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Abstract—We have previously introduced Multiple Description
Fusion Estimation (MDFE) framework that partitions a large-
scale Under-Determined Linear Inverse (UDLI) problem into
smaller sub-problems that can be solved independently and
in parallel. The resulting estimates, referred to as multiple
descriptions, can then be fused together to compute the global
estimate [1]. In this paper, we extend MDFE framework to make
it compatible with Compressive Sensing (CS) network inference,
where the attributes of interests (i.e. unknowns) are fluctuating
rapidly over time and/or space. For this purpose, we propose a
new clustering based technique to intelligently divide a large-scale
compressive sensing problem into smaller sub-problems where
observations between sub-spaces contain redundancy. We apply
this new framework, referred to as Compressive Sensing MDFE
(CS-MDFE), to three classical inference problems in networking:
traffic matrix estimation, traffic matrix completion, and loss
inference. Using real topologies and traces, we demonstrate how
CS-MDFE can improve the estimation accuracy and speed up
computation time, and how it enhances robustness against noise
and failures. We also show that this framework is compatible
with different CS inference techniques.

I. INTRODUCTION

Designing, monitoring, and managing of today’s complex
networks depends on providing critical information about
aspects of the networks that must be measured or inferred.
Direct measurement of some attributes of interest can be
challenging or infeasible due to the complexity of current
Internet, limited monitoring resources, and exploding traffic
volume. In fact, considering measurement resource constraints
(e.g. limited number of TCAM entries at switches for flow
size measurement or limited bandwidth available in active
loss/delay measurement), it is not only impossible to directly
measure all attribute of interests but also it is unmanageable,
inefficient and expensive to store and process all measurements
due to limited memory and processing power. Network in-
ference/tomography methods are powerful tools that can help
estimate the internal attributes of interests based on a limited
set of measurements and, accordingly, mitigate the limitations
and constraints of direct network measurement techniques
[2]. Two forms of Network Inference (NI) have been studied
rigorously: (a) origin-destination (path-level) traffic volume
estimation based on link-level traffic measurements, such as
Traffic Matrix (TM) estimation [3] or TM completion [4],
and (b) link-level parameter’s estimation based on end-to-end
measurements [5], [6]. Traffic Matrix (TM) estimation is for-
mulated as a constrained UDLI problem where the main goal
is to estimate the origin-destination traffic intensity that can
be defined at different levels: between routers, IP-prefixes, or
even AS domains. It provides essential information for network

design, traffic engineering, and anomaly detection. To uniquely
identify the solution of this UDLI problem, side information
from different sources/perspectives (e.g. underlined statistical
models or NetFlow records) are provided [7],[8]. On the
other hand, in matrix completion, the spatial-temporal structure
among TMs are used to interpolate missing TM values [4].
Also, in network performance tomography the internal link
properties are inferred from end-to-end measurements [9]. For
example, in [6], link loss rate inference problem is modeled as
an UDLI problem where statistical characteristics of congested
links are used as side information to uniquely estimate link
loss rates. In these applications, the attribute of interests (or the
unknown quantities) are flow size, delay, link loss or bottleneck
bandwidth which can be highly fluctuated.

To cope with highly dynamic traffic/network conditions,
NI methods must be able to provide accurate estimates at
faster time scales with more robust performance against noise
and failure in the network or monitoring infrastructures. Since
many network inference problems are formulated as Under-
Determined Linear Inverse (UDLI) problems (which are nat-
urally ill-posed problems in the sense that the number of
measurements are not sufficient to uniquely and accurately de-
termine the solution), side information from different sources
must be incorporated into the problem formulation to improve
the accuracy of the estimation [4], [5], [6], [7], [8]. On
the other hand, due to the dynamic nature of the network,
the attributes of interests are fluctuating rapidly over time
and/or space. It has also been shown that the distribution of
the size and inter-arrival of flows in networks follow heavy-
tailed distributions [10], [11]. Therefore, NI techniques must
be able to estimate these fluctuated traffic attributes with
acceptable precision, depending on the application. This is
of particular importance because many recent applications in
network monitoring, management and security require timely
estimates of both large and small unknown quantities with high
precision [12], [13].

