Adaptive Traffic Signal Control With
Vehicular Ad hoc Networks

Kartik Pandit, Dipak Ghosal, Member, IEEE, H. Michael Zhang, and
Chen-Nee Chuah, Senior Member, IEEE

Abstract—In this paper, we propose to use vehicular ad hoc
networks (VANETS) to collect and aggregate real-time speed and
position information on individual vehicles to optimize signal
control at traffic intersections. We first formulate the vehicular
traffic signal control problem as a job scheduling problem on
processors, with jobs corresponding to platoons of vehicles. Under
the assumption that all jobs are of equal size, we give an online
algorithm, referred to as the oldest job first (OJF) algorithm, to
minimize the delay across the intersection. We prove that the OJF
algorithm is 2-competitive, implying that the delay is less than or
equal to twice the delay of an optimal offline schedule with perfect
knowledge of the arrivals. We then show how a VANET can be
used to group vehicles into approximately equal-sized platoons,
which can then be scheduled using OJF. We call this the two-phase
approach, where we first group the vehicular traffic into platoons
and then apply the OJF algorithm, i.e., the oldest arrival first
(OAF) algorithm. Our simulation results show that, under light
and medium traffic loads, the OAF algorithm reduces the delays
experienced by vehicles as they pass through the intersection, as
compared with vehicle-actuated methods, Webster’s method, and
pretimed signal control methods. Under heavy vehicular traffic
load, the OAF algorithm performs the same as the vehicle-actuated
traffic method but still produces lower delays, as when compared
with Webster’s method and the pretimed signal control method.

Index Terms—Conflict graphs, online job scheduling, traffic
signal control, vehicular ad hoc network (VANET) simulation,
vehicle-actuated traffic signal control, Webster’s algorithm.

I. INTRODUCTION

NTELLIGENT traffic signal control has been extensively

studied in the literature [9], [25], [28]. Current methods of
implementing intelligent traffic signal control include roadside
sensors, such as loop detectors and traffic monitoring cameras.
Loop detectors can only detect the presence or absence of
vehicles [15], [16], which is a serious limitation. These loop de-
tectors are physically connected to the traffic signal controller,
and this connection is used to communicate the information

Manuscript received June 15, 2012; revised October 15, 2012 and December
16, 2012; accepted January 9, 2013. Date of publication January 18, 2013; date
of current version May 8, 2013. The review of this paper was coordinated by
Dr. G. Mao.

K. Pandit and D. Ghosal are with the Department of Computer Science,
University of California at Davis, Davis, CA 95616 USA (e-mail: kdpandit@
ucdavis.edu; ghosal@ucdavis.edu).

H. M. Zhang is with the Department of Civil and Environmental Engi-
neering, University of California at Davis, Davis, CA 95616 USA (e-mail:
hmzhang @ucdavis.edu).

C.-N. Chuah is with the Department of Electrical and Computer Engi-
neering, University of California at Davis, Davis, CA 95616 USA (e-mail:
chuah@ucdavis.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVT.2013.2241460

gathered from the loop detectors to the traffic signal controller.
The traffic signal controller then uses the data to schedule traffic
through the intersection by cycling through preset phases and
assigning appropriate amounts of GREEN time or skipping
phases altogether. More recently, video-based traffic detection
systems employing traffic monitoring cameras have been con-
sidered for traffic signal control. A prominent example of this
is in Reno, NV, USA, where traffic data from video cameras
is aggregated, and duration of red lights are adjusted based on
current traffic volumes [1], [2]. While these have been effective,
particularly to coordinate traffic conditions with known events,
they require a high degree of human intervention.

In this paper, we examine the possibility of deploying
an intelligent and real-time adaptive traffic signal controller,
which receives information from vehicles, such as the vehi-
cle’s position and speed, and then utilizes this information
to optimize the traffic signal scheduling at the intersection.
This approach is enabled by onboard sensors in vehicles and
standard wireless communication protocols specifically for
vehicular applications. For example, all vehicles are already
equipped with a speed sensor. In addition, new vehicles are
increasingly being equipped with Global Positioning System
(GPS) units that can provide location information with accuracy
of a few meters [25]. Furthermore, vehicles can use wireless
communications for vehicle-to-vehicle (V2V) or vehicle-to-
infrastructure (V2I) communications, as described in the dedi-
cated short-range communications/wireless access in vehicular
environments standards operating in the spectral range of 5.85—
5.95 GHz [19]. We refer to the transient mesh networks formed
via V2V or V2I communication links as vehicular ad hoc
networks (VANETS).

A. VANET Applications

The speed and location information on vehicles that can be
disseminated to the traffic signal controller using VANETS [10]
are both spatially and temporally fine-grained. Such precise per-
vehicle speed and location information can enable additional
capabilities such as being able to predict the time instance when
vehicles will reach the stop line of the intersection. This is in
comparison with roadside sensors such as loop detectors that
can only detect the presence or absence of vehicles and, at best
estimate, the size of vehicle queues. Furthermore, it is cheaper
to equip vehicles with wireless devices than to install roadside
equipment [25].

Traffic adaptive signal control has been widely studied.
Examples include the well-known Split, Cycle, and Offset

Optimization Techniques (SCOQOT) [16] and Sydney Coordi-
nated Adaptive Traffic System (SCATS) [26]. SCOOT uses
a loop detector as a sensor that is placed at the entry point
of every link to an intersection. SCATS also relies on loop
detectors, which are immediately placed before the stop line
of an intersection. RHODES and its successor MILOS [14] are
probably the most sophisticated traffic adaptive control systems
that have been recently developed. They are also based on loop
detectors, and they optimize lost times on a global scale. In
MILOS, the traffic signal scheduling is done for a network of
traffic controllers, including freeway ramp controllers. Loop
detectors provide vehicle’s position information to a central
controller, which then generates schedules for the entire traffic
network. In [7], a detailed survey of vehicle-actuated traffic
signal control methods is given, both for one-way and two-
way streets. The VANET-based vehicle-actuated traffic method
is based on the study presented in [7], with additional enhance-
ments that take advantage of the finer grain information enabled
by a VANET. These enhancements take advantage of the ability
of the VANET infrastructure to estimate when a vehicle is going
to approach the stop line. The controller uses this information
to extend the GREEN time by an appropriate amount so that the
vehicle can pass through the intersection. Another example of
VANET-based traffic signal control is Traffic View [25]. This
work modified the Webster’s method to leverage VANETS to
communicate with the traffic signal controller.

VANETS have also been used to enhance other traffic control
and management applications. The study in [10] presents a
VANET-based method for variable speed limits to improve
the flow of vehicles in freeways. In [21], VANETS are used
to detect highway incidents and broadcast this information
to drivers. In an extension to this work, [12] examines the
“memory” that platoons of vehicles can keep to more efficiently
broadcast freeway incident messages. VANETSs have also been
used in many driver experience improvement applications. For
example, VANETSs have been used to monitor road conditions
in [18]. In addition to VANET, cellular communications have
been used to design a system that estimates traffic delays
in[11].

B. Our Contributions

In this paper, we present an algorithm, which we call the
oldest arrival first (OAF) algorithm, that makes use of the
per-vehicle real time position and speed data to do vehicular
traffic scheduling at an isolated traffic intersection with the
objective of minimizing delays at the intersection. This simple
algorithm leads to a near optimal (delay minimizing) schedule
that we analyze by reducing the traffic scheduling problem to
a job scheduling problem, with conflicts, on processors. The
scheduling algorithm captures the conflicts among opposing
vehicular traffic with a conflict graph [9], and the objective
of the algorithm is to minimize the latency values of the jobs.
If the condition that all jobs require equal processing time is
enforced, we can show that the OAF algorithm becomes the
oldest job first (OJF) algorithm in the job scheduling domain
with conflicts between jobs and the objective of minimizing job
latency values. We present a 2-competitive (with respect to job

latencies) online algorithm that does nonclairvoyant scheduling
[27] with conflicts of the jobs on the processors and then prove a
stronger result that the best possible nonclairvoyant scheduling
with conflicts algorithm is 2-competitive.

