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Abstract—Two forms of network inference (or tomography)
problems have been studied rigorously: (a) traffic matrix esti-
mation or completion based on link-level traffic measurements,
and (b) link-level loss or delay inference based on end-to-
end measurements. These problems are often posed as under-
determined linear inverse (UDLI) problems and solved in a
centralized manner, where all the measurements are collected at a
central node, which then applies a variety of inference techniques
to estimate the attributes of interest.

This paper proposes a novel framework for decentralizing
these large-scale UDLI network inference problems by intelli-
gently partitioning it into smaller sub-problems and solving them
independently and in parallel. The resulting estimates, referred to
as multiple descriptions, can then be fused together to compute the
global estimate. We apply this Multiple Description and Fusion
Estimation (MDFE) framework to three classical problems: traffic
matrix estimation, traffic matrix completion, and loss inference.
Using real topologies and traces, we demonstrate how MDFE can
speed up computation time while maintaining (even improving)
the estimation accuracy and how it enhances robustness against
noise and failures. We also show that our MDFE framework is
compatible with a variety of existing inference techniques used
to solve the UDLI problems.

I. INTRODUCTION

Due to the complexity of current’s Internet and the ex-
ploding volume of data traffic, there are often aspects of the
networks that are challenging or infeasible to measure directly.
This has drawn researchers to the field of network inference (or
network tomography [1]), which involves applying a variety of
inference strategies to estimate network’s internal characteris-
tics based on a limited set of measurements. Many network
inference problems are formulated as Under-Determined Lin-
ear Inverse (UDLI) problems. These problems are naturally
ill-posed in the sense that the number of measurements are
not sufficient to uniquely determine the solution. Two forms of
network inference problems [2] have been studied rigorously:
(a) origin-destination (path-level) traffic volume estimation
based on link-level traffic measurements, such as traffic matrix
(TM) estimation [3] or TM completion [4], and (b) link-level
parameter’s (such as loss, delay, or bottleneck bandwidth)
estimation based on end-to-end measurements [5], [6], [7].

Prior work has mostly focused on designing better mea-
surement methodology and inference techniques to improve
the accuracy of the solution. For this purpose, side information
are incorporated to change an ill-posed problem to a well-
posed problem. Side information, based on the application, are
provided from different sources , e.g., auxiliary measurements
such as NetFlow data [8], and from diverse perspectives, e.g.,

using underlined deterministic or statistical models [3], [4],
[7], [9].

Although the uniqueness and accuracy of the solution are
important, many network inference problems need to be solved
in a timely manner for practical deployment. Nevertheless,
most existing studies attempt to solve the network inference
problem in a one-shot, centralized manner, where all mea-
surements are collected at a central node, which then applies
domain-specific inference techniques to estimate the attributes
of interest.

This paper tackles these network inference problems from a
new angle and asks the question: can we design an efficient and
robust framework to solve these large-scale UDLI problems
in a decentralized manner? Our goal is to speed up the
computation process to produce timely estimates (especially in
a dynamic network environment), without compromising the
accuracy of the solution. Towards this end, we propose Mul-
tiple Description and Fusion Estimation (MDFE) framework
that decentralizes a large-scale network inference problem by
intelligently partitioning it into smaller sub-problems and solv-
ing them independently and in parallel. The results, solved in
respective sub-spaces and referred to as multiple descriptions,
are then fused together to reconstruct the global estimate. Each
sub-space could potentially produce a more precise description
of a sub-set of the solution; in fact, these descriptions are
considered as side/supplementary information for each other,
provided from different perspectives.

MDFE is a flexible framework that can be applied to
different UDLI problems, and is complementary to the in-
ference techniques proposed previously for solving specific
network inference problems. In this paper, we demonstrate
how MDFE can be applied to network inference problems
such as TM Estimation (TME), TM Completion (TMC) and
Loss Inference (LI), and we show, MDFE is compatible with a
variety of previously proposed inference techniques, including
least square error estimation, expectation maximization, and
regularized matrix factorization methods [8], [11], [4], [7].

By reducing the problem complexity, MDFE can signifi-
cantly speed up the computation time and reduce processing
power. Through evaluation using real topologies and data, we
demonstrate that this can be achieved without compromising
the accuracy of the global estimate. This, specifically, has
important implications in distributed and dynamic environ-
ments (e.g., distributed data centers or clouds), where inference
process must be performed at much faster time scales. This
framework is suitable for today’s computing paradigm where a



large-scale problem can be divided into smaller sub-problems
and distributed among multi processors. Also, by exploiting
redundancy between different sub-spaces, MDFE can enhance
the robustness against noise and failures in the monitoring in-
frastructures. It also reduces the overhead involved in sending
all measurements to a central node for global estimation.