Compressive Sensing (CS) inference methods are effective
techniques for solving NI problems with the ability of the re-
construction of sparse unknown quantities from a set of limited
measurements [14]. However, their performance is limited by
different factors: 1) in NI problems, the observation matrix is
a low-density sparse matrix with high coherency which is not
completely under our control; hence, measurements are not
in a well-defined compressed form and their reconstruction
using compressive sensing techniques are difficult. 2) Since
unknown quantities vary rapidly over time and/or space and
compressive inference methods use numerical optimization



techniques for solving the UDLI problem, the stability of
the reconstruction algorithm is limited for such an ill-posed
inference problem, and 3) the number of unknowns are much
larger than the number of measurements, which limits not
only the performance of the algorithm for recovering large
quantities but also makes it computationally untractable.

To address these issues, instead of introducing a particular
technique, we propose an efficient, flexible and robust frame-
work which is complementary to the compressive inference
techniques used for solving specific NI problem. For this pur-
pose, we extend our MDFE framework previously presented
in [1]. Under MDFE, a large scale inference problem can be
effectively partitioned into smaller sub-problems and solved in-
dependently and in parallel. Then, local estimates/descriptions
from subspaces are fused together to reconstruct the global es-
timate. The MDFE framework is based on least square estima-
tion methods and, accordingly, is effective for inputs without
unusual fluctuations. Since CS inference techniques are able to
provide more accurate estimates for sparse inputs and to make
MDFE framework compatible with CS network inference
methods, we propose a new clustering based algorithm to
intelligently divide a large-scale CS problem into smaller sub-
problems by clustering the sub-set of correlated unknowns and
their related observations into sub-spaces. Accordingly, obser-
vations among sub-spaces are redundant; thus, set-partitioning
problem in [1] is changed to set-covering problem, here. In
this way, the measurements/observations are re-utilized to gen-
erate multiple descriptions of the sub-set of unknowns where
descriptions are considered as side/supplementary information
for each other, provided from different perspectives. Using
CS-MDFE, the computational complexity in each sub-space
is reduced. Moreover, it enhances the robustness against noise
and failures in network monitoring infrastructures. CS-MDFE
is also compatible with the architecture of multi-processor
computing infrastructures and can have important implications
on monitoring applications in distributed and dynamic environ-
ments such as distributed data centers or clouds.

The improvement in the estimation accuracy using CS-
MDFE framework depends on the structure of the problem,
sub-space inference technique, set-covering algorithm, and the
fusion process which are discussed in this paper. Due to
space limitation, we occasionally refer to [15] for the detailed
discussion and additional results. It should be noted that, CS-
MDFE is a flexible framework and can be used in other
compressed sensing applications. Our main contributions are:
•We extend our MDFE framework in [1] for solving compres-
sive sensing NI problems and demonstrate how to effectively
design the CS-MDFE framework and realize it in practice.
•We develop a new algorithm to divide the original large-scale
problem into smaller sub-problems under CS-MDFE; we also
introduce optimal and heuristic fusion methods to combine the
multiple descriptions and reconstruct the global solution.
• We demonstrate the efficacy of CS-MDFE in practice by
applying it to three important problems in network monitoring
and management: TM Estimation (TME), TM completion and
loss inference. Using realistic network topologies and traffic
data, we show how CS-MDFE could effectively improve the
accuracy of the global estimate and enhance the efficiency and
robustness of the computing system.

The rest of this paper is organized as follows. In Section II

we develop the theory of CS-MDFE and in Section III we
address main steps in the implementation of this framework
in practice. In Section IV the performance and efficiency
of this framework are evaluated for different applications in
networking. Finally, Section V summarizes the paper.