We leverage a VANET to implement the OJF algorithm. An
important requirement for the OJF algorithm is that all jobs
require equal processing time. We give an algorithm that uses
the VANET to divide up the approaching vehicular traffic into
platoons that can be treated as jobs in the job scheduling with
conflicts. The traffic signal controller can then use the conflict-
free schedule from the OJF algorithm to schedule platoons
of vehicles in a safe conflict-free manner. This two-phase
approach, where we first use the platooning algorithm to divide
up the traffic into platoons and then treat each platoon as an
equal-sized job and then apply the OJF algorithm on the jobs to
generate a conflict-free schedule, leads to what we call the OAF
algorithm.

To ascertain the performance of the algorithm, we choose
the average delay per vehicle that has passed through the
intersection as the measure of effectiveness. We compare the
performance of the OAF algorithm against an vehicle-actuated
traffic signal controller, Webster’s algorithm, and a fixed-time
algorithm. The vehicle-actuated algorithm and Webster’s algo-
rithm are well-known traffic algorithms [9] that traditionally
utilize fixed road-based sensors such as loop detectors. We
have modified these methods to also utilize the information
from VANETS, and we give the details in Section III. We also
test the performance of the OAF algorithm in the scenario
where only a proportion of the vehicles are VANET enabled.
We conduct the experiments on a closed-loop VANET sim-
ulator that couples the realistic and the well-known Simula-
tion of Urban Mobility (SUMO) traffic simulator [3] and the
INET/OMNET++ [4] wireless simulator. This novel simulator
realistically simulates the closed-loop interaction between the
wireless communication characteristics and the mobility of the
vehicles. The vehicular traffic simulator has a proven mobility
model and is a widely used tool in industries and laboratories
to do experiments on urban traffic operations research. The
wireless simulator INET/OMNET++ also realistically simu-
lates the wireless channel and wireless packet traffic delivery
probabilities in the presence of multiple radio transmitters.

The rest of this paper is organized as follows. In Section II,
we outline the OJF traffic signal algorithm and analyze its
optimality. In Section III, we describe how a VANET and,
more specifically, V2I communications can be leveraged to
implemented the OAF algorithm. In Section IV, we describe
the simulation tool that has been implemented to study the per-
formance of OAF and compare it with other VANET-enabled
traffic light scheduling algorithms. In Section V, we discuss the
simulation results. Finally, in Section VI, we conclude with a
discussion on future research directions.

II. TRAFFIC LIGHT SCHEDULING REDUCED
TO JOB SCHEDULING (OJF ALGORITHM)

Here, we propose a method to reduce traffic signal control
problem to the problem of scheduling jobs on processors, and
we propose an online job scheduling algorithm called the OJF

|<_-l>
’*_/
L e Z

Fig. 1. Typical four-leg intersection showing the different movements on the
approaches.

Fig. 2. Conflict graph for the intersection in Fig. 1.

algorithm. This is phase two of the OAF two-phase traffic signal
control algorithm.

Fig. 1 shows a typical four-leg intersection with eight traffic
movements numbered 1-8. This type of intersection is the most
common and well-studied type [7], [8]. There are conflicts
among some of these movements. For example, traffic move-
ments 1 and 2 cannot simultaneously occur. We can reduce
the problem of traffic signal control to scheduling of jobs on
a processor, where a job is a platoon of one or more vehicles.
We classify jobs as follows. A job is of type 7 if and only
if the platoon of vehicles that it represents is part of traffic
movement 7. A pair of jobs of type 7 and j are said to be in
conflict if the traffic movements ¢ and j are in conflict; hence,
jobs of type ¢ and j cannot be scheduled to be simultaneously
processed. For the intersection in Fig. 1, we can build a conflict
graph G(V, E), where V is a set of vertices, and F is a set
of arcs. There is a vertex for each job type, i.e., for each
job type ¢, 3 vertex ¢ € V. The arc set E is constructed as
follows. If jobs of type 7, j are in conflict (and cannot be
scheduled simultaneously), then there exists an arc (¢,) in F.
E does not contain any other arc, and V' does not contain any
other vertex. The conflict graph for the four-leg intersection in
Fig. 1 is shown in Fig. 2. Conflict graphs have been studied by
traffic engineers to build safe traffic signal control plans. In [9],
methods of developing safe signal control plans are shown for
more complicated traffic intersections. We will assume that jobs

are of equal size, and each job ¢ of type 7 has an arrival time ag ,
which would correspond to the instance of time when the first
vehicle of platoon ¢ arrives at the stop line in movement j. We
will assume that time is divided into slots, and since all jobs are
equal, without loss of generality, we can assume that all jobs
need 1 unit of time to complete. Thus, if a job is scheduled at
time ¢, it will complete at time ¢ 4 1. The ability to divide the
oncoming traffic into platoons that require approximately equal
amount of GREEN time (the green time represents the amount
of processing time required) is achieved using a VANET. We
discuss how this is done in Section III. At the beginning of time
unit ¢, jobs of any type j can arrive, and we can think of them
as arriving at vertex j in G. A group of vertices is chosen that
do not conflict, and a job from each of these is scheduled in
time ¢. Now, our objective would be to minimize the maximum
latency over all jobs. For a particular job a, the latency is
d; — a] — 1, where d; is the time unit at the beginning of which
job 7 has disappeared (completed), and a! is the time unit at
the beginning of which job 7 of type j arrived. Therefore, the
objective is simply to minimize the maximum latency. In the
context of vehicular traffic, minimizing maximum latency is
equivalent to minimizing the maximum time that any vehicle
spends at rest at an intersection waiting for green light. An
important simplification that we make here is that all jobs need
equal service time.

Job scheduling with conflicts is a well-studied problem. It
was first identified in [20] as one of the famous 21 NP-hard
(Complete) problems. It was shown that even approximating
the problem is hard [23]. It is easy to see that the graph coloring
problem can be reduced to job scheduling with conflicts. In
particular, bipartite graphs can be colored in polynomial time,
and the minimum number of colors needed is 2. A bipartite
graph (or bigraph) is a graph whose vertices can be divided
into two disjoint sets U and V/, such that every edge connects a
vertex in U toone in V,i.e., U and V' are each independent sets.
However, in our problem setting, we have no prior knowledge
of the time instance at which jobs arrive. Consequently, any
algorithm that schedules jobs in this setting cannot make any
assumptions on the arrival times of jobs and can only schedule
jobs that have already arrived at the vertices. Such a type
of algorithm is called an online algorithm. In contrast, if an
algorithm has prior knowledge of arrival times of all jobs, it
might use this information to compute a better schedule. This
type of algorithm is called an offline algorithm. An online
algorithm is said to be c-competitive if, for any sequence of
jobs, its cost on the sequence is at most ¢ times the cost of the
optimal offline algorithm on the same sequence plus an additive
constant [13].

The techniques that are used to analyze online algorithms are
described in [13]. In [27], a 2-competitive algorithm was shown
that minimizes the makespan in the case of bipartite conflict
graphs. More recently, in [17], it has been proven that, for the
problem of minimizing maximum latency on conflict graphs, no
algorithm can be better than a n/4-competitive algorithm, and
they actually devise an algorithm that has maximum latency
of O(n?T?), where T is the maximum latency of any job in
the schedule returned by the optimal offline algorithm, and n is
the number of vertices. We give a 2-competitive algorithm for

1,2 7,8

5,6 3,4

Fig. 3. Bipartite graph for the conflict graph G’ in Fig. 2.

the much simpler case of a bipartite graph with n = 2. The
proof in [17] can then be used to show that there cannot exist a
better online algorithm.

A. 2-Competitive Algorithm for Job Scheduling

Having made the reduction from vehicular traffic scheduling
to job scheduling with conflicts, we present a 2-competitive
algorithm that minimizes latency for each job that we call the
OJF scheduling algorithm. In addition, it turns out that, under
the assumption of no future knowledge, this is the best possible
online algorithm. The OJF scheduling algorithm can only be
applied to bipartite conflict graphs; therefore, we need to do this
transformation first. Graph G in Fig. 2 can be transformed into
a bipartite graph G’ by merging vertices 1 and 2, 3 and 4, 5 and
6, and 7 and 8. Fig. 3 shows the bipartite graph. We describe the
OJF scheduling algorithm as follows.

Algorithm 1: OJF scheduling algorithm.