The improvement in the estimation accuracy using MDFE
depends on the structure of the problem, sub-space estimation
method, partitioning technique and the fusion process which
are discussed in this paper. Due to space limitation, we occa-
sionally refer to [12] for the detailed discussion and additional
results. Our main contributions are:
- To the best of our knowledge, we are first to develop the
concept and theory of MDFE for solving UDLI inference
problems. We demonstrate how to effectively design the MDFE
framework and realize it in practice.
- We develop and evaluate three algorithms to partition the
original large-scale problem into smaller sub-problems under
MDFE; we also introduce different fusion methods to combine
the multiple descriptions to produce the global solution.
- We demonstrate the efficacy of MDFE in practice by applying
it to three important problems in network monitoring and
management: TM Estimation (TME), TM Completion (TMC)
and Loss Inference (LI).
- Using realistic network topologies and traffic data, we show
how MDFE can speed up computation by maintaining (and
even improving) the accuracy of the global estimates.

The rest of this paper is organized as follows. Section II
discusses the most relevant work in the context of the three
example network inference problems. Section III develops the
theory of MDFE and addresses main steps in implementation
of this framework in practice. In Section IV the performance
and efficiency of this framework are evaluated for different
applications in networking. Finally, Section V summarizes the
main results of the paper.

II. BACKGROUND AND RELATED WORK

There is a rich literature on network tomography and it
would be impossible to enumerate all the related work. We
would like to emphasize that the main goal of this paper is not
to design new, improved algorithm for solving specific network
inference problem. Instead, we are proposing a framework for
efficiently solving a class of UDLI problems by adopting a
divide-and-conquer approach and leveraging existing inference
techniques to solve the intelligently partitioned sub-problems
under MDFE. In this paper, three network inference problems
(TM estimation, TM completion, and loss inference) are used
to showcase MDFE framework (see Section IV). Here, we
discuss the most relevant work in the context of these network
inference problems.

The traffic matrix (TM) is a measure of origin-destination
traffic intensity that can be defined at different levels: be-
tween routers, IP-prefixes, or even AS domains. It provides
essential information for network design, traffic engineering,
and anomaly detection. TM estimation is often formulated
as a constrained UDLI problem where side information from
different sources/perspectives are provided to uniquely identify
a more accurate solution. Side information can be provided as
link and flow conservation constraints to reduce the feasible

solution space [13] or the underlined statistical models of
Origin-Destination Flows (ODFs) where Bayesian or Maxi-
mum Likelihood Estimation (MLE) techniques are used for
TM estimation [1],[11],[14]. In [8] data from multiple sources
including SNMP link loads and Sampled NetFlow records are
used to provide more accurate estimates.

Another network inference problem is network perfor-
mance tomography, which is defined as the inference of
internal link properties from end-to-end measurements [6]. In
[7], links loss rate inference problem is modeled as an UDLI
problem where statistical characteristics of congested links are
used as side information to uniquely estimate link loss rates.
Also, in [10], first and second-order moments of end-to-end
measurements are combined to estimate loss rates.

III. ESTIMATION WITH MULTIPLE DESCRIPTION FUSION

Consider the under-determined linear system of equations
Eq.(1) where Y is an (m × 1) observation vector, H is an
(m × n) observation matrix (m < n) and X is an (n × 1)
vector of unknowns. The general solution to this problem is of
the form X̂ = X+N (H) where N (H) represents a solution
from the span of the null space of H; therefore, there are many
solutions for this problem. A linear inverse problem is defined
as the process of uniquely inferring X as a linear function of
observation Y which can be formulated as an un/constrained
optimization problem where the main goal is to minimize error
e = Y −HX in an appropriate sense.

Y = HX (1)

In MDFE framework, the original (global) UDLI inference
problem described by Eq.(1) is partitioned into L local sub-
problems shown in Eq.(2), which are independently solved
and sub-space estimates/descriptions {X̂i}Li=1 are then fused
together to provide a more accurate solution in an efficient
way (Figure 1(a)). The fusion process is accomplished by
applying appropriate weights to each local estimate during the
fusion phase. Eq.(3) describes this process where operator ⊕
denotes the fusion process of the partitioned problem, that is,
combining the subset of unknowns observed and estimated by
different sub-spaces. Figure 1(b) gives an intuitive perspective
of this Multiple Description Fusion (MDF) process where the
original problem is partitioned into 3 sub-problems.

Y = HX ⇔

 Y1

...
YL

 =

 H1X1

...
HLXL

 (2)

X̂F
P = ⊕L

i=1ω
F
i X̂i (3)

To compute X̂F
P , the UDLI inference problem is formulated

as the optimization problem in Eq.(4), which illustrates that the
overall performance of MDFE framework is a joint function
of sub-space estimation technique, partition P and fusion
process F . Hence, to successfully apply the MDFE frame-
work in practice, three steps must be accomplished correctly:
a) effectively partition the problem into sub-problems, b)
construct multiple descriptions by adopting proper sub-space
estimation techniques to solve the sub-problems, and c) fuse



(a) General block diagram of MDFE.
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(b) TM Estimation with MDF from sub-spaces.

Fig. 1: MDFE process: a system perspective.

the sub-space estimates to provide more precise and robust
description. The essence of the joint optimization problem
in Eq.(4) lies in an NP-hard set partitioning problem that is
extremely difficult to solve. Hence, we decouple and address
steps a-c, independently. Since the estimation techniques to
solve specific network infernce problems are well studied, we
first discuss how these existing techniques can be leveraged
to provide sub-space estimates (step b). Then, taking practical
constraints into account, we discuss the design of the most
effective partitioning and fusion methods.