II. COMPRESSIVE SENSING INFERENCE WITH MULTIPLE
DESCRIPTION FUSION

Compressive Sensing (CS) is a recently emerging field
in signal processing which offers an effective framework for
simultaneous acquiring and reconstructing a signal by finding
solutions to an UDLI problem. In fact, it recovers a sparse
signal with only k non-zero quantities (in some basis) from
m = O(k log(n/k)) properly designed linear measurements,
compactly represented by [14]:

Y = HX, H = [h1, ..., hn] ∈ Rm×n, {hi ∈ Rm}ni=1. (1)

where Y is an (m×1) observation vector as Y = [y1, ..., ym]T ,
H = [hij ]1≤i≤m,1≤j≤n is an (m × n) observation matrix
(m < n) and X is an (n × 1) vector of unknowns as
X = [x1, ..., xn]T . The general solution to this problem is
of the form X̂ = X + N0(H) where N0(H) represents a
solution from the span of the null space of H; therefore, there
are many solutions for this problem. A compressive inverse
problem is defined as the process of uniquely inferring X as
a function of observation Y via the constrained optimization
problem [14]:

X̂ = min
X
‖X‖0 s.t. Y=HX. (2)

This is an NP-hard problem and, hence, it is infeasible. If the
coherence of H , defined as:

µ = max
i6=j

∣∣hTi hj∣∣
‖hi‖2 ‖hj‖2

(3)

is sufficiently small, then the following convex optimization
program exactly reconstructs the signal:

X̂ = min
X
‖X‖1 s.t. Y=HX. (4)

Interestingly it has been shown that random observation ma-
trices with i.i.d. Gaussian or random ±1 entries, and suf-
ficient number of rows can achieve small coherence with
overwhelmingly high probability [14]. There is a large body of
literature which extends these results for various applications.
Among those, the most relevant works in the literature of
CS to our framework are sparse signal recovery techniques
using structured sparsity models where certain sparse support
patterns are allowable and the signal is modeled using more
concise models. Such additional structures can be captured in
terms of restricting the feasible signal support to a small sub-
set of possible selections of non-zero coefficients for a sparse
signal [14]. For example, in cases where non-zero coefficients
appear in clusters, the structure can be expressed in terms of a
sparse union of sub-spaces [16]. Or, in distributed compressed
sensing when multiple signals are simultaneously recorded
and their supports are correlated [17]. In these works, the
optimal observation matrix H is designed or assumed to meet
specific conditions (e.g. restricted isometry property) so that it
can provide a set of well-formed compressed measurements,
and consequently, the CS recovery algorithm can reconstruct
particular sparsity structure(/s) [14].



In CS-MDFE framework, the original (global) UDLI in-
ference problem described by Eq.(1) is divided into L local
redundant sub-problems shown in Eq.(5), which are inde-
pendently solved using proper inference techniques such as
Eq.(4). Then, sub-space estimates/descriptions {X̂i}Li=1 are
fused together to provide a more accurate solution in an
efficient way. The fusion process is accomplished by applying
appropriate weights {ωFi }Li=1 to each local estimate during
the fusion phase. Fusion weight {ωFi }Li=1, for each sub-space,
can be a scalar or a vector which appropriately equalizes each
unknown {xj}nj=1 at multiple sub-spaces. Eq.(6) describes this
process where operator ⊕ denotes the fusion process of the
partitioned problem, where weighted linear combination of
subset of unknowns observed and estimated by different sub-
spaces is computed. The feasibility of the idea of MDFE is
shown by the sufficient condition represented in Theorem.1.