Let af, agl, al, and ab, be the earliest arrival times on each
of the vertices of G’;
while r, 1/, I, I’ have jobs waiting, do
Let a; be the earliest arrival time among aj, a}'/, aﬁﬁ,
and a,l,,/l;
Let S be the side of G’ on which vertex s lies;
for Each vertex s’ on side S in G', do

Schedule the job with the earliest arrival af/;

Let » and 7’ be the vertices on the right side, and let [and
I' be the vertices on the left side of the bipartite graph. Let L
be the list of jobs that would arrive at the vertices in some time
interval. Since we have no prior knowledge of the composition
of L, the OJF algorithm aforementioned in Algorithm 1 makes
decisions on the fly to reduce the maximum latency and is hence
an online algorithm. For example, there exists an algorithm
A* that, given L, generates the optimal schedule (a schedule
that minimizes maximum latency). A* is the optimal offline
algorithm (see Table I for notations). Let us compare the
performance of OJF and A* when it comes to minimizing the
maximum latency. We claim that the OJF scheduling algorithm
is 2-competitive, i.e., for any L, OJF produces a schedule where

the maximum latency experienced by any job is at most twice
the maximum latency experienced by any job in a schedule
produced by A*. Thus, the OJF algorithm is 2-competitive.
Furthermore, it turns out that there cannot exist a better than
2-competitive algorithm for job scheduling under the assump-
tion of no future knowledge.

To prove that OJF is 2-competitive, we need the following
lemma.

Lemma 2.1: Let the weight of a vertex be the number of jobs
waiting on it. The weight of an arc in G’ is the sum of the
weights of its two vertices. For example, 7" is the maximum
latency in the schedule for L returned by A*. Then, OJF always
maintains the following for all time ¢.

1) If A* has an arc of weight w at some time unit ¢, then the
optimal schedule has at least w — 7" jobs on the same arc
at time .

2) If A* has a vertex of weight w at some time unit ¢, then
the optimal schedule has at least w — 7" jobs on the same
vertex at time .

Proof: See the Appendix. |
Theorem 2.2: OJF is 2-competitive.

Proof: We will prove that, for any L, if the schedule
generated by A* for L has maximum latency 7', then OJF will
generate a schedule that has latency at most 27". As long as
the two conditions specified in the lemma are maintained, there
can never be an arc of weight 27" 4 2 or more as algorithm OJF
runs, since otherwise (by the lemma) there would be an arc of
weight at least 7'+ 2 and then the schedule produced by A*
would have a latency of at least 7"+ 1 on some job. Therefore,
OJF never has more than 27 + 1 jobs on an arc, and when
job j arrives on vertex [, there are never more than 27" other
jobs on any arc going into to [. Let X be the number of jobs
already on [when the job j arrives, i.e., 0 < X < 2T There
are at most 27" — X jobs on any vertex on the right side. Once
the left side has been chosen x times by OJF, 5 will be the oldest
job on vertex [; therefore, it will be scheduled the next time the
left side is chosen by OJF. If we can prove that the right side
is not chosen more than 27" — X times before j, then we know
that j incur latency at most 27" before it is scheduled. After the
right side has been chosen 27" — X times, if j has not yet been
chosen, then the left side has the oldest job in the system. This
gives us our result. |

The given discussion shows that, if we can do the reduction
from vehicular traffic scheduling to job scheduling correctly,
we can employ the OJF algorithm to generate schedules that
will then be applied to schedule vehicular traffic at intersections
while maintaining the 2-competitive performance bounds.

B. Optimality of the OJF Algorithm

Here, we prove that the algorithm presented earlier obtains
the optimal competitive ratio. We adopt the proof for a bipartite
graph with n vertices given in [17]. The method is based on an
adversary technique in which the adversary creates a sequence
of job arrivals based on the behavior of the online algorithm. At
the beginning of each time unit, the adversary can determine
how many jobs arrive and on which vertices of the conflict
graph. After the entire job sequence has been determined, the

TABLE 1
SEMANTICS OF NOTATIONS USED IN THE OJF SCHEDULING ALGORITHM

vertices u, v conflict

L A sequence of jobs where for job j € L, job j arrives at the start of time unit
t=a;

A The optimal off line job scheduling algorithm

G = (V,E) | The conflict graph shown in Figure 2. V is the set of vertices and E is the
set of arcs

3 The Bipartite graph in Figure 3 formed by merging equivalent vertices in G

1% A set of vertices such that for each traffic movement v, there exists vertex v
inV

E A set of arcs such that (u,v) € V iff the traffic movements corresponding to

adversary then can determine a schedule for the jobs in an
offline manner. The adversary tries to create the worst sequence
possible for the online scheduling algorithm. The cost of the
online algorithm is then compared with the cost of the adversary
determined offline algorithm. For a four-leg intersection, we
consider to reproduce the same proof for the much easier case
of n = 4, which makes the proof shorter.

Lemma 2.3: For example, OJF is an arbitrary scheduling
(online) algorithm. Suppose that, at the end of time unit ¢, the
adversary has no jobs and OJF has ¢ jobs on a single arc (I,).
Then, the adversary can create a sequence of jobs where OJF
has an arc of weight 7 + 1 while the adversary has no jobs left
on any vertices. Furthermore, the adversary never has a job with
latency more than i + 1.

Proof: See the Appendix.]

Theorem 2.4: For the case of bipartite conflict graphs, there
is no online algorithm, which is c-competitive with ¢ < 2.

Proof: Let OJF be an arbitrary scheduling (online) algo-
rithm. We will show that, for 7', an adversary can force the
algorithm to have a job of latency at least 27", whereas the
adversary only has a latency of at most 7.

Let 5 vary from O to 7" — 1. The algorithm will start each
phase with j jobs on an arc. Lemma 2 is used to obtain an arc
with j + 1 jobs. At the end of the whole process, OJF has an
arc, e.g., (I,r), with T" jobs, whereasthe adversary’s graph is
empty. For the next T" time units, the adversary has a job arrive
on [and r. By always scheduling the oldest job, the adversary
never has a latency value of more than that of OJF. OJF, on the
other hand, will have 27" + 1 jobs on arc (I,) and must incur a
latency of at least 27". This proves the theorem. |

We have proved in Theorem 2.2 that OJF is 2-competitive on
G, i.e., the bipartite conflict graph. Thus, we need to prove that
OJF is also 2-competitive on G, i.e., the original conflict graph.
This is proven in lemma 2.5 as follows.

Lemma 2.5: Suppose that OJF produces a maximum delay
of 2L on G'. Then, an optimal job scheduling algorithm on G
will produce a maximum delay of at least L.

Proof: Since OJF produces a maximum delay of 2L, using
Theorem 1, we know that the optimal algorithm on G’ produces
a maximum delay of at least L. Suppose there exists an optimal
algorithm that produces a maximum delay of less than L on G.
Because of the way we did the reduction from G to G’ and the
fact that only one job can be scheduled at a time whenever there
is a conflict, this optimal algorithm on G can also be applied on
G’ to produce a maximum delay of less than L. This contradicts
Theorem 1. Hence, the optimal algorithm on GG will produce a
maximum delay of at least L. |

III. VEHICULAR AD HOC NETWORK-BASED
TRAFFIC INTERSECTION CONTROL

Here, we show how we implemented the platooning phase
(phase one) of the OAF algorithm and how we implemented
the other traffic light control schemes, such as the vehicle-
actuated logic and Webster’s method using VANETSs. We first
explain some of the terms used in describing our adaptive
traffic control algorithms that may differ slightly from their
conventional definitions.

e MAX-OUT: The maximum amount of GREEN time that

can be allocated to the current phase.

* GAP-OUT: If a vehicle is more than the GAP-OUT units
of time away from the stop line, then the signal goes to the
next phase.

e EXTENSION: If a vehicle is detected less than GAP-OUT
units of time away from the stop line, then the GREEN
time is extended by EXTENSION units of time.