X̂F
P = min

X
‖Y −HX‖p

s.t: Problem constraints
(4)

A. MDFE in Practice: Multiple Description Construction

To construct multiple descriptions, sub-inference problems
must be properly defined and the best sub-space estimation
technique is selected by choosing appropriate norm p in Eq.(4),
depending on the characteristics of the input X , matrix H and
problem’s side information(/constraints).

Let I denotes the set of all indicies of observations
(I = {1, 2, ...,m}) and Ii denotes the ith set of disjoint indices
of measurements where I =

⋃L
i=1 Ii and Ii

⋂
Ij = ∅ for

i 6= j. Then, set P =
⋃L

i=1 Ii forms a Partition of I . Let J
denotes the set of all indices of unknowns (J = {1, 2, ..., n})
and Ji denotes the ith set of indices of unknowns where
J =

⋃L
i=1 Ji; however, the intersection of Ji and Jj is not

necessarily empty. Now, lets Yi := {yk}k∈Ii , Hi := H(Ii, Ji)
and Xi := {xk}k∈Ji . Accordingly, the original problem Eq.(1)
is divided into L sub-problems as Yi = HiXi (see Eq.(2)) and
the ith local estimate is computed by solving this sub-problem.

Since many UDLI inference problems in networking, com-
munication and signal processing are formulated as Linear
Least Square Error Estimation (LLSEE) problems and to
develop the basic theory of MDFE, here, we consider the

unconstrained L2 minimization as our sub-space estimation
technique, that is, p = 2 in Eq.(4) without any constraints.
Hence, it is assumed that input vector X does not include
unusual inputs that differ in size by large order of magnitudes.
Accordingly, in the global case, the LLSEE is computed
using the pseudoinverse of H (H†) which can accurately
obtained using the Singular Value Decomposition (SVD) with
computation complexity O(mn2) flops. Also, the ith local
LLSEE estimate is computed using the pseudoinverse of Hi

(an mi × ni matrix) with complexity O(min
2
i ) flops (see

Eq.(6)). Note that, the solution of global and local problems
(i.e. Eq.(5) and Eq.(6)) could be different because the null
space of H and Hi are not necessarily equal, and comparing
with global case, it can be shown that based on the structure
of H , MDFE can exactly reconstruct X (see App.C in [12]).

X̂ =min
X
‖Y −HX‖2 = H†Y = (HT (HHT )−1)Y (5)

Yi = HiXi ⇒ X̂i = H†i Yi = HT
i (HiH

T
i )−1Yi (6)

B. MDFE in Practice: Partition Design

The accuracy of redundant estimates from sub-spaces de-
pends on the design of partition P that can be formulated as
an integer optimization problem to achieve the best possible
performance. Assuming there are m measurements and L
sub-spaces, then there are Sm,L = 1

L!

∑L
j=0(−1)L−j

(
L
j

)
jm

(Sm,L denotes Stirling number of the second kind) partitions.
The number of partitions with K elements in each subset
(where K ∝ m

L ) is a fraction of Stirling number Sm,L

that is still a large number in large-scale networks, where
m >> L. To simplify this NP-hard problem and maximize the
MDFE performance, pseudo-optimal or heuristics algorithms
are developed. Note that in these algorithms, L is assumed
to be known a-priori. In fact, the number of sub-spaces is a
design criteria which must be selected by considering other
constraints such as the number of processors or the required
processing gains (see performance criteria in Table I).

In Alg.1, the effectiveness of sub-spaces are sequentially
measured and maximized to form partition P . Here, the
criterion used to evaluate the partition choice is the Condition
Number (CN) of the observation matrix Hi which is defined
as the ratio of the maximum and minimum singular values
of the matrix Hi and it is an indication of the quality of a
matrix and it determines a bound (CN ≥ 1) on the rate at
which the solution will change with respect to a change in
measurements. The lower the CN, the more well-conditioned
problem and the more accurate solution are. In Alg.1, the best
sub-spaces are sequentially chosen to get the best possible
partition P =

⋃L
i=1 Ii with the lowest CN, which can provide

a well behaved partition P , and a more accurate and stable
solution in each sub-space. This algorithm starts from the first
row of H and sequentially chooses the row that minimize the
CN of the sub-matrix. This continues to complete the first
sub-space I1 with K rows. After removing these K rows
from H , the algorithm repeats from the beginning. The sub-
problems can be solved in parallel or sequentially. Note that
the CN of each individual row of H is one; however, this is
not an interesting case because: 1) in practice, the number of
processors/sub-spaces (L) are limited (in parallel case), and 2)
large L’s reduces processing gain ∆s (in sequential case).