Y = HX ⇔

 Y1
...
YL

 =

 H1X1

...
HLXL

 (5)

X̂F
C = ⊕Li=1ω

F
i X̂i (6)

Theorem.1: Let X and X̂G represent the unknown vector
and its global estimate. Let for some set C, covering the set
of observations, and for some fusion weights {ωFi }Li=1, the
CS-MDFE estimate X̂F

C is computed using Eq.(6). Then, we
have (Proof is in [15]):∥∥∥X̂F

C −X
∥∥∥2

2
≤
∥∥∥X̂G −X

∥∥∥2

2
if

〈(
X̂

G − X̂F
C

)
,
(
X̂

F
C −X

)〉
≥ 0. (7)

Therefore, computing X̂F
C is feasible. Through our direct

observations we have realized that, at least, for X ≥ 0 (or for
X ≤ 0) and for binary observation matrices with low-density
(#ofnon−zeroentriesm×n := D) and high coherency, where classic
CS techniques can not provide accurate estimation, the CS-
MDFE framework can be applied to improve the performance.
This of particular importance, because the observation matrix
H in many applications are binary matrices. For example,
in network monitoring and sensor network applications, the
entries of H indicates the ability(hij = 1)/inability(hij = 0)
of measuring the jth attribute of interest (xj) by ith moni-
tor/sensor. Due to practical constraints and the nature of the
problem, the observations are redundant; also, all unknowns
can not be desirably measured by any set of sensors. Therefore,
observation matrices are sparse with low densities and high
coherencies. Based on our experience, to improve the precision
of CS-MDFE for sparse and heavy-tailed distributed inputs,
it is necessary to have redundancy between measurements in
sub-spaces.

Accordingly, the overall performance of CS-MDFE frame-
work is a joint function of sub-space estimation technique,
cover of the set of observations C, and fusion process F .
Hence, to successfully apply the CS-MDFE framework in
practice, three steps must be accomplished correctly: a) effec-
tively divide the problem into sub-problems so that the set of
observations is covered, b) construct multiple descriptions by
adopting proper sub-space estimation techniques to solve the
sub-problems, and c) fuse the sub-space estimates to provide
more precise and robust description. The essence of this joint
optimization problem lies in an NP-hard set covering problem

that is extremely difficult to solve. Hence, we decouple and
address steps a-c, independently. Accordingly, in the following
sub-sections, we fix the CS inference technique and discuss
how the existing CS sparse signal reconstruction methods can
be leveraged to provide sub-space estimates (step b). Then,
taking practical constraints into account, we discuss the design
of the most effective set-covering and fusion methods.

Our framework is called CS-MDFE for two reasons: 1)
the number of measurements in network inference problems
are very limited, that is, measurements are compressed and
2) sub-space inference techniques are basic CS reconstruc-
tion algorithms, as effective techniques for recovering sparse
vector(/s) of unknowns. However, our framework also differs
from previous works in two aspects: 1) the observation matrix
in network inference problems is fixed and it is not under
our control, completely. Therefore, network measurements can
not be acquired in a desirable compressible form via a well-
designed observation matrix and CS reconstruction techniques
can not uniquely and accurately determine the unknown vector;
2) the fusion process in our framework optimally equalizes
estimates of unknowns, observed in different sub-spaces. In
fact, here it is assumed that the unknown vector X lies in a
union of sub-spaces with possibly lower sparsity in each sub-
space (i.e. {ki ≤ k}Li=1 where ki denotes sparsity at ith sub-
space). Accordingly, the centralized Eq.(1) can be intelligently
decentralized into multiple sub-spaces to capture the structure
of the signal from different perspectives. The improvement
in the accuracy of the estimation is achieved by reutilizing
the measurements to generate and fuse multiple descriptions.
This framework is flexible and it is also compatible with CS
recovery techniques.

Our new CS-MDFE is also different from our previous
work in [1] where the inference problem is partitioned into L
sub-spaces where observations between sub-spaces are not re-
dundant and Linear Least Square Estimation (LLSE) methods
are mainly applied to NI problems with non-sparse inputs (note
that LLSE techniques have poor performance in the presence
of highly fluctuated inputs). Here, in Section IV-C and, also,
in [15], we show that MDFE with set-covering is compatible
with LLSE techniques.

III. CS-MDFE IN PRACTICE

To implement the CS-MDFE framework in practice, the
following three steps (A-C) must be accomplished.

A. Multiple Description Construction

To construct multiple descriptions, sub-inference problems
must be properly defined and the best sub-space CS estimation
technique is selected based on the characteristics of the input
X , matrix H and problem’s side information or constraints.