A. System Description

In this paper, we only study an isolated intersection. Fig. 1
shows the single traffic intersection under consideration. It is a
typical four-leg intersection with eight traffic movement groups
represented by the arrows. Each of the legs of the intersection
is L meters long, and each of the left turning bays is B meters
long. The numbered arrows show the directions of the various
traffic movements. For this type of traffic intersection, we
now describe the system architecture of the VANET-based
traffic signal controller. In the single traffic intersection
scenario, the traffic signal controller is connected to a wireless
receiver that is placed at the intersection. The wireless receiver
listens to information being broadcast from the vehicles. The
broadcast medium is the 5.9-5.95-GHz radio spectrum, and
the communication standards are defined in the IEEE 802.11p
standards [19]. This system architecture is shown in Fig. 4.
The information consists of speed and position data collected
from vehicles. Speed data can be gathered from the vehicle
speedometers, and position data can be gathered using GPS
receivers fitted to the vehicles. In our implementation, the
following data are gathered and encapsulated in data packets
that are broadcast over the wireless medium. This is what we
call the data dissemination phase.

e Vehicle ID: Every vehicle is uniquely identified by its
Vehicle ID#. In our traffic simulator SUMO, every vehicle
is identified by a unique unsigned integer. In practice, the
medium access control (MAC) address of the network

=0

Fig. 4. VANET-based traffic signal control architecture.

interface card in the wireless receiver would serve the
same purpose.

e Location: In SUMO, the location of each vehicle is speci-
fied by the LINK NUMBER#, Lane#, and position from
a point of reference. The position from a point of ref-
erence is a subfield containing (x, y), which are floating
point quantities. We chose to use the stop line as a point
of reference; therefore, the stop line has position (0, 0)
for each Link Number# and Lane#. Thus, collectively,
these three fields describe vehicle location. In practice,
it is assumed that each vehicle is equipped with a GPS
receiver; therefore, vehicles always know their locations. It
is possible to convert the GPS coordinates of each vehicle
to the format that we described earlier. We will show later
that we can compute the distance from each vehicle to the
stop line from this information.

e Speed: Speed of a vehicle is a floating point quantity
expressed in meters per second and is obtained from the
in-vehicle speedometer sensor.

e Current Time: The time at which the packet was created.
The format is (hh:mm:ss). Because of the nature of the
traffic control application, there is no need for a finer grain
time. However, we need to assume that all clocks are
synchronized. The current time is required to distinguish
between old packets and new packets.

After the data dissemination phase, we have the data aggre-
gation and processing phase where we actually make use of the
transmitted information to do traffic signal control. The pro-
cessing logic that does this consists of the adaptive traffic signal
control algorithms, such as the adaptive Webster’s method and
the vehicle-actuated traffic control algorithm. These algorithms
are contained in the traffic signal controller. The details of the
data aggregation phase and the processing phase are closely
linked with the type of adaptive traffic signal control algorithm
used, and we describe these details in Section IV.

B. Platooning Algorithm

In Section II, we obtained the lower bounds on how well
an online algorithm can perform when it comes to minimizing
the maximum latency. These lower bounds were achieved by
an online algorithm that had no knowledge of future inputs.

Can we use information gathered from the VANET to obtain
future knowledge of traffic and use this to obtain a better-than-
2-competitive algorithm? Unfortunately, this is unlikely; since
due to radio range limitations, the VANET can only provide a
relatively myopic view of the future, and in the long run, we
will fall back to a 2-competitive performance. However, we can
use the information from the VANET in a different way. One
of the conditions under which the performance bounds hold
is that all jobs, which represent platoons of vehicles, are of
equal size and hence require equal processing time. This means
that, for the OJF algorithm to be effective, all platoons must
require equal amounts of time to pass through the intersection.
We can achieve this requirement by using the vehicle position
and speed data obtained via the VANET to compute the spatial
headways between the vehicles. We can then divide the vehi-
cles into platoons using this headway information, where each
platoon takes equal amount of time to pass through the intersec-
tion. This platooning phase will be the phase one of the OAF
algorithm, with the OJF being phase two of the OAF algorithm.

In addition, in our job scheduling transformation, we as-
sumed that a job completes at the end of the slot in which
it is scheduled. Under this assumption, the OJF scheduling
algorithm produces optimal schedules. However, if we treat
each vehicle as a job (platoons of size 1 vehicle) and apply
the OJF scheduling algorithm, then in the worst case, the OJF
algorithm would behave similar to a stop sign and produce very
high delays. This is because there is a delay experienced by
vehicles as they accelerate through the intersection once they
are scheduled, which is called the startup delay. By scheduling
platoons that contain a large number of vehicles, we can amor-
tize the startup delay over a large number of vehicles.

To solve the two problems discussed earlier, we propose to
formulate an optimization problem that decides platoon sizes
with the objectives being the following.

1) Select the platoon size that minimizes the difference in

times required to service platoons of vehicles.

2) Maximize the size of the platoons.

The way we solve this optimization problem is to estimate
the amount of GREEN time that a platoon needs and find the
platoon configuration that minimizes the difference between the
maximum and minimum GREEN times for that configuration.
We can estimate the GREEN time necessary to service a
platoon as follows.

e If platoon has stopped at the stop line: Green time =
start-up time + time for platoon to pass through the inter-
section.

e If Platoon is in motion: Green time = time for platoon
vehicles to pass through the intersection.

We can estimate the time for a platoon to pass through the

intersection as

L5+hi+-+h, ey

where the h; values are the headways of the 1 < ¢ < n vehicles
in the platoons, and 1.5 is a constant that accounts for the startup
delay of the very first vehicle in the platoon. Headways are
defined as either the distance between two vehicles or the time
between two vehicles. We define the headway h; as the time

Fig. 5. Traffic signal phase sequence for the VANET-based vehicle-actuated
traffic signal control. The numbers refer to the traffic movements shown in
Fig. 1.

between vehicle ¢ and ¢ + 1 in a platoon. We can estimate h; by
measuring the distance between vehicle 7 and vehicle ¢ + 1 and
divide by the current speed of the vehicles.

The platooning algorithm is an exhaustive search over all
the platoon configurations to determine the platoon combina-
tion that minimizes the difference between the maximum and
minimum GREEN times. For n vehicles, we first generate
all the platoon combinations using IntegerPartitions[n], which
generates all partitions of an integer n. Each partition represents
a platoon configuration. For example, n = 10, then a possible
partition is 3, 2, 2, and 3, which would represent a platoon con-
figurations containing platoons of size 3, 2, 2 and 3. Since the
vehicles arrive on a leg of the intersection, only a platoon size is
required to identify a particular platoon. The constraint on the
search result is that the maximum service time for a platoon in
the configuration is less than or equal to MAXGREEN. Once
the platoon size of the head-of-line platoon is determined, it
does not change. The head-of-line platoons are then scheduled
using the OJF scheduling algorithm shown in Algorithm I.
We show that the platooning algorithm in Algorithm 2, where
Estimate_Green_Time(j) is computed from (1).

Algorithm 2 Platooning Algorithm

for each approach k do
Configuration = IntegerPartitions(n)
for each platoon configuration i in Configuration do
for each platoon j in i do
Platoon_Green_Time[j] =
Estimate_Green_Time(j);
Add Platoon_Green_Time[j] to the list
Config_Green_Timel[i, k|;
Min_Diff =
Min;eg p—q1,....4) {max{Config_Green_Timel[s, k]} —
min{Config_Green_Timel[i, k|} };
Final_Platoon_Configuration =
arg min;ey, p—(1,... 4} {max{Config_Green_Time[i, k]} —
min{Config_Green_Timel[i, k] }};

C. Vehicle-Actuated Traffic Signal Control

Here, we explain how the vehicle-actuated traffic signal
control method is implemented in a VANET environment.
Fig. 5 shows the phase sequence of the traffic signal controller.
We initialize the traffic signal controller to the initial phase

and initially set the EXTENSION time for the phase to O.
Next, we search for a vehicle that is closest to the stop line by
examining the location field of all the vehicles. We compute
the approximate traveling time to the stop line using the
Compute_Traveling_Time() function as follows. The packet
broadcast by the closest vehicle contains its position and
speed data. These data are extracted, and since the position
data consist of a Cartesian coordinates, we can compute the
Euclidean distance of the vehicle from the stop line. Given
the distance of a vehicle from the stop line, we can use the
current speed information to compute the traveling time to the
stop line. This traveling time is an approximation of the actual
traveling time. If the vehicle closest to the stop line indicates a
speed of 0, Compute_Traveling_Time() returns a traveling time
of 2 s [28]. We set variable GAP to be equal to the traveling
time returned by Compute_Traveling_ Time(). If GAP is less
than GAP-OUT, then the phase is the allocated EXTENSION
units of GREEN time. If there is no close vehicle, then all
packets received from vehicles would indicate that all vehicles
are more than the GAP-OUT amount of time away from the
stop line, and the signal controller would GAP-OUT and go to
the next phase, indicating 0 GREEN time.

The magnitude of the EXTENSION is set to EXTENSION +
GAP. Then, the GAP for the next closest vehicle is computed
using Compute_Traveling_Time(), and the process is repeated.
The EXTENSION accumulates while it is less than or equal
to MAX-OUT. Once it crosses the MAX-OUT threshold, the
signal controller switches to the next phase. The RED plus
GREEN times are set to 5 s. Fig. 5 shows the sequence of
phases. The sequence of phases is represented as a graph.

This represents the set of vertices consisting of the phases,
which are pictured as the square boxes in Fig. 5. Each phase
is a combination of traffic movements represented by the num-
bers within the square boxes. The edges between the vertices
represent phase transitions.

D. Webster’s Method

Webster’s algorithm [29] is the most quoted method of
determining a delay minimizing cycle time or evaluating delay
for a cyclic fixed signal control scheme. In the Webster’s
algorithm, simulation tools are used to generate random
vehicle arrival times to the intersection at a given average
arrival rate. Arrivals to the stop line are added to a queue
estimate and dispersed during the effective GREEN time at a
constant departure rate called the saturation flow rate. Delay is
calculated as the integral of the queue over the cycle, and an
average value is obtained by dividing the delay by the volume.
Webster used the result of simulation analysis to deduce a
model of average delay per vehicle as a function of the cycle
time, GREEN split, saturation flow rate, and arrival rate. In
particular, the average delay per vehicle on the particular leg of
the intersection, which is denoted by d, is given by

(1 =) x?

d=
2(l—Xz) 2¢(l —x

c 0.5
)—0.65 (q2) 22T ()

where c is the cycle time; A is the proportion of the cycle,
which is effectively GREEN for the phase under consideration;

1466

q is the flow rate; s is the saturation flow; and x is the degree of
saturation. This is the ratio of the actual flow to the maximum
flow that can be passed through the intersection. The first two
terms are theoretically derived, and the last term is a correction
factor to account for the difference between empirical and
theoretical results. The first term is the delay for uniform
arrivals, and the second term is the additional delay for Poisson
arrivals [24].

In this paper, we consider a simplified alternative, suggested
by Webster, where the third term is dropped, which generally
reduces the value by about 5% to 15%, and 0.9 is multiplied by
the sum of the first two terms [24]. Among approaches served
by a given phase, the approach with the highest degree of satu-
ration is often referred to as the critical lane group or the critical
movement. The following equation gives the delay minimizing
cycle time as a function of lost time per cycle and critical move-
ment saturation levels. The optimal cycle time C, is given by

1.5L+5
Co= """ (3)
where y; is the degree of saturation for the critical movement
relative to phase 4, Y =), y; for all phases ¢; and L is the total
lost time per cycle. This is the sum all-red clearance intervals
and lost time (due to startup or yellow) over all phases in the
sequence. Phases are allotted GREEN time in proportion to the
degree of saturation on their corresponding critical lane groups.
This simple rule, known as the critical movement approach,
has been found effective in minimizing vehicle delay.

We have extended Webster’s method to make use of the data
collected by the wirelessly enabled vehicles. This works by
measuring traffic flow on each of the lanes of the intersections.
The optimal cycle times are computed using the expression
given, and the optimal GREEN time G; is given by
(C - L)y

Gy = =% 4
>0 4)

One parameter that needs to be chosen is the length of the
interval during which to measure the traffic flow. During pe-
riods of high variance of flow, we choose short intervals (5 min
in our experimental studies) and longer intervals (2 h) when
the variance is low. We can also choose to measure traffic
flow during a cycle, e.g., C;, and then use the data collected
to determine the length of the next cycle ¢;41. However, our
results show that there is negligible difference between this and
a measuring interval of 5 min.

IV. SIMULATION MODEL

We have developed a simulator that integrates a vehicular
traffic simulator and a wireless network simulator to produce a
closed-loop simulation environment. The vehicular traffic sim-
ulator is the SUMO traffic simulator [3], [5], which is a space
continuous microscopic simulator for vehicular traffic. The
SUMO simulator is a C++-based open-source highly portable
microscopic road traffic simulation package designed to handle
large road networks. The underlying vehicular traffic model
has been validated in [22]. The wireless network simulator is

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 62, NO. 4, MAY 2013

the OMNET++/INET [4] wireless network simulator, which
is a component-based modular open-architecture discrete-event
network simulator implemented in C++. One important reason
for choosing OMNET is that it implements the IEEE 802.11p
standard at both the physical and the MAC layers.

To connect the discrete-event simulator OMNET++/INET
with the continuous simulator SUMO, we used the TRACI
interface [6]. SUMO runs as a process that cannot be accessed
during the execution of a simulation step. TRACI uses a
client/server architecture; SUMO is configured as a server, and
using methods provided by TRACI allows client applications to
connect SUMO to TRACTI, providing access to SUMO. The ar-
chitecture is actually based on Transmission Control Protocol/
Internet Protocol (TCP/IP); therefore, applications connect to
SUMO via a TCP socket. The client send commands to SUMO
to control the simulation run, to influence a single vehicle
movement, or to request for environmental details. SUMO
responds with a status response to each command and a traffic
trace after executing a single step. Both the commands to
SUMO and the traffic traces from SUMO are transported using
TCP. Each TCP segment consists of a small header that gives
the overall message size and a set of commands or traffic traces
contained in the segment. As shown in Fig. 6, TRACI can be
used to allow a connected OMNET++ instance to send a series
of commands to the traffic signal controller, influencing the
mobility of SUMO vehicle instances.

Every vehicle in SUMO is mapped to a mobile node in
OMNET++. We have extended OMNET++ with a module
that allows creation of new nodes as vehicles are injected
into SUMO, deleting nodes when their corresponding vehicles
reach their destination and reflecting the movement of their
corresponding vehicles in SUMO. SUMO executes in discrete
time steps, and the traffic trace generated by SUMO is parsed
by a manager module. The manager module then communicates
the traffic trace to the OMNET wireless nodes. OMNET then
executes one time step, and the wireless packet delivery trace
generated by OMNET is parsed by the data aggregation mod-
ule. It is the data aggregation module that actually generates
the traffic light commands that are sent to the traffic simulator.
Therefore, in our implementation, the data aggregation mod-
ule encapsulates the adaptive traffic signal control algorithms
for the traffic lights. The timing sequence diagram of these
events is shown in Fig. 6. OMNET++ also uses the TRACI
interface to send the vehicle control information in the form
of TRACI commands, as shown in Fig. 6. The commands here
are SIM_SIGNAL_GREEN and SIM_SIGNAL_RED, which
identify a traffic signal controller and make it cycle through its
phases. During the simulation, at regular intervals, the manager
module triggers the execution of one time step of the road traffic
simulation, receives the resulting mobility trace, and triggers
position updates for all wireless nodes it has instantiated.

A. Vehicular Traffic Simulation Parameter Set

The four-leg traffic intersection is the most commonly found
intersection, and it is also considered to be a canonical in-
tersection used in most studies. We set the following vehic-
ular traffic characteristics in our simulations. There are four

OMNET++ Process

TRACI Interface

SUMO Process

TCP Packet

OMNET Execution
Step

Data
Aggregation

v

Comput
ation
Subproc
ess

Traffic Signal

v Controller

V2

TCP Packet

A
Packet

Update
Wireless
Node
Positions

MAC
Packet |

Netw4

Protocol
Stack

:>_

(
MAC
Packet

New Wireless

Traffic Light Schedule

SUMO
Execution
Step

Traffic Signal
Controller

Vi V2

Old Position

V2

New Position

Node Positions ‘

Vehicular Traffic Mobility Trace (TCP Packets) ‘

‘ Manager Module ‘<
|

OMNET
Execution Step

Data

., Traffic Signal
Aggregation

v2 Controller

> Vn

V1

Update
Wireless
Node

[V
A 4

MAC

TCP Packet

TCP Packet

Comput
ation
Subproc
ess

MAC
Packet

Positions Packet

=

MAC
Packet

SUMO
Execution
Step

Fig. 6. Sequence diagram of TRACI message exchange between SUMO and OMNET++. OMNET++ acts as a application connecting to SUMO via a

TCP socket.

approaches, which are referred to as the north, south, east, and
west approaches. The saturation flow for each lane in the link
is 1800 vehicles/h, and the approaches are 1000 m long. We
modeled the vehicular traffic arrival process first as a Poisson
arrival process and second as a uniform arrival process. For the
Poisson arrival process, vehicles were injected at the beginning
of each approach, following a Poisson distribution with rate \.
Thus, the vehicle interarrival times are exponentially distributed
with inverse rate parameter r, where r = AL Similarly, for the
uniform arrival process, vehicles were injected at the beginning
of each approach where the interarrival time follows a uniform
distribution on (0, 1) x 2A\~1. Again, there is a 0.15 probability
that a vehicle makes a left turn and enters the left-turn bay.

We conducted experiments under four traffic conditions. In
the first condition, we have model the traffic arrival as a Poisson
arrival process with identical traffic arrival rate on all four
approaches to the intersection, and we vary the traffic arrival
rates. We called this the homogeneous traffic condition. We
classified traffic arrival rates into three categories: heavy with
A = 1700 vehicles/h, medium with A = 800 vehicles/hour, and
light with A = 400 vehicles/h. We start at light traffic arrival
rate and then increase the traffic arrival rate as the simulation
continues. All Vehicles are of the same type. In our second
traffic condition, we model the traffic arrival as a Poisson arrival
process, keep the arrival rate on the north and south approaches
at A = 800 vehicles/h, and vary the traffic arrival rates on the
east and west approaches. We call this the heterogeneous traffic
condition. In the third traffic condition, we model the traffic
arrival process as a Poisson arrival process, and we have a

very low arrival rate, i.e., A = 100 vehicles/hour, on the north
and south approaches and vary the traffic on the east and west
approaches. In our fourth traffic condition, we model the traffic
arrival process as a uniform arrival process with identical traffic
arrival rate on all four approaches to the intersection, and we
vary the traffic arrival rates.

B. Wireless Network Simulation Parameters

As aforementioned, the wireless network simulator imple-
ments the IEEE 802.11p. The mobile nodes transmit messages,
encapsulated in MAC packets, to the traffic signal controller
that include the following information: vehicle ID, location
of the vehicle, speed, and current time. The size of the MAC
packets transmitted, including overhead, is 2 kB. Transmission
rate was set to 0.1 Mbps, which corresponds to 50 packets/s.

V. RESULTS AND DISCUSSION

We compare the performance of the OAF algorithm against
the VANET-enabled vehicle-actuated control, VANET-enabled
Webster’s method, and an optimized fixed-time signal control.
For the fixed-time approach, the controller has been optimized
for the current traffic parameters, following the guidelines in
[7]. The timing parameters were 60 s of GREEN for the through
traffic and 30 s of GREEN for the left turning for the heavy
traffic condition, 40 s of GREEN for the through traffic and 20 s
of GREEN for the left turning traffic for the Medium traffic
condition, and 35 s of GREEN for the through traffic and 15 s

150
|

Light |Medium| Heavy Traffic

Light Traffic —©— OAF
—&— Vehicle Actuated
—+— Webster's
—%— Pre~timed

100
|

Average Delay per Vehicle (seconds)

T T T
0 50 100 150
Simulation Time (minutes)

Fig. 7. Performance of OAF algorithm compared with other VANET-based
traffic signal scheduling methods when all four approaches have equal vehicle
arrival rates.

of GREEN for left turning traffic for the light traffic. We also
tested the effectiveness of the platooning algorithm, which is
part of the OAF signal control algorithm.

A. Comparison of Traffic Signal Control Methods During
Homogeneous Traffic Arrival Rates

In our first experiment, we have homogeneous traffic arrival
rate on all four approaches to the intersection, and we vary the
traffic arrival rates. Fig. 7 shows the performance of the OAF in
comparison with the vehicle-actuated logic, the pretimed logic,
and the Webster’s logic. The performance parameter that we
measured was the average delay per vehicle in terms of seconds,
and we plot this delay value at 5-min intervals for all the traffic
signal control methods.

The labels light, medium, and heavy indicate the time in-
tervals during the simulation with different traffic arrival rates.
We started out the simulation at a light traffic arrival rate, and
20 min into the simulation, we switched to the medium traffic
arrival rate. At the 40-min mark, we switched to a heavy arrival
rate, and at 75 min mark, we switched to the light traffic arrival
rate, and let the simulation run to the 160-min mark. We can
see that, at every instant, the OAF Algorithm performs better
than both Webster’s and the pretimed algorithm. During a heavy
traffic arrival rate, we see that the OAF algorithm degenerates
to the vehicle-actuated control since the MAX-OUT times for
both the OAF algorithm and the vehicle-actuated algorithm
become the same. However, when we switch back to the Light
traffic arrival rate, we see that the OAF Algorithm recovers
from congestion much faster; hence, the delays experienced
decreased much faster. This is because the OAF algorithm is
able to take advantage of the gaps that occur among vehicles
and create platoons, and then, it minimizes the maximum delay
that each platoon experiences. The delay is then amortized
among all the vehicles in the platoon. In effect, it is much more
efficient at discharging the queues. Intuitively, this is because
Webster’s method and the pretimed control method both react
very slowly to the changes in the traffic arrival rate.

150
1

Light OAF
—A— Vehicle Actuated
—+— Webster's

—%— Pre~timed

Medium| Heavy Traffic Light Traffic

100
1

7

Average Delay per Vehicle (seconds)

T T
0 50 100 150
Simulation Time (minutes)

Fig. 8. Performance of the OAF algorithm compared with other VANET-
based traffic signal scheduling methods when north—south approaches have
constant (800 vehicles/hour) arrival rates and east-west approaches have a
varying vehicle arrival rate.

o
0 —
-

Light |Medium| Heavy Traffic

Light Traffic —— OAF
—A— Vehicle Actuated
—+— Webster's
—*— Pre-timed

Average Delay per Vehicle (seconds)

: 10

T T T T
0 50 100 150

Simulation Time (minutes)

Fig. 9. Performance of the OAF algorithm compared with other VANET-
based traffic signal scheduling methods when north—south approaches have
constant (100 vehicles/hour) arrival rates and when the east-west approaches
have a varying vehicle arrival rate.

B. Comparison of Traffic Signal Control Methods for
Heterogeneous Traffic Arrival Rates

Next, we study the performance of the OAF and the other
three traffic control algorithms for the case with heterogeneous
traffic arrivals. We set up the experiment in the following way.
In Figs. 8 and 9, the east-to-west traffic and the west-to-east
traffic are set at 800 and 100 vehicles/h, respectively, but the
north-to-south traffic and the south-to-north traffic vary from
400 (light), 800 (medium), and 1700 (heavy) vehicles/h and
then back to 400 (light) vehicles/h. Once again, there is a 0.15
probability that a vehicle makes a left turn. Once again, we
compare the average delay per vehicle of the OAF algorithm
and the vehicle-actuated traffic control algorithm against the

120
|

Light [Medium| Heavy Traffic Light Traffic —=— OAF
—&— Vehicle Actuated
—+— Webster's

—*— Pre—timed

100
|

80
1

Average Delay per Vehicle (seconds)
60
1

T T T
0 50 100 150

Simulation Time (minutes)

Fig. 10. Performance of the OAF algorithm compared with other VANET-
based traffic signal scheduling methods when all four approaches have equal
vehicle arrival rates, and the arrival process is modeled by a uniform arrival
process.

Webster’s and pretimed traffic signal control methods. Again,
the OAF outperforms all the other three algorithms. Because of
the lower variance in the traffic arrival rates, the delay curves
are flatter than in the identical traffic arrival rate experiment,
and the overall delays are lower for all the traffic signal
control methods. The OAF and vehicle-actuated traffic control
algorithms perform better than both Webster’s method and
the pretimed logic. However, because of the slower variance
of the traffic arrival rates, the vehicle-actuated traffic control
algorithm exhibits a flatter average delay curve.

C. Comparison of Traffic Signal Control Methods for Identical
Traffic Arrival Rates Modeled as a Uniform Arrival Process

Fig. 10 shows the performance of the OAF in comparison
with the vehicle-actuated logic, the pretimed logic, and the
Webster’s logic under a uniform traffic arrival process. The
performance parameter that we measured was the average delay
per vehicle in terms of seconds, and we plot this delay value
at 5-min intervals for all the traffic signal control methods.
OAF performs better than the other traffic control methods
and achieves delays comparable with the Poisson arrival case,
indicating that no assumption on the traffic arrival process is
needed to achieve good performance.

D. Performance of the Platooning Algorithm

The performance of the OAF algorithm depends on the
ability of the platooning algorithm to divide the vehicular traffic
on the approach into platoons that require equal amounts of
GREEN time. We show the distribution of the platoon size
generated by the OAF algorithm in Fig. 11 for different traffic
arrival rates. Here, at an arrival rate of 400 vehicles per platoon,
we see that 33% of the platoons were platoons of size 4, 45%
were platoons of size 5, and 22% of the platoons were of size 6.
This implies that the platooning algorithm produces approx-
imately equal-sized platoons, which is a necessary condition
for the OAF algorithm to maintain the 2-competitiveness of the

e |
—&— 400 vhpl
—4A— 800 vhpl
—— 1700 vhpl
o _|
o
Q|
o
[
o
o
<
o
N
o
= A
o
T T T T T T T
0 5 10 15 20 25 30
Platoon Size (Number of Vehicles)
Fig. 11. Platoon size distribution under identical traffic arrival rate.

OJF algorithm. The figure shows that, at relatively heavy traffic
arrival rates, we see platoons containing approximately equal
number of cars, and they take approximately equal amount of
GREEN time to pass through the intersection. For the OAF
algorithm to perform well, we want to see this desired property
in order for the real performance to approach the theoretical
bound.

E. Performance of OAF Under Varying Penetration Rates

We define the penetration rate as the proportion of vehicles
that are VANET enabled. The OAF algorithm depends upon
the vehicle speed and position data to form and detect platoons;
therefore, if some proportion of the vehicles are not detected,
then we expect a reduction in performance. An example of this
would be a VANET-enabled vehicle that is waiting at the end
of a long queue of vehicles that are not VANET enabled. Then,
this vehicle would be in a one-vehicle platoon, which is at the
head of the line. Then, when the OAF algorithm schedules this
platoon, all the vehicles in front of the platoon would need to
clear the intersection before the platoon can pass through the
intersection. This creates nondeterministic delays that severely
reduce the effectiveness of the OAF algorithm. To quantify
these delays we tested the performance of the OAF algorithm
at various penetration rates: 90%, 70%, 50%, and 30%. We
compare the delays produced under these scenarios with the de-
lays produced under the 100% penetration scenarios in Fig. 12.
We consider a homogeneous traffic condition, and we vary the
traffic arrival rate during the course of the simulation.

The results in Fig. 12 show that, under a 90% penetration
rate, the delays produced by the OAF algorithm are the same
as those produced under the 100% penetration case while the
traffic arrival rate is heavy. There is, however, a degradation
in performance under light and medium traffic arrival rates.
This is because, when we have a heavy traffic arrival rate, the
platoons formed by the OAF algorithm, under 90% penetration
rate, require approximately equal amounts of GREEN, but this
is not the case for light and medium arrival rates. As we further

150
1

Light [Medium| Heavy Traffic Light Traffic —=— 100% Penetration

—&— 90% Penetration
70% Penetration
50% Penetration
30% Penetration

——
——
—

100
!

Average Delay per Vehicle (seconds)
50
|

T T T T
0 50 100 150

Simulation Time (minutes)

Fig. 12. Average delays produced by the OAF algorithm under various
penetration rates.

reduce the penetration rate, we see increasing delays being
produced by the OAF algorithm. Particularly at a 30% pene-
tration rate, the delays experienced by vehicles are even higher
than the delays produced by a nonadaptive fixed-time signal
controller. This is because, at 30% penetration, we observe large
numbers of vehicles that are not grouped into a platoon. The
OAF algorithm assigns the MINGREEN amount of green time
for all traffic phases, whereas the pretimed algorithm assigns
the GREEN amount of green time computed using Webster’s
method, following guidelines in [7]. To compute this value, we
need to measure the traffic arrival rate, which we would not
be able to accurately estimate at 30% penetration. In the OAF
algorithm, MINGREEN was set to 15 s, resulting in stop-and-
go traffic that showed increased amount of startup times. This
is why, at 30% penetration, the pretimed method performed
better. If MINGREEN was suitably computed, then the OAF
method would perform at least as well as the pretimed method.
This indicates that the OAF method is not suitable under low
penetration rates.

VI. CONCLUSION

In this paper, we have shown how a VANET can be used
to aid in traffic signal control, including a new job-scheduling-
based online algorithm, i.e., the OAF algorithm. We imple-
mented several adaptive traffic signal control algorithms that
use the fine grain information broadcasts by the vehicles. We
implemented and compared these algorithms under various
traffic conditions. Our experimental results show that the OAF
algorithm reduces the delays experienced by the vehicles as
they pass through the intersection, as compared with the other
three methods under light and medium vehicular traffic loads.
Under heavy vehicular traffic load, the performance of the
OAF algorithm degenerates to that of the vehicle-actuated
traffic method but still produces lower delays, compared with
Webster’s method and the pretimed signal control method.
This is because, under lighter traffic, the OAF algorithm can

dynamically skip through phases and minimize the delay of
vehicles whenever there is a gap in the traffic. However, when
the traffic gets heavier, the gaps in traffic disappear, and we
always have queues on the approaches, reducing the advantage
that a dynamic scheduling algorithm may have.

APPENDIX A
PROOF OF LEMMA 2.1

The proof is by induction. Assume that OJF has maintained
the two conditions up to and including time ¢ — 1. Therefore,
at the beginning of time ¢, they are still maintained. We will
prove that, after new jobs have arrived and scheduled by both
OJF and A*, the conditions will still hold at the end of time ¢.
(Therefore, they also hold at the beginning of time ¢ + 1.) Let [
be the vertex in G’ with the oldest job at the beginning of time ¢.
If OJF has at least one job on [’ at the start of time unit ¢, then it
schedules a job from both arcs connected to [and both arcs con-
nected to I/, and condition 1 will still hold at the end of time t.
Notice that A* can only schedule one job from each arc in one
time unit.

On the other hand, for OJF, if there are no jobs at the
beginning of time ¢ on I, then if condition 2 is satisfied at
the end of ¢, we are guaranteed that condition 1 will also be
satisfied. If there are at most 7" jobs on a vertex on the right side
for OJF, then Condition 2 holds; therefore, the only problem
with guaranteeing condition 2 is if OJF has a vertex on the right
side with at least 7'+ 1 jobs. For example, r is this type of
vertex (symmetrically, we can argue for 7). For example, OJF
has X jobs on [, and Y jobs on r at the start of time unit .
Therefore, in the schedule output by A*, by the inductive
hypothesis, there are at least (X +Y —T) jobs on the arc
(I,7), and of these jobs, at least Y — T jobs are on .

We will now prove that the A* schedule has at least Y — T’
jobs on r at the end of time unit ¢. This maintains condition 2.
There are two cases.

Case 1: OJF has job j on [with latency of at least 7" at the start
of time unit ¢. If the schedule generated by A* still has j
on [, it must schedule that one; therefore, Y — T jobs will
remain on r at the end of time ¢. Suppose that the optimal
schedule does not still have job j on (. First, there can be
no more than X — 1 arrivals on [in the last 7" — 1 units
of time. This is because OJF has at most X — 1 jobs that
are more recent than j, and OJF would not schedule any
of these over job j. Therefore, the schedule generated by
OJF can have at most X — 1 jobs on [/, and this means that
it has at least Y — 7"+ 1 jobs on r at start of time unit ¢.
Therefore, at least Y — 7' jobs remain at the end of time
unit ¢.