Algorithm 1 : Greedy CN based Partitioning

Initialization: I = {1, ...,m} and i = 1
while i ≤ L do

- Construct Ii by sequentially choosing K rows of H with
lowest CN
- Set I = I\Ii and i = i+ 1

end while

Algorithm 2 : QRP based Partitioning
Initialization:
- Compute the QRP factorization of routing matrix H
- Divide |R| into L batches with almost similar successive values
- Construct P0 as rows of H corresponding to indicies of |R| in
each batch
- Set i = 1
while i ≤ L do

- Modify the boundaries of set Ii (by extending or shrinking the
boundaries of the set)
- Check the performance until the maximum gain is achieved
- i = i+ 1

end while

In the second pseudo-optimal partitioning algorithm, Alg.2,
the design of partition P is based on the structure of the
observation matrix H captured by QR decomposition of H ,
where H is represented as:

H = QR = Qm×m
[
R11

r×r R12
r×(n−r)

]
(7)

with orthonormal matrix Q, upper-triangular matrix R11, and
rank(H) = r(= m). For rank deficient matricies, QR
decomposition with pivoting, known as QRP, is used to solve
linear system of equations and recognize singularities or rank
deficiency. Here, the pivoting strategy attempts to produce
R11 as well-conditioned as possible. Accordingly, the diagonal
elements of |R| occur in decreasing order, revealing the linear
in/dependence among the rows of H [15]. In Alg.2 diagonal
elements of matrix |R| are grouped to construct initial partition
P0 where each batch consists of a set of indicies of successive
diagonal entries of matrix |R|. Initial Partition P0 is then
modified, by extending or shrinking the boundaries of sets
{Ii}Li=1, to improve the performance of MDFE and achieve a
pseudo-optimum partition P . In this process, appropriate set of
sample inputs X must be used to evaluate the performance in
each step. In this algorithm, observation matrix H is assumed
to be full row-rank. Thus, rows corresponding to very small
values of diag(|R|) are removed. The performance of these
two algorithms are close to optimal; for example, on a smaller
network, the first two algorithms are close to optimal by 0.05%
and 3%, respectively (see Table 7 in [12]).

The third algorithm (Alg.3) is a heuristic partitioning
algorithm that uses the topology of the network where L
nodes with highest degrees are selected as clustering nodes.
Observation measured at clustering nodes along with measure-
ments that can be transfered to these nodes with minimum
cost (e.g. communication cost & delay) form a partition of the
set of measurements I . This heuristic partitioning algorithm
is important where the nature of the estimation problem is
distributed and communication costs and delay are critical
factors that must be considered in the implementation of
MDFE framework.

Algorithm 3 : Graph based Partitioning

Choose L nodes with highest degree as clustering nodes
while i ≤ L do

- Ii = {the index of observations measured at ith cluster node}
- Ii = Ii

⋃
{measurement’s indices transfered to i with minimum cost}

- i = i+ 1
end while

C. MDFE in Practice: Fusion Algorithm

MDFE process is completed by applying fusion process F
to the local estimates. Here, three different weighting functions
(Eq.(8)) are considered in Eq.(3). Let ICN and RoD denote
the Inverse Condition Number and Rank over Dimension (i.e.
# of unknowns in each sub-space), respectively. By applying
fusion operator ⊕, unknowns observed in different sup-spaces
are combined to produce the final estimate X̂F

P . The first two
fusion functions choose xi from the sub-space with highest
ICN or RoD, while the third one computes the average of the
observed xi’s produced by different sub-spaces. This averaging
process, by itself, can improve the accuracy of the estimation
by increasing the Signal-to-Noise Ratio (SNR). These fusion
techniques are also efficient because the computation overhead
of using these fusion methods are negligible compared with
the computation time of sub-space estimation techniques,
especially for large-scale problems.

ωICN
ij =

{
1, if i ∈ sub-space with highest ICN and j ∈ Ji

0, ow
(8)

ωRoD
ij =

{
1, if i ∈ sub-space with highest RoD and j ∈ Ji

0, ow

ωAvg
ij =

1

# of repetition of Xj among all sub-spaces
i = 1 : L; j = 1 : n

D. The Efficiency of MDFE

MDFE is an efficient framework that can improve the
performance of system from different perspectives, In fact,
MDFE not only reduce processing time/power, but also provide
better estimates in most cases, and can improve the robustness
of the system against noise and failures.

MDFE is able to provide more accurate estimates due
to two factors. First, partitioning increases the redundancy
between descriptions, produced by observing each unknown
xj from different sub-spaces (Figures 1(b)). This redundancy
is used by the fusion process to enhance the SNR and improve
the accuracy of estimation. The amount of redundancy depends
on the number of subsets (L) in partition P and the structure
of observation matrix H . This redundancy is evaluated by two
measures: a) the sum of the Number of Unknowns (NoU)
observed by different subspaces (Rdn1) and b) the sum of
the ratio RoDi := rank(Hi)

ni
, which conceptually represents

the contribution of each independent measurement into the
estimation of each unknown xj , as shown below:

Rdn1 =

L∑
i=1

NoUi & Rdn2 =

L∑
i=1

RoDi (9)



Second, partitioning does not change the input-output re-
lationship; however, reducing the NoUs and removing non-
observed unknowns could help to group more-similar un-
knowns in sub-spaces. Therefore, LLSEE generates more
coherent and robust solution in the absence of unusual inputs.
In addition, the row partitioning of observation matrix H
improves the CN of Hi’s (Prop.1); therefore, sub-spaces with
better CN can provide more accurate and robust estimates.
In fact, in the presence of noisy observations, sub-spaces
with lower CN not only reduces the covariance of error but
also they are potentially able to attain lower Mean-Square
Error (MSE) because the lower bound on MSE is reduced
by partitioning (Prop.2). This fact was also verified through
our direct investigation where we observed a strong positive
correlation between the performance of MDFE and the CN
of sub-spaces [12]. Since MDFE can provide more redundant
and better estimates; it can also improve the robustness of
the system against noise, failure and information-loss, in the
computing and monitoring infrastructures.