Let I denotes the set of all indicies of observations
(I = {1, 2, ...,m}) and Ii denotes the ith set of indices of
measurements where I =

⋃L
i=1 Ii. Then, set C = {Ii}Li=1

covers I . Let J denotes the set of all indices of unknowns
(J = {1, 2, ..., n}) and Ji denotes the ith set of indices of
unknowns where J =

⋃L
i=1 Ji. Now, lets Yi := {yk}k∈Ii ,

Hi := H(Ii, Ji) and Xi := {xk}k∈Ji . Accordingly, the
original problem Eq.(1) is divided into L sub-problems as
Yi = HiXi (see Eq.(5)).



The most important sub-space inference techniques used in
this paper are represented in Eq.(8-10) where global solution is
computed by estimating X from measurement vector Y (where
Y = HX) and local descriptions are produced by considering
appropriate unknown vector Xi and local measurement vectors
Yi(= HiXi) in sub-spaces. Eq.(8) is a convex reformulation
of Eq.(4) where λ controls the amount of regularization. Here,
different variations of this formulation is used as inference
technique for estimating the attributes of interests in network
monitoring applications such as Traffic Matrix Estimation
(TME) where the unknown quantities are highly fluctuated
and have heavy-tailed distributions [10] [11]. Among these,
Eq.(10) is our new method utilized for TME, here.

X̂ = min
X

1

2
‖Y −HX‖22 + λ ‖X‖1 s.t. X ≥ 0. (8)

X̂ = min
X
‖Y −HX‖1 + λ ‖X‖1 s.t. X ≥ 0 from [8]. (9)

X̂ = x̂0 + X̂ = min
x0,X

‖Y −H(x0 + X )‖22 + λ ‖X‖1 s.t. [x0 ∈ R;X ∈ Rn
] ≥ 0

(10)

These optimization problems are solved using Linear Program-
ming techniques with complexity O(n3) (e.g. interior point
methods) which is still highly impractical in many applications
[14]. To reduce the complexity, iterative greedy algorithms
(e.g. Orthogonal Matching Pursuit algorithm) with complexity
O(kmn) is used where the coherency of observation matrix
(µ) is at most 1

2k [14]. Clearly, no matter which inference
technique is used, the complexity is reduced with the CS-
MDFE process because the dimension of the problem in each
sub-space is reduced. In this paper, we use CVX to solve these
optimization problems. Note that the solution of global and
local problems could be different because the null space of H
and Hi are not necessarily equal (see App.B in [15]).

B. Set-Covering Design

The accuracy of redundant estimates from sub-spaces de-
pends on the design of the cover C that can be formulated as
an integer optimization problem to achieve the best possible
performance. Assuming there are m measurements and L sub-
spaces, then there are Sm,L = 1

L!

∑L
j=0(−1)L−j

(
L
j

)
jm parti-

tions (Sm,L denotes Stirling number of the second kind) and,
accordingly, the number of different ways to cover the set of
observations is higher. To simplify this NP-hard problem and
improve the performance, a heuristics algorithm is developed.

The main idea in this clustering algorithm (Alg.1) is
grouping the most correlated attributes of interest ({xj}ni

j=1)
and corresponding measurements {yi}mi

i=1 in the ith cluster to
produce the ith description X̂i, representing the signal from
a new perspective. For this purpose, here, we use k-means
clustering algorithm with Euclidean and Correlation distance
measures. Since k-means converges to a suboptimal local
minimum, we run the algorithm with different random initial
points and choose the solution with optimal performance. The
performance is measured on the training data set. It should
be noted that, clusters are redundant in the sense that there
are common unknowns and their corresponding measurements
among sub-spaces. This allows us to create redundant descrip-
tions, which is necessary for CS-MDFE when input vector X is
sparse. Other clustering algorithms can also be used to improve
the performance and they are currently under investigation.

