPS and MIP are able to identify
all the link metrics is quite close, e.g., the difference is less
than 0.1 in both ER and BA topologies. It demonstrates that
the monitors placement solutions found by MP-MPS are near-
optimal in small topologies. We also can observe that when
k ≤ 9, RMP-MPS achieves identifiability on fewer than 30%
of the topologies, whereas MP-MPS ensures identifiability on
about 90% of the topologies. It means MP-MPS substantially
outperforms RMP-MPS in small topologies. Fig. 3 shows the
simulation results on densely connected small topologies. In



Fig. 2: Comparison of MP-MPS, MIP and RMP-MPS on small sparse random
topologies

Fig. 3: Comparison of MP-MPS, MIP and RMP-MPS on small dense random
topologies

general, we can see that the results in Fig. 3 and Fig. 2 exhibit
the same trends. However, It is notable that MIP, MP-MPS
and RMP-MPS perform worse in densely connected small
topologies. This is because the number of monitors required
to achieve identifiability always increases with the link and
shortest path ratio r, which is defined as r = m/|P | (|P |
is the number of shortest paths in the network). And in our
simulations, densely connected topologies have higher r than
sparsely connected topologies.

(2) Comparison of MP-MPS and RMP-MPS
We compare the performance of MP-MPS and RMP-MPS in

large random topologies with 100 nodes. In the simulations,
we also generate sparsely connected random topologies (for
ER model, p = 0.05 and for BA model, dmin = 2) and densely
connected random topologies(for ER model, p = 0.08 and for

Fig. 4: Comparison of MP-MPS and RMP-MPS on large sparse random
topologies

Fig. 5: Comparison of MP-MPS and RMP-MPS on large dense random
topologies

BA model, dmin = 3). Fig. 4 shows the simulation results on
sparsely connected random topologies. We can observe that
as expected, the probability that MP-MPS and RMP are able
to identify all the link metrics increases with the number of
placed monitors. However, when k ≤ 60 in ER topologies and
k ≤ 85 in BA topologies, RMP-MPS achieves full link metrics
identification only on about 10% of the topologies, whereas
when k ≤ 55 in ER topologies and k ≤ 70 in BA topologies,
MP-MPS achieves full link metrics identification on all of
the topologies. It is demonstrated that MP-MPS significantly
outperforms the RMP-MPS in most cases.

Fig. 5 shows the simulation results on densely connected
topologies. Similar to the simulation results in small random
topologies, both MP-MPS and RMP-MPS perform worse in
densely connected topologies, requiring more monitors to



Fig. 6: Comparison of MP-MPS and RMP-MPS on real topologies

achieve the same probability of full link metrics identification.
We also can see from Fig. 4 and Fig. 5 that both MP-MPS
and RMP need more monitors to achieve full link metrics
identification in BA topologies. This is because ER topologies
have more equal cost shortest paths than BA topologies.

B. Real Topologies

We also conduct a set of simulations on seven ISP topolo-
gies with link weights derived by the Rocketfuel project
[17]. Table I summarizes the number of nodes and links
in each topology. We repeat RMP-MPS 1000 times in each
ISP topology. Let kMP−MPS denote the number of monitors
required by MP-MPS to fully identify the ISP networks. For
ease of comparison, we mark kMP−MPS in the legends of
the Fig. 6. As shown in Fig. 6, MP-MPS needs a significant
fraction of nodes to be monitors in ISP topologies, roughly
ranging from 70% to 80%. One reason is that in these real
topologies a large number of nodes have degree than less than
3, which have to be selected as monitors. It is verified in [13]
that in some real topologies, more than 60% nodes need to be
monitor even if the explicit routing is allowed. However, we
also can observe that in real topologies, MP-MPS also needed
much less monitors than RMP-MPS.

At last, Table II depicts the average length (i.e., the number
of hops) of measurement paths and the running time of MP-
MPS in ISP topologies. In all of the ISP topologies, the
average length of measurement paths selected by MP-MPS
is about 3 hops, and the running time of MP-MPS on a
desktop with 3GHz CPU and 4GB memory is less 10s, which
indicates that MP-MPS is time efficient.

Topology AS4323 AS3549 AS3356 AS3320 AS2914 AS701 AS3561

Nodes 51 61 63 70 70 83 92

Links 161 486 285 355 111 219 329

TABLE I: Real Topologies Used in Simulation.

V. CONCLUSION

We studied the problem of identifying link metrics using
end-to-end measurements along shortest paths between mon-
itors. In this paper, we first formulated the problem as a
MIP, and then we proposed an efficient algorithm named MP-
MPS for placing monitors and selecting shortest measurement
paths. Extensive simulation results shown that MP-MPS gets
near-optimal solutions in small topologies, and MP-MPS also
significantly outperforms a baseline algorithm in both large
random topologies and real topologies.
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