Proposition.1: Let H be a matrix in (Rm×n with rank m)
and Hi denotes a matrix constructed from a set of rows of H .
Then: CN(Hi) ≤ CN(H). Proof: See App.A in [12].

Proposition.2: Let Y = HX + ε where ε ∼ N (0, σ2
0Im)

denotes measurement noise. Then: 1) V ar(E) ∝ CN(H)
where E := X−LLSEE(X) = X−H†Y , and 2) the lower-
bound for the MSE of LLSEE is reduced by partitioning.Proof:
See App.A in [12].

Besides improving accuracy, MDFE can also reduce pro-
cessing time, significantly. This is achieved by reducing the
dimension of the problem in each sub-space. Considering
the complexity of LLSEE in each sub-space i.e. O(min

2
i ),

since mi < m and ni < n, local inference problems can
be solved more efficiently. Using parallel computing infras-
tructures, the processing time can be bounded by maximum
local processing time. However, using sequential computing
infrastructures, reduction in processing time can be achieved
if the sum of local processing times is less than the global
processing time. In this case, the number of sub-spaces must
be carefully chosen. Considering the fact that processing power
is also proportional with the computational complexity of the
problem, the same argument can be used to show that, based
on the number of sub-spaces, MDFE can also be a power
efficient framework where the sum of local processing powers
is less than global processing power. The proportionality of
processing time/power with complexity of the problem can
provide a criteria to choose the number of sub-spaces (L).
From this point of view, the designer of the system can choose
L to achieve required reduction in processing time/power (see
Sec.5 in [12]). Note that L is chosen with a reasonable balance
between improvement in accuracy and processing gains and
considering other practical constraints.

E. MDFE: Performance Evaluation Metrics

The performance of the MDFE is evaluated using various
criteria which are introduced in Table I. X̂G denotes the
global estimate, X̂F

w denotes the MDFE estimate (where w
denotes fusion function ICN , RoD or Avg in Eq.(8)), and
GainL2 quantifies the performance improvement using MDFE
framework comparing with global case. Parallel and sequen-
tial processing gains (∆p and ∆s) measure the reduction in

GE =

∥∥∥X−X̂G
∥∥∥
2

‖X‖2
, FEw =

∥∥∥X−X̂F
w

∥∥∥
2

‖X‖2
GainL2 = 100×

GE−FEAvg
GE

∆p = 100× GPT−max({LPTi}
L
i=1)

GPT ∆s = 100× GPT−
∑L

i=1 LPTi
GPT

TABLE I: Performance evaluation criteria where w denotes the type
of the fusion function (that is, ICN , RoD or Avg in Eq.(8)) , and
GPT and LPTi denote Global and ith Local Processing Times,
respectively.

computation time using MDFE structure. As it was explained,
sequential processing gain can also be an indication of the
reduction in processing power using MDFE. The effectiveness
of MDFE with relative error norms are also shown in [12].

F. MDFE: Illustrative Example

This illustrative example shows how MDFE framework can
improve the accuracy to exactly reconstruct unknown vector
X . Consider UDLI problem Y = HX where Y = [y1, y2]T ,
H2×3 = [1, 1, 0; 0, 1, 1] and true X is X = [x1, x2, x3]T =
[1, 1, 1]T and Y = [2, 2]T . Assume we partition this problem
into two sub-problems defined as y1 = H1X1 = [1, 1][x1, x2]T

and y2 = H2X2 = [1, 1][x2, x3]T where CN(H) = 1.73,
CN(H1) = CN(H2) = 1 and RoD1 = RoD2 = 1

2 . The
global solution of original problem is X̂G = X + N (H)
and local estimates are X̂1 = X + N (H1) and X̂2 =
X + N (H2). It can easily be verified that N (H) and,
N (H1) and N (H2) are different; hence, the global and
local solutions may be different (see App.C in [12]). In this
example, the global LLSEE is computed using Eq.(5) as
X̂G = [ 2

3 ,
4
3 ,

2
3 ]T and local LLSEE are computed using Eq.(6)

as X̂1 = [1, 1, 0]T and X̂2 = [0, 1, 1]T . By fusing local de-
scriptions using Eq.(3), the MDFE estimates are computed as
X̂F

ICN = X̂F
RoD = [x̂1(1), x̂i(2), x̂2(3)]T = [1, 1, 1]T (where

i denotes the subspace with maximum ICN and/or RoD)
or X̂F

Avg = [x̂1(1), x̂1(2)+x̂2(2)
2 , x̂2(3)]T = [1, 1+1

2 , 1]T =

[1, 1, 1]T , and accordingly, GE = 0.3333 and FEICN =
FERoD = FEAvg = 0.