Algorithm 1 : Correlation Based Set-Covering
Input: Training Data Set XTest, Observation Matrix H , Number
of sub-spaces L.
Output: Sub-space characteristics {Ii}Li=1 and {Ji}Li=1, and ac-
cordingly, {Xi}Li=1, {Yi}Li=1 and {Hi}Li=1.
Initialization: Compute the cross correlation matrix of H as:

Cij
H =

{
|hT

i hj |
‖hi‖2‖hj‖2

}
1≤i,j≤n

and set: 1) the distance used in

k-means algorithm and 2) the Performance Threshold (PThr).
while Performance < PThr do

- Apply k-means to CH to create L redundant clusters of
columns of H (equivalently {Xi}Li=1).
- For ith cluster and its Xi, choose corresponding measurement
vector Yi and observation matrix Hi. Repeat this for all L
clusters to form redundant measurement sub-sets {Yi}Li=1 and
sub-space observation matrices {Hi}Li=1.
- Check if

⋃L
i=1 Ii = I , then, apply the CS-MDFE framework

on the training data set and measure its performance (Table I).
end while

C. Fusion Algorithm

CS-MDFE process is completed by applying fusion pro-
cess F to the local estimates. Here, we consider two dif-
ferent ways to fuse the local descriptions using optimal and
heuristic weighting functions. Having the set C that covers
the set of observations and the appropriate sub-space es-
timation technique (Eq.(8-10)), the optimal fusion weights
can be numerically computed by the following procedure.
First, apply CS-MDFE framework on the training data set
XTest := {XT

1 , ..., X
T
t , ..., X

T
T0
} where column vector XT

t ∈
Rn for t = 1, ..., T0 and T0 is small compare to the size of
the data. Then, generate local descriptions {X̂T

t }
T0
t=1 where

each X̂T
t is an n× L matrix as: X̂T

t =
[
X̂T
t1 , ..., X̂

T
tL

]
. Next,

calculate the optimal weights for each XT
t (t = 1, ..., T0) using

the following optimization problem (Eq.(11)), where ωt is an
n×L matrix that equalizes local descriptions; also, RS and .∗
denote row-sum and componentwise multiplication operators,
respectively. By doing this on the whole training data set,
finally, the optimal weight ωOpt (an n×L matrix) is computed
using Eq.(12). We then apply these weights on the whole data
set to evaluate the performance.

ω(:, :, t) =min
ωt

∥∥∥XT
t −RS

(
ωt. ∗ X̂T

t

)∥∥∥
2

s.t. ωt ≥ 0 and {RS (ωt(j, :) = 1)}nj=1.
(11)

ωOpt
ji =

1

T

T∑
t=1

ω(j, i, t) for j = 1 : n, i = 1 : L (12)

To facilitate the implementation of the CS-MDFE frame-
work, a heuristic weighting function is also proposed whereby
for each unknown xj , the optimal estimate is computed as the
average of {x̂ji}Li=1 observed at different sub-spaces (Eq.(13)).
The computational overhead of these weighting functions are
negligible compare to complexity of sub-space estimations and
they can remarkably enhance the performance.

ωAvgji =
1

# of repetition of xj among all sub-spaces
j = 1 : n, i = 1 : L

(13)