Case 2: OJF does not have a job on [with latency of at least 7’
at the start of time ¢t. Remember that [has the oldest job;
therefore, OJF does not have a job on r with latency of
at least T'. Therefore, Y jobs have arrived on r in the last
T — 1 time units. A* (in fact any algorithm) could only
have scheduled at most 7' — 1 of these by start time unit ¢.
This means that the optimal schedule has at least Y + 1 —
T jobs on r before time ¢ and at least Y — " jobs at the end
of time unit ¢. u

APPENDIX B
PROOF OF LEMMA 2.3

The adversary creates jobs on both [and r until the OJF has
i+ 1 jobs on [or on y. This will happen by the beginning of
some time unit ¢’ <t + 4 + 1. Suppose that [is the vertex on
which the OJF has 7 + 1 jobs. The adversary can schedule the
jobs with a maximum latency cost of at most ¢ + 1 so that,
after time ¢/, [is empty. The adversary can do the following.
Complete all jobs on its own graph while at the same time
forcing the OJF to keep ¢ + 1 jobs on an arc. Let 7 be the vertex
on the right side of the graph, noting that 7’ # r. For the next
7+ 1 time units, the adversary has a job arriving on r/. The
adversary schedules the oldest job on r and the new job on 7.
After the ¢ + 1 time units, the adversary’s graph is empty. Since
a job arrived on r in each time unit, OJF still has ¢ 4+ 1 jobs on
arc (1,7). |

REFERENCES

[1] The City of Reno Public Works Department. [Online]. Available: http://
www.reno.gov/index.aspx ?page=658

[2] America Revealed: Nation On The Move. PBS documetary. [Online].
Available: http://video.pbs.org/video/2223774770/

[3] The vehicular traffic simulator. [Online]. Available:
sourceforge.net/

[4] The wireless simulation framework. [Online]. Available: http://www.
omnetpp.org/

[5] The German Aerospace Research Laboratory. [Online]. Available: www.
dlr.de/en/

[6] The TRACI interface can be found. [Online]. Available: http://
sourceforge.net/apps/mediawiki/sumo/?title=TraCI

[7]1 G. F. Newell, Theory of Highway Traffic Signals, 6th ed. Berkeley, CA,
USA: Univ. California, 1989.

[8] D. C. Gazis, Traffic Science, 1sted. New York, NY, USA: Wiley, 1989.

[9] Optimal Traffic Control: Urban Intersections, 1st ed. Boca Raton, FL,
USA: CRC, 2008, pp. 400—401.

[10] C. N. Chuah, D. Ghosal, A. Chen, B. Khorashadi, and M. Zhang,
“Smoothing vehicular traffic flow using vehicular_based ad hoc network-
ing amp; computing grid (VGrid),” in Proc. IEEE ITSC, Sep. 20006,
pp. 349-354.

[11] K. LaCurts, S. Madden, H. Balakrishnan, S. Toledo, A. Thiagarajan,
L. Ravindranath, and J. Eriksson, “Vtrack: Accurate, energy-aware road
traffic delay estimation using mobile phones,” in Proc. 7th ACM Conf.
Embedded Netw. SenSys, New York, NY, USA, 2009, pp. 85-98.

[12] D. Ghosal, C. N. Chuah, B. Liu, B. Khorashadi, and M. Zhang, “Assessing
the VANET’s local information storage capability under different traffic
mobility,” in Proc. INFOCOM, 2010, pp. 1-5.

[13] A. Borodin and R. El-Yaniv, Online Computation and Competitive
Analysis. New York, NY, USA: Cambridge Univ. Press, 1998.

[14] K. L. Mirchandani, D. Head, and P. B. Sheppard, “Hierarchical framework
for real-time traffic control,” Transp. Res. Rec., Traffic Operations, vol. 16,
no. 1360, pp. 1420-1433, Dec. 2008.

[15] V. Gradinescu, C. Gorgorin, R. Diaconescu, V. Cristea, and L. Iftode,
“Adaptive traffic lights using car-to-car communication,” in Proc. IEEE
65th VI C-Spring, Apr. 2007, pp. 21-25.

[16] N. Hounsell, J. Landles, R. D. Bretherton, and K. Gardener, “Intelli-
gent systems for priority at traffic signals in London: The INCOME
project,” in Proc. 9th Int. Conf. Road Transp. Inf. Control, Number 454,
1998, pp. 90-94.

[17] S. Irani and V. Leung, “Scheduling with conflicts,” in Proc. 7th Annu.
ACM-SIAM SODA, Soc. Ind. Appl. Math, Philadelphia, PA, USA, 1996,
pp. 85-94.

[18] B. Hull, R. Newton, S. Madden, J. Eriksson, L. Girod, and
H. Balakrishnan, “The pothole patrol: Using a mobile sensor network for
road surface monitoring,” in Proc. 6th Int. Conf. MobiSys, New York, NY,
USA, 2008, pp. 29-39.

[19] D. Jiang and L. Delgrossi, “leee 802.11p: Towards an international stan-
dard for wireless access in vehicular environments,” in Proc. IEEE VTC
Spring, May 2008, pp. 2036-2040.

http://sumo.

[20] R. M. Karp, “Reducibility Among Combinatorial Problems,” in Com-
plexity of Computer Computations, R. E. Miller and J. W. Thatcher, Eds.
New York, NY, USA: Plenum, 1972, pp. 85-103.

[21] B. Khorashadi, F. Liu, D. Ghosal, M. Zhang, and C. N. Chuah, “Dis-
tributed automated incident detection with VGRID,” IEEE Wireless
Commun., vol. 18, no. 1, pp. 64-73, Feb. 2011.

[22] S. Krauss, P. Wagner, and C. Gawron, “Metastable states in a microscopic
model of traffic flow,” Phys. Rev. E, vol. 55, no. 5, pp. 5597-5602,
May 1997.

[23] C. Lund and M. Yannakakis, “On the hardness of approximating mini-
mization problems,” in Proc. 25th Annu. ACM STOC, New York, NY,
USA, 1993, pp. 286-293.

[24] W. R. McShane, R. P. Roess, and E. S. Prassas, Traffic Engineering.
Englewood Cliffs, NJ, USA: Prentice-Hall, 1998.

[25] C. Priemer and B. Friedrich, “A decentralized adaptive traffic signal
control using v2I communication data,” in Proc. 12th Int. IEEE ITSC,
Oct. 2009, pp. 1-6.

[26] M. Besley, R. Akcelik, and E. Chung, “An evaluation of SCATS master
isolated control,” in Proc. 19th ARRB Transp. Res. Conf., May 1998,
pp. 1-24.

[27] S. Phillips, R. Motwani, and E. Torng, “Non-clairvoyant scheduling,” in
Proc. 4th Annu. ACM-SIAM SODA, Soc. Ind. Appl. Math., Philadelphia,
PA, USA, 1993, pp. 422-431.

[28] S. G. Shelby, “Design and evaluation of real-time adaptive traffic sig-
nal control aalgorithms,” Ph.D. dissertation, Univ. Arizona, Tucson, AZ,
USA, 2001.

[29] E. V. Webster and B. M. Cobbe, “Traffic signals,” Road Research technical
paper. H. M. S. O. Road Res. Lab., Berkshire, U.K., 1966.

Kartik Pandit is currently working towards the Ph.D. degree in computer
science with the Department of Computer Science, University of California,
Davis, CA, USA.

His research interests are resource allocation in wireless networks, trans-
portation research, optimization, and operations research.

Dipak Ghosal (M’08) received the B.Tech. degree in electrical engineering
from the Indian Institute of Technology, Kanpur, India, in 1983, the M.S.
degree in computer science and automation from the Indian Institute of Science,
Bangalore, India, in 1985, and the Ph.D. degree in computer science from the
University of Louisiana, Lafayette, LA, USA, in 1988.

He is currently a Professor with the Department of Computer Science,
University of California, Davis, CA, USA. His main research interests include
high-speed networks, wireless networks, vehicular ad hoc networks, next-
generation transport protocols, and parallel and distributed computing.

H. Michael Zhang received the B.S.C.E. degree from Tongji University,
Shanghai, China, and the M.S. and Ph.D. degrees in engineering from the
University of California, Irvine, CA, USA.

He is currently a Professor with the Department of Civil and Environmental
Engineering, University of California, Davis, CA, USA. He is an Area Editor
for the Journal of Networks and Spatial Economics and Associate Editor
for Transportation Research—Part B: Methodological. His research interests
include transportation systems analysis and operations.

Chen-Nee Chuah (M’01-SM’06) received the B.S. degree from Rutgers Uni-
versity and the M.S. and Ph.D. degrees in electrical engineering and computer
sciences from the University of California, Berkeley, CA, USA.

She is a Professor of electrical and computer engineering with the University
of California, Davis (UC Davis), CA, USA. Her research interests include
Internet measurements, network management, anomaly detection, online social
networks, and vehicular ad hoc networks. She is an ACM Distinguished
Scientist.

Dr. Chuah received the NSF CAREER Award in 2003 and the Outstanding
Junior Faculty Award from the UC Davis College of Engineering in 2004. In
2008, she was named a Chancellor’s Fellow of UC Davis. She has served on the
executive/technical program committee of several ACM and IEEE conferences
and is currently an Associate Editor for the IEEE/ACM TRANSACTIONS ON
NETWORKING.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