IV. NETWORK INFERENCE USING MDFE

The main goal in this section is to show the effectiveness
of MDFE framework in different applications, including TM
estimation, TM completion and loss inference. In fact, we
illustrate that MDFE framework is compatible with a variety of
existing inference techniques used to solve the UDLI problems.
We also show that MDFE is effective for inputs with different
distributions and on networks with different topologies. Among
these, different partitioning algorithms are used to show the
effectiveness of MDFE framework and partitioning techniques.

Here, three different networks are considered, including:
14-Node Tier-1 PoP Topology (Figure 2), Abilene [17] and
GEANT [16] networks. The routing matrix H of the first
network is a (50 × 182) matrix with density D = 0.0415
(D = #ofnon−zeroentries

m×n ). HAbilene is a (30 × 144) matrix
with density D = 0.0353 and HGeant is a (74 × 529)
matrix with density D = 0.036. All routing matrices are
binary and full row-rank. In addition, synthetic inputs are
generated using three different distributions [3]: 1) Uniform



Fig. 2: 14-Node Tier-1 POP Topology [3].

Network Date Duration Resolution TM Size
Abilene 2004-05-01 1 week 5 min. 144 × 2016
GEANT 2005-01-08 1 week 15 min. 529 × 672

TABLE II: Real Datasets under study.

distribution where xi ∼ U(100, 500); 2) Gaussian distribution
wherexi ∼ N (µi, 40) (where µi ∼ U [100, 500] ), and 3)
Poisson distribution where xi ∼ Pois(λi), λi ∼ U [100, 500].
These synthetic data are used to evaluate the performance of
TME on the first network (Figure 2), and likewise, real network
data (Table II) are used on Abilene and GEANT networks (real
data follows heavy-tailed distributions). Note that, although
we use synthetic data for TME in networking, inputs with
Uniform, Gaussian and Poisson distributions are appeared in
many applications in communication, signal processing and
control, where MDFE can also be applied to improve the
performance of system.

A. Traffic Matrix Estimation

Considering Y = HX , TME is an UDLI inference prob-
lem where X is the TM (each entry of X represents an ODF
in the network) and it is estimated by knowing routing matrix
H and observing link load measurement vector Y . In the first
evaluation, the network shown in Figure 2, is partitioned into
L = 1, ..., 14 sub-spaces using Alg.3 and synthetic TM inputs
are applied to generate Y ; then MDFE with LLSEE is used to
infer X̂F

w . For each L, this process is repeated using a Monte-
Carlo simulation. Figures 3 and 4 show the improvement
achieved by applying MDFE for TM estimation on TM inputs
with different distribution (as in [3], [11]) where the number of
sub-spaces (or equivalently Configuration Index) varies from
1-to-14. Figure 5 shows that the redundancy of observed
unknowns is increased as the number of local sub-spaces
is increased. Also, the ICN of local sub-spaces have been
improved (Prop.1). These figures prove the proportionality
of MDFE performance with the enhancement of ICN and
redundancy of unknowns observed in different sub-spaces.
In addition, Figure 3 indicates the performance of different
weighting functions (Eq.(8)) in the multiple description fusion
process. Among these, computing the mean value of observed
ODFs (using ωAvg) have the best performance. However,
RoD and ICN based fusion techniques can also achieve
good performance while reducing the communication cost in
the distributed/decentralized implementation of MDFE. On
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Fig. 3: Global&MDFE errors v.s. # of subspaces (X ∼ U(100, 500)).

Fig. 4: GainL2 for different distributions.

average, these improvements are almost achieved over 80%
of the iterations.

Figure 6 shows that processing gain is significantly
improved when the TM estimation problem is distributed
among local sub-spaces; note that this gain is independent
of partitioning algorithm and can be achieved where
communication delays are negligible in comparison with
processing times (see [12]). This figure also indicates that
there is an optimum number of sub-spaces (5 in this case)
for sequential TM estimation (∆s). Since the processing
power is a function of the complexity of the algorithm,
∆s in Figure 6 also indicates that MDFE can reduce the
processing power. When the number of parallel processors are
limited; the performance of MDFE can be increased by the
partitioning of each sub-problem into multiple sub-problems
where multiple description fusion can be performed in multi-
stages at each local node. MDFE framework is also match
with the architecture of today’s multi-processor computing
systems where a large-scale system can be divided into
smaller sub-problems solved by each processor. This not only
facilitates the problem of storing a large scale system, but
also further reduction in processing time can be achieved by
using local-fast memories.
- MDFE Robustness: MDFE improves the robustness of the
system against noise in link load measurements and lossy
informations (due to failures in communication networks and
computing infrastructure). According to [8], noise in link load
measurements (due to disalignment of polling intervals) can
be modeled as a White Gaussian Noise (WGN); therefore,
we added WGN to link measurement vector Y with different
SNRs to evaluate the performance. Table III shows that
MDFE is able to achieve better improvement in the presence



Fig. 5: The characteristics of local sub-spaces.

Fig. 6: Processing gain v.s. # of sub-spaces.

of noisy link load measurements. Our results also indicate
that MDFE is robust against sub-space erasure in the system.
To increase the robustness, sub-spaces with higher number
of observed unknowns (e.g. sub-space 4) must be effectively
protected and/or the number of sub-spaces must be increased
(for further results on real data see Sec.7 in [12]).
- EM compatibility: To show the compatibility of MDFE
with EM algorithm (as an ML estimator) we implemented
TME method in [11] using MDFE framework. Table IV
summarizes the estimation gain of MDFE when two different
TM estimation methods (LLSEE and EM) are used. It
shows that: 1) MDFE reduces the estimation error in both
cases, which implies that MDFE is compatible with both
TME methods, and 2) using the prior knowledge about the
distribution of the TMs can improve the accuracy of the
MD-TME.

- Compatibility of MDFE with different sources of data:
Nowadays, NetFlow records are widely supported by vendors
and deployed in most of the operational IP networks; then,
complete/partial TM measurements can be used as side infor-
mation to improve the accuracy of TM estimates. However,
real TM measurements and SNMP data are noisy due to
sampling and polling processes, respectively [8]. To address
these challenges we adopt the TME method in [8] which is
formulated as:

X̂ = X + εX & Ŷ = HX + εY ⇒ V = CX + ε (10)

where X̂ denotes the TM measurement from NetFlow, Ŷ
denotes SNMP link load measurements, εX and εY are re-
spectively Gaussian noises in NetFlow and SNMP records,
V = [X̂; Ŷ ], C = [In;H] and ε = [εX ; εY ]. Then, having

SNR(dB) -6 -3 0 3 6
GE 0.6797 0.6668 0.6488 0.6242 0.5928

FEAvg 0.5823 0.5673 0.5469 0.5212 0.4903

Erased Sub-Space 1 2 3 4 5
GE 0.4295 0.4276 0.4287 0.4861 0.4647

FEAvg 0.4166 0.3882 0.4078 0.5503 0.4800

TABLE III: Performance of MDFE in the presence of noise and sub-
space erasure (using Alg.2 with L = 5 on network in Figure 2).

LLSEE (GE) EM (GE) LLSEE (FEAvg) EM (FEAvg)
0.4126 0.3215 0.3626 0.2956

TABLE IV: LLSEE and EM based TM estimation: A comparison
(using Alg.2 with L = 5 on network in Figure 2).

covariance matrix K = E[εεT ]; X is estimated by:

X̂ =
(
CTK−1C

)−1
CTK−1V (11)

To apply our MDFE framework on this setup, Alg.1 is
used to partition the network into L = 8 sub-spaces. Then,
Eq.(11) is properly adapted to solve the problem in each sub-
space (where corresponding parameters Ci, Ki and Vi are used
based on routing matrix Hi(Ii, Ji) and observations Ŷi and X̂i

in each sub-space). Accordingly, processing gains ∆p = 88%
and ∆p = 58% are achieved, indicating that MDFE sppeds up
the process, significantly. In addition, Figure 7 shows GainL2

at different SNRs, indicating that MDFE can improve the
performance. This gain is remarkable at low NetFlow SNRs
(i.e. low sampling rates) where sampling and storing overheads
are challenging limitations for direct measurement of TMs.
Therefore, MDFE can be utilized to propose a new hybrid TM
measurement method where important TMs can be measured
with higher sampling rates and MDFE is applied on the other
TMs to improve the accuracy of TM estimation. This is of
particular importance in today’s network monitoring systems
where sampling and storing a sheer volume of today’s traffic
and quick TM estimation are challenging problems, partic-
ularly for large scale and dynamic environments. Therefore,
MDFE not only is compatible with the idea of using multiple
sources of data [8], but also it can enhance its performance.

B. Traffic Matrix Completion

In [4], a Sparsity Regularized SVD (SRSVD) method is
introduced for TM Completion (TMC) where the columns of
traffic matrix Z is formed by the unknown vector X in our
TME setup at different times (t = 1, ..., T ). Now, assuming Z
can be factored as Zn×T = LRT ; then TMC is formulated as
the following optimization problem to find missed entries of
Z.

Ẑ = min
L,R

∥∥B −A(LRT )
∥∥2

F
+ λ

(
‖L‖2F + ‖R‖2F

)
(12)

Here, B and A respectively denote the set of measurements
and a linear operator satisfying A(Z) = B. To apply our
MDFE framework, we adopt this method and modified the
formulation in Eq.(12). In our Modified SRSVD (MSRSVD)
method, At = [diag(Mt);H] and bt = [Xt. ∗Mt;Yt] where
Mt is a binary column vector (where zeros represent missing



Fig. 7: GainL2 vs. SNR in NetFlow and SNMP.