D. The Efficiency of CS-MDFE

CS-MDFE is an efficient framework that can improve
the performance of system from different perspectives. It can
provide more accurate estimates by providing redundant local
estimates, that is, observing an unknown from different sub-
spaces. This redundancy is used by the fusion process to
enhance the accuracy of estimation process. The amount of
redundancy depends on the number of sub-sets (L), and the
structure of observation matrix H . On the other hand, dividing
the problem into sub-problems does not change the input-
output relationship; however, by re-utilizing the measurements
and clustering more-similar unknowns in a sub-space, more
coherent solution can be generated. In addition, the row
partitioning of observation matrix H improves the Condition
Number (CN) of Hi’s (Prop.1) which improves the accuracy
and robustness of numerical optimization methods used in sub-
spaces for local estimation. Since the complexity of subspace
estimation techniques are functions of the dimension of sub-
problems, and also because processing time and power are
functions of the computational complexity of the problem,
then, using multi-processor parallel computing architectures
results in more efficient computing system by reducing the
processing time. It can also lead to reduction in processing
power, if the sum of the processing powers of the sub-
spaces is less than the processing power for solving the global
inference problem. Accordingly, considering other practical
constraints, parameter L can be chosen with a reasonable
balance between desirable improvement in the accuracy and
reduction in processing time/power. In addition, since CS-
MDFE can provide more redundant and better estimates; it
can also improve the robustness of the system against noise,
failure and information-loss, in the system.
Proposition.1: Let H be a matrix in (Rm×n with rank m)
and Hi denotes a matrix constructed from a set of rows of H .
Then: CN(Hi) ≤ CN(H) (see [15] for proof).

E. CS-MDFE: Performance Evaluation Metrics

The performance of the CS-MDFE is evaluated using
various criteria, summarized in Table I. Here, X̂G denotes the
global estimate, X̂F

w denotes the CS-MDFE estimate where
ω denotes fusion function (Eq.(12) or Eq.(13)), and GainL2
and GainRE quantify the performance improvement using CS-
MDFE framework comparing with global case. It should be
noted that, relative gain GainRE capture the mean deviation
of unknowns from their true values and it is a harder criterion
to improve. Parallel processing gains (∆1

p and ∆2
p) measure

the reduction in computation using CS-MDFE structure on a
multi-processor parallel computing infrastructure. Because it is
difficult to measure sub-space sparsity {ki}Li=1, and since, the
complexity of greedy CS algorithms is O(kmn), for ∆1

p the
computational complexity of solving sub-space CS inference
techniques are considered to be O(mn). Since {ki ≤ k}Li=1,
the achievable processing gains ∆1

p are higher in practice.
For ∆2

p, the computational complexity of solving Eq.(8-10)

is considered to be O(n3). Also, CNIm =
min{CN(Hi)}Li=1

CN(H)

and CNIM =
max{CN(Hi)}Li=1

CN(H) indicate the CN Improvement.

GE =

∥∥∥X−X̂G
∥∥∥
2

‖X‖2
, FEw =

∥∥∥X−X̂F
w

∥∥∥
2

‖X‖2
GainL2 = 100 × GE−FEω

GE

RGE = 1
|Nv|

∑
j:xj>v

∣∣∣∣∣∣
xj−x̂G

j
xj

∣∣∣∣∣∣
RFEw = 1

|Nv|
∑

j:xj>v

∣∣∣∣∣∣∣
xj−x̂F

ωj
xj

∣∣∣∣∣∣∣ GainRE = 100 × RGE−RFEω
RGE

∆1
p = 100 ×

mn−max({mini}
L
i=1)

mn
∆2

p = 100 ×
n3−max({n3

i }
L
i=1)

n3

TABLE I: Performance evaluation criteria (where Nv = {xj : xj >
v, for j = 1, ..., n} and v is chosen so that the unknowns (x’s) under
consideration carry approximately 90% of the total traffic, as in [8]).

F. CS-MDFE: Illustrative Example

This illustrative example shows the effectiveness
of CS-MDFE for estimating sparse signals.
Consider UDLI problem Y = HX where
H = [0, 1, 1, 1, 0, 1; 1, 0, 0, 1, 0, 1; 0, 0, 1, 0, 1, 1] and assume
that H1 = H([1, 2], :), H2 = H([1, 3], :) and sub-space CS
inference technique is Eq.(4). If X = [1, 0, 1, 1, 0, 1]T it can be
shown that GE = 0.8660, FEOpt = 0.50, FEAvg = 0.5863
and gains GEOptL2 = 42.3% and GEAvgL2 = 32.3% are
achieved. Also, if X = [1, 0, 5, 3, 0, 2]T , as a highly
fluctuated signal, then, GE = 0.6304, FEOpt = 0.4082,
FEAvg = 0.5371, and accordingly, GEOptL2 = 36.3% and
GEAvgL2 = 16.2% (see [15] for details).

IV. NETWORK INFERENCE USING CS-MDFE

In this section the effectiveness of CS-MDFE in different
applications, including TM estimation, TM completion and
loss inference, and its compatibility with different CS inference
techniques are shown. Two real networks Abilene [18] and
GEANT [19] are considered. Routing matrix HAbilene is a
(30 × 144) matrix with density D = 0.0353 and coherency
µAbilene = 0.9127. HGeant is a (74 × 529) matrix with
D = 0.036 and µGeant = 0.8942. Both routing matrices are
binary and full row-rank. Also, real network data (Table III),
which are highly fluctuating, are used for our experiments.

A. Traffic Matrix Estimation (TME)

Considering Y = HX , TME is an UDLI inference
problem where X is the TM (each entry of X represents
an Origin-Destination Flow (ODF) in the network) and it is
estimated by knowing routing matrix H and observing link
load measurement vector Y . Since LLSE methods have poor
performance for highly fluctuated TMs [15], here, TMs are in-
ferred using optimization techniques Eq.(8-10), in both global
and CS-MDFE framework. Alg.1 is used for set-covering and
dividing an UDLI problem into sub-problems and different
configurations are considered for CS-MDFE framework. Table
II shows the performance of CS-MDFE on these two networks
with different configurations and parameters. The improvement
in the accuracy of the estimation is considerable. Among these,
higher gain on relative errors shows that this framework can en-
hance the precision in the estimation of larger ODFs. This is an
important factor in many network monitoring applications such
as traffic engineering and anomaly detection. It is also shown
that, applying optimum fusion weights ωOpt can significantly
improve the performance, although, more accurate estimates
can also be achieved even by applying fusion weights ωAvg



Configuration Parameters GE FEAvg Gain
Avg
L2

% FEOpt Gain
Opt
L2

% RGE RFEAvg Gain
Avg
RE

% RFEOpt Gain
Opt
RE

% ∆1
p% ∆2

p% MRUF CNIm CNIM

1) L = 5, Eq.(8) 0.7852 0.7027 10.4995 0.6385 18.6721 1.0044 0.7873 21.6083 0.6015 40.1079 71.7172 77.7388 1.7667 0.42 0.94

2) L = 4, Eq.(9) 0.7586 0.7506 1.0558 0.6785 10.5577 0.9861 0.8311 15.7167 0.6442 34.6695 75.3788 77.7388 1.6000 0.44 0.94

3) L = 5, Eq.(10) 0.7533 0.6385 15.2406 0.6250 17.0271 0.9606 0.6481 32.5375 0.5421 43.5704 42.1970 43.6936 2.0333 0.48 0.86

4) L = 5, Eq.(8) 0.6073 0.5750 5.3171 0.4100 32.4965 0.8374 0.6749 19.4010 0.5373 35.8350 61.2328 56.9733 2.2703 0.52 0.91

5) L = 5, Eq.(9) 0.6092 0.5685 6.6742 0.4055 33.4372 0.8379 0.7367 12.0835 0.5661 32.4364 64.7153 61.8454 2.1757 0.41 0.84

6) L = 3, Eq.(10) 0.6085 0.5818 4.3902 0.4872 19.9358 0.8344 0.7140 14.4278 0.6346 23.9441 10.1058 6.3810 1.5270 0.47 0.99

7) L = 4, Eq.(10) 0.6085 0.5772 5.1486 0.4274 29.7641 0.8344 0.7444 10.7856 0.5851 29.8861 58.3859 59.2955 2.0135 0.60 0.78

8) L = 5, Eq.(10) 0.6085 0.5605 7.8933 0.4557 25.1068 0.8344 0.6742 19.2041 0.5732 31.3090 13.4548 8.6323 1.9054 0.31 0.98

TABLE II: Performance of CS-MDFE over Abilene (configurations (1)-(3)) and Geant (configurations (4)-(8)) networks, respