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ABSTRACT

As modern data center networks (DCNs) grow to support
hundreds of thousands of servers and beyond, managing
network equipment (e.g., routers, firewalls, load balancers)
becomes increasingly complex. Network attributes (e.g., IP
address allocations, BGP neighbor relations) are scattered
amongst various network engineering groups, which makes
troubleshooting the network a cumbersome task. In addition,
network vendor diversity leads to an explosion of vendor-
specific management systems or single-use automation scripts,
limiting network scalability while increasing time to perform
management tasks. This paper proposes a unified network
management system, SWItch Manager (SWIM), to cope with
the growth by 1) standardizing the language for describing
network attributes, and 2) unifying the interface for executing
management actions on the network equipment.

Index Terms—Data center Network, DCN, Network Manage-
ment, Switch/router configuration

I. INTRODUCTION

Network management is a crucial, yet challenging task for
modern data centers that are growing dramatically in scale.
A data center network (DCN) that supports 100,000 servers
would typically require upwards of thousands of network
equipment (NE). For brevity we will use NE to refer to
both switches and routers. At such scale, operational agility
is achieved through division of labor, with multiple network
engineering groups managing different aspects of the network
(e.g., physical wiring, routing design). In addition, as perfor-
mance requirements such as oversubscription and fair-share
bandwidth change at each layer of the DCN, NE from multiple
vendors (or multiple NE models from the same vendor) are
deployed to achieve optimal price-to-performance ratio.

Achieving operational agility and optimal price-to-
performance ratio are not without their trade-offs. With
each group managing only one aspect of the network,
querying the network state incurs a communication overhead
spanning multiple engineering groups. On the other hand,
device diversity leads to a network environment rife with
syntax/semantic disparities, and network engineers have to
grapple with managing the DCN using multiple configuration

languages. To put the two issues in perspective, consider
the task of configuring peer-to-peer IP addresses between
two routers (router X and Y) with different configuration
syntax. In order to perform this task, network engineers need
to know 1) the wiring map, to find all the interface pairs
connecting X and Y, and 2) the IP subnet assignment, to
know what addresses to configure onto each interface. Since
both information are often kept by different groups, engineers
would need to make two queries to gather all the required
information. Furthermore, engineers commonly configure
these addresses onto X and Y’s interfaces via two single-use
scripts, one tailored for X and the other tailored for Y, to
handle the syntax disparity. Though it seems like a contrived
example, the above process is common for many management
tasks (e.g., establishing access control list, creating VLAN,
setting up remote authentication). With the large number of
NE in a DCN and multitude of tasks required in managing
the NE, network engineers are easily overwhelmed by the
communication overhead and explosion of single-use scripts.

For ease of discussions in the rest of the paper, we introduce
the following two terminologies. Network descriptions refer
to collections of NE attributes and their interconnections that
together describe the network states, e.g., IP address or inter-
face name of an NE or access control lists (ACLs). Network
implementation refers to the action of configuring the NE to
apply certain network attributes. For example, assigning an IP
address to a specific interface of an NE through its command-
line interface (CLI) is considered a network implementation.
The example in previous paragraph highlights the challenge
in gathering network description from various groups and the
challenge in performing network implementation on two NE
supporting different syntax.

In this paper, we propose SWItch Manager (SWIM) to cope
with the afore-mentioned challenges. First, SWIM abstracts
away the syntax and semantic disparities between different NE
vendors by providing a centrally enforced standard language
for network descriptions and network implementations. By
doing so, it facilitates division of labor for network man-
agement among autonomous groups. Network descriptions
specified by different groups can now be merged into a single
global view that can be queried easily. Second, it defines a
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unified interface for performing management tasks on a diverse
set of NE. Hence, network engineers can develop software
to perform management tasks by invoking services provided
by the unified interface without being exposed to vendor-
specific details. With SWIM, network engineers who design
the network (network architects) can express their designs in
terms of network descriptions, while network implementation
engineers develop software (management clients) to perform
their management tasks via the unified interface.

The contributions of this paper are:
• We propose and develop SWIM – SWItch Manager,

which provides network management as a service to
network operators. We present two key components of
SWIM: (1) a Network Description Engine that maintains
a global view of the network states, while allowing
distributed maintenance, and (2) Network Implementation
engine, which provides a common set of APIs to execute
a management task on a switch/router.

• We demonstrate how SWIM can be leveraged to perform
common management tasks such as configuring interface
IP addresses or performing BGP routing control.

II. SWIM DESIGN

A. Architecture
SWIM is designed based on two subsystems (Figure 1)

– Network Description Engine and Network Implementation
Engine. Network Description Engine controls how network
engineers describe the network states (including attributes
for the network and their interconnections), aggregates these
descriptions, and presents them as a unified view that can
be queried easily. Network Implementation Engine exposes
a uniform set of API to management clients, regardless of the
syntax/semantics on the NE. Together, Network Description
Engine and Network Implementation Engine provide network
architects a way to describe their DCN designs as a series
of network attributes, while allowing network engineers to
program/configure the NE at a high level of abstraction.

Figure 1 outlines the workflow in SWIM. Network ar-
chitects create new network descriptions according to their
designs and send them to the Network Description Engine.
Upon recognizing these updates, management clients perform
their management tasks by issuing a series of action requests to
the Network Implementation Engine, with the goal of align-
ing NE’s states to the updated descriptions. Based on these
requests, Network Implementation Engine queries Network
Description Engine for the information it needs to execute the
actions, and then interacts with the underlying channel (e.g.,
telnet session, OpenFlow session) to execute these actions on
the NE.

B. Network Description Engine
Network Description Engine is the information reservoir

that aggregates various descriptions at SWIM and presents
a unified view of the network to management clients. Some
examples of network descriptions are NE hostname (describ-
ing the NE in human readable string), interface IP address
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Fig. 1: SWIM subsystems and workflow. (1) Network engi-
neers update the network descriptions. (2) Management Clients
pick up network description update. (3) Management Clients
call Network Implementation Engine to request actions. (4)
Network Implementation Engine makes internal calls to Net-
work Description Engine to acquire the information it needs
to execute the actions. (5) Network Implementation Engine
executes actions on NE.

(describing the interface’s L3 identity), and authentication
configuration (describing accounts eligible to access the NE).
Network descriptions can be more complicated, describing re-
lationship between devices. Examples include physical wiring
(describing physical connectivity between two NE ports) and
BGP sessions (describing peering relationship between two
BGP speakers). To achieve this, Network Description Engine
institutes Description Manager to enforce syntax and seman-
tics on network descriptions, and Network View Manager to
present network descriptions as a unified view of the network.

1) Description Manager: With Description Manager cre-
ating and enforcing descriptions’ syntax and semantics, net-
work architects can use them as guides to create structured
network descriptions. The division of labor among different
groups (that maintain their respective network descriptions in
a distributed manner) is transparent to the management clients.
Instead, the management clients are only exposed to a unified
view of the network without having to know how the network
descriptions are actually managed.

Description Manager exposes a set of grammars to the
network architects to enforce syntax and semantics on network
descriptions. A well-known benefit of using grammars is that
languages expressed from the grammars (i.e., network descrip-
tions) are structured data. This eases syntax and semantics
validation, as well as extracting information from network
descriptions.

To avoid having too many sets of grammars, SWIM ex-
poses grammars under two basic constructs: graph and NE
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attributes. The graph construct (Grammar 1) is used to
describe relationship between NE, be it physical or virtual.
For example, a BGP graph would use BGP speakers’ identity
(e.g., Router ID, Autonomous System Number or ASN) as
nodes and the BGP session between them as a graph link.
Extension to support such a BGP graph is shown in Grammar
2.

Grammar 1 Graph grammar.
GRAPH := NODES LINKS
NODES := NODE*
NODE := NODE ATTRIBUTE
NODE ATTRIBUTE := string
LINKS := LINK*
LINK := START NODE END NODE
START NODE := NODE
END NODE := NODE

Grammar 2 Extending the basic graph grammar to support
BGP.

GRAPH := NODES LINKS
NODES := NODE* BGP NODE*
NODE := NODE ATTRIBUTE
BGP NODE := HOSTNAME ROUTER ID ASN PEER*
NODE ATTRIBUTE := string
HOSTNAME := string
PEER := [1-255].[1-255].[1-255].[1-255]
ROUTER ID := [1-255].[1-255].[1-255].[1-255]
ASN := [1-65535]
LINKS := LINK* BGP LINK*
LINK := START NODE END NODE
START NODE := NODE
END NODE := NODE
BGP LINK := HOSTNAME PEER HOSTNAME PEER

For attributes that do not describe relationship between
NE, the NE attributes construct can be used. Examples of
NE attributes are host name, authentication and interface IP
addresses. An NE attributes grammar supporting host name is
shown in Grammar 3.

Grammar 3 An attribute grammar.
NE ATTRIBUTE := ATTRIBUTES*
ATTRIBUTES := HOSTNAME
HOSTNAME := string

2) Network View Manager: Description Manager polices
how architects create the descriptions. Network View Man-
ager controls how the descriptions are stored internally and
presented to clients. Recall that, based on the grammar im-
posed by Description Manager, descriptions are expressed
as a collection of graphs and NE attributes. Network View
Manager stores this information as-is. The reason for not
merging them is that each graph already defines well-known
relationships between NE in the network (e.g., wiring for

physical relationships, BGP peering for virtual relationships).
Storing them as overlay graphs instead of a single graph
allows Network View Manager to preserve those relationships.
Performing queries about specific graph then becomes easier,
while queries involving multiple graphs can be performed in
parallel and aggregated before returning to clients. For similar
reasons NE attributes are also stored separately.

C. Network Implementation Engine

In this section, we describe the components that realize
the management actions requested by management clients. We
will describe how the actions are executed on NE after clients’
action requests have been submitted to the Network Imple-
mentation Engine. Network Implementation Engine institutes
Network Abstraction Manager and Implementer to enable
management clients to work at a high level of abstraction,
regardless of the underlying diversity in terms of vendor-
specific syntax and semantics.

1) Network Abstraction Manager: To let clients operate at
a high level of abstraction, SWIM exposes NE as generic
NE with a set of common entities (e.g., routed interface,
switching interface) to act on. Network Implementation Engine
achieves this goal through a well-known mechanism called
namespacing.

Conceptually, one can think of management tasks as actions
supported under a specific namespace. In SWIM, actions are
subclass of the generic NE namespace. For example, actions
supported for routers will be exposed under the generic router
class, and actions supported for switches will be exposed
under the generic switch class. Interior nodes in the namespace
hierarchy correspond to entities on the NE (e.g., the NE itself,
routed interface, switching interface), while leaf nodes define
the supported actions. One example of using namespace to
expose supported actions is shown in Figure 2.

Network Abstraction Manager also keeps track of per-action
variables that need to be instantiated by data from Network
Description Engine. For example, for the SetASN action in
Figure 2, Network Abstraction Manager would maintain an
ASN variable that can be instantiated from the BGP graph.
Variables in the tree are instantiated from data in Network
Description Engine, if possible. This removes the need to
validate data from management clients that have already been
verified when they were updated to Network Description
Engine.

The basic namespace tree in Figure 2 specifies actions that
can be performed on entities, but it does not specify the exact
entity to operate on. For example, while the namespace in
Figure 2 shows SetIP as a supported action on a router’s
interfaces, it does not specify which interface should have its
IP address set. This basic namespace tree exposes the entity
category but not the naming. To add support for naming,
Network Abstraction Manager augments the basic namespace
tree with entity-specific names under each interior node. For
example, if router X has two interfaces and one BGP peer
with ID 10.0.0.1, its instantiated namespace tree would look
like Figure 3. Entity-specific names can be instantiated from
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Fig. 2: An example of using namespace to specify supported
actions for routers.
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Fig. 3: Example of an augmented namespace tree for a router
X that has two interfaces and a BGP peer with identifier
10.0.0.1.

network descriptions. For example, if the network description
for router X contains two interfaces, Network Abstraction
Manager can augment two interface nodes in router X’s
namespace tree.

2) Implementer: With Network Abstraction Manager ex-
posing management tasks as a series of actions to perform
on a generic NE, SWIM needs a way to actually execute
these actions on different NE. There are many methods to
accomplish this, such as templates [8] and declarative language
[7]. We defer readers to these studies for more detail. It is
worth noting that with Network Abstraction Manager exposing
a generic NE to clients, Implementer is free to choose the
actual mechanism to execute actions on the NE.

III. SWIM IMPLEMENTATION

We implemented a working prototype of SWIM based on
the designs in Section II. SWIM is developed as a multi-
threaded process, employing endpoints based on the Windows
Communication Foundation [1] platform to serve requests
from management clients.

Network Description Engine: Network Description Engine
is implemented to accept network descriptions in the form
of Extensible Markup Language (XML) documents and are
validated against XML schema definition (XSD) files. The
XML files contain descriptions based on either the graph
grammar or the NE attributes grammar construct. The XML
tags in the XML documents correspond to non-terminals in
the grammar, while XML attributes/contents correspond to
grammar terminals. Each grammar construct has a corre-
sponding XSD file, so that their syntax and some of their
semantics can be validated. Note that XML/XSD are not the
only method to maintain descriptions, they are used here
for their simple interface to construct grammar and validate
descriptions against the grammar.

The description files are read into SWIM’s in-memory
objects through Window .Net’s XML serialization [12]. Using
Windows .Net, XML tags, attributes, and contents can be
serialized into class variables. These classes are then used as
the data structure for querying about the network.

Network Implementation Engine: Parallel to the container
classes for network descriptions, another set of classes rep-
resent the actions that are supported under the namespace.
SWIM processes management clients’ requests through a dis-
patcher, which tracks and instantiates the variables using data
gathered from Network Description Engine. It then invokes
additional API or external tools to execute the actions on the
NE.

In our implementation of SWIM, we only expose SetIP and
AddRoute actions to clients. In reality many more actions can
be exposed to clients, and we leave it to SWIM practitioners to
determine what to expose. Based on our experiences, network
topology and vendor diversity often determine what actions
are exposed.

IV. EXPERIMENTS

Based our prototype of SWIM, we performed two macro
benchmarks to demonstrate its feasibility in practice and
SWIM’s performance on end-to-end scenarios.

The goal of our macrobenchmarks is to gauge the
client-perceived end-to-end delay for executing management
tasks/actions. To validate that SWIM can abstract away syn-
tax/semantic differences, we expose two APIs for routers, each
with a different underlying implementation. The first action is
SetIP, which assigns the IP address to an interface; this is
implemented by using telnet to connect to the router, and uses
the router’s CLI to push the configuration. The second action
is AddRoute, which adds a network route to the router; which
is implemented as a Routing-as-a-Service (RaaS) client [5]
requesting to insert a route. For each experiment, results from
10 representative runs are shown, with the client perceived
end-to-end delays broken into three components: time for
SWIM to perform the critical task, time for the underlying
tool to complete the action, and any client overhead.

For configuring interfaces (Figure 4), the time is dominated
by the tool SWIM uses to log into the router and push the
configuration. The client overhead for calling the API and the
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Fig. 4: Overall delay (in milliseconds, plotted on a log scale)
of SetIP action through SWIM and underlying CLI. The delay
is broken into the configuration generation time (critical task
time), time to log into the router and push configuration via
CLI (underlying tool time), and client-server communication
time (client overhead).
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Fig. 5: Overall delay (in milliseconds, plotted on a log scale)
of AddRoute action. The delay is broken into server process
time (critical task time), time for server to send request to
RaaS controller (underlying tool time), and client overhead.

time it takes SWIM to generate the appropriate configuration
are both negligible, with configuration generation taking less
than 100ms and client API call taking less than 200ms. The
result is similar for route addition (Figure 5), except the total
time is much shorter because RaaS can quickly generate and
send the BGP UPDATE message. This result shows that while
SWIM can quickly perform its task, the choice of underlying
technology could dominate server-side latency.

V. RELATED WORK

There is a rich literature on network management, spanning
from configuration management and generation to accounting,
and hence it is infeasible to cover them all. Instead, we focus
on studies that are most related to SWIM.

Many management studies model and abstract the network
in some way. In CONMan [2], protocols are abstracted as
multiple modules, with results piped from one module to
another. SWIM’s level of abstraction are actions that can be
performed on the NE, and can leverage CONMan as a way to
manage protocol-related changes.

In the space of configuration, there are plethora of works
that leverage techniques such as templates [8], procedural

[7] or declarative [6] specification. SWIM abstracts away
the underlying mechanisms used to execute actions onto NE,
so management clients can manage NE at a high level of
abstraction (Section II). In addition, SWIM jointly considers
the problem of distributed network description maintenance.

There are also other studies focusing on managing the flow
of packets. Many of these studies leverage some aspect of the
OpenFlow API [10] [9] while others leverage API on the NE
[4]. A few studies leverage existing protocol to achieve some
form of route control [3], [5]. This body of work target a
part of NE’s functionality that is vital in ensuring packets are
delivered, but are specialized to just routing. SWIM on the
other hand can support a wider range of management tasks
through its abstractions.

From the point of view of network abstraction, Open
vSwitch [14], VMWare vNetwork Distributed Switch [13],
and Hyper-V vSwitch [11] are some of the commercial prod-
ucts that provide network abstraction through virtualization.
In these products, switching/routing/policing capabilities are
provided by virtual switches residing on the physical servers,
below virtual machines (VM). Using virtual switches, many
of the network functionalities can be implemented onto a
common NE type (the virtual switch), and the underlying
physical network becomes a simple data transport network.
While having virtual switches move some of the complexities
away from the physical network, physical switches still have
to be managed, and in these cases SWIM can run alongside
virtual switches to provide a comprehensive network manage-
ment solution.

VI. CONCLUSION

We present SWIM, a general switch manager that enables
network engineers and operators to develop software to per-
form network management tasks and distributedly maintain
their view of the network. DCNs often rival or surpass ISP
networks in size and have a diverse portfolio of NE. In
such networks, maintaining coherent views manually and per-
forming management tasks via single-use scripts could easily
overwhelm network engineers and introduce errors. SWIM
decouples the maintenance and enforcement of network de-
scriptions via Network Description Engine and provide a com-
mon interface for executing management tasks via Network
Implementation Engine. While allowing network engineers to
independently maintain network descriptions, SWIM presents
a global view of the network by merging these disparate
sources network descriptions to support common queries.
Network engineers can also independently develop software
clients that interact with an NE to perform management tasks
through a common interface provided by SWIM. Through
a prototype of SWIM, we show that SWIM can perform
management tasks through different underlying technology
without exposing such details to network engineers.
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