Fig. 8: NMAE v.s probability of loss in TM completion (G: global).

entries), H is the routing matrix, Yt = HXt denotes tth

link load measurement vector and .∗ denotes an element-
wise product; accordingly, A = {blockdiag(A, At)}Tt=1, B =
[b1; ...; bT ] and M = [M1, ...,MT ]. Figure 8 shows that our
new MSRSVD TM completion method significantly improves
the performance where TMC is applied onto normalized TMs
where Xbase [4] is assumed to be known. It also compares
the TM completion performance between Global-TMC and
MDFE-TMC on real Abilene and GEANT networks and data.
Here, Alg.1 is used for partitioning where LAbilene = 10
and LGEANT = 6 and we set MSRSVD as sub-space TMC
technique in MDFE framework. Also, λAbilene = 0.01 and
λGEANT = 0.1 and for both networks we fixed r = 2
(i.e. rank-2 approximation). The Normalized Mean Abso-
lute Error (NMAE) is computed over interpolated values as

NMAE =
∑

i,j:M(〉,|)=0|Z(i,j)−Ẑ(i,j)|∑
i,j:M(i,j)=0|Z(i,j)| . It is clear that, MDFE

can improve the performance for high loss probabilities where
MDFE framework reduces the number of unknowns in each
sub-space and helps to improve spatial-temporal correlations.
For low loss rates, the performance of both methods are close
together. However, MDFE can speed-up the TMC process and
improve its robustness.

C. Loss Inference

Considering Y = HX , loss inference is an UDLI problem
where H is a routing matrix, and X and Y are defined as X =
{xj}nj=1 = {logφ̂ej}nj=1 and Y = {yi}mi=1 = {logφ̂i}mi=1.
Here, φ̂i represents the fraction of S probes that arrive cor-
rectly at the destination and φ̂ej is the fraction of probes from
all paths passing through link ej that have not been dropped
by that link [7]. Here, a Loss Inference Algorithm (LIA) is

Fig. 9: GE and FEAvg vs. the proportion of congested links where
L14PoP = 5, LAbilene = 5, LGEANT = 14, # of beacons S=1000
and # of iterations = 100.

adopted from [7] as the sub-space estimation technique to
apply the MDFE framework. Three real network topologies are
considered and the proportion of the links that are congested
is fixed and is varied to evaluate the performance of MDFE
framework in terms of GE and FEAvg . Here, congested and
non-congested links have loss rates uniformly distributed in
[0.05, 0.2] and [0,0.002], respectively. Figure 9 shows the
improvement achieved by applying MDFE for loss inference
where Alg.2 is used to construct sub-problems. It is shown that
by increasing the number of sub-spaces (L) the performance
of MDFE is improved, and MDFE is more effective for higher
loss-rates.

D. MDFE with Set-Covering

LLSEE is not effective in the presence of unusual inputs.
Therefore, in many cases, L1 and L∞ constrained minimiza-
tion techniques can be effectively applied to UDLI inference
problems with heavy-tailed distributed inputs. These problems
are generally solved using numerical optimization techniques.
To show that MDFE framework is applicable for this set of
problems, redundant set C =

⋃L
i=1 Ii is defined to cover set

I where Ii
⋂
Ij (i 6= j) is not necessarily empty. In fact, in

this case, set-partitioning problem is changed to set-covering
problem which is still an NP-hard problem for large-scale
systems. Here, we consider GEANT network and its real data
set which contains large amount of unusual inputs. To find
cover C , compatible with MDFE framework, we randomly
choose subsets {Ii}Li=1 so that set I is covered, that is,
C = I (more structured set-covering algorithms are under
investigation). Then, using a small subset of inputs, GE and
FEAvg are computed and compared. This process is repeated
to achieve desirable performance and the best cover is used to
test the algorithm on the whole data set. Table V indicates the
improvement achieved by applying MDFE framework where
constrained optimization techniques represented by Eq.(13)
(our more effective formulation) and Eq.(14) (adopted from
[8]) are used and solved using CVX for TM estimation in
sub-spaces.

X̂ =min
X
‖Y −HX‖∞ s.t. X ≥ 0 (13)

X̂ =min
X
‖Y −HX‖1 + λ ‖x‖1 s.t. X ≥ 0 (14)



Opt. Method GE FEAvg GainL2(%)
Eq.(13) 0.5116 0.4800 6.1751
Eq.(14) 0.6093 0.5736 5.8616

TABLE V: MDFE performance using L1 and L∞ optimization
techniques (L = 5).

Fig. 10: GainL2 v.s. ratio n
m

and D (using Alg.1 and LLSEE where
X ∼ U(0, 1),m = 50, L = 5).

E. MDFE on Random Observation Matrices

To show that MDFE can be applied on a wider range
of problems, we did an extensive Monte-Carlo simulation
over random-binary observation matrices. Figure 10 shows
that MDFE can significantly improve the performance for
fat (large n

m ) and low-density matrices where partitioning
helps to construct sub-spaces with smaller number of coherent
unknowns, observed in different sub-spaces, with the capability
of producing more precise estimates (since CN of sub-spaces
are improved). All three networks used in our study are fat
and low-density matrices.

V. CONCLUSION

In this paper, a novel approach for solving UDLI problems
was introduced where a large-scale sparse problem is parti-
tioned and solved in sub-spaces. By fusion the solution from
sub-spaces, we not only showed that the accuracy of the solu-
tion is improved, but also the efficiency (processing time/power
reduction) and robustness of system are enhanced. These
are important factors, particularly, in distributed and dynamic
environments where accurate, quick and efficient inference are
highly demanding. We examined the performance of MDFE in
different applications, and we showed that MDFE framework is
flexible and compatible with inputs with different distributions
and with a variety of sub-space estimation techniques, and it is
match with today’s multi-processors computing architectures.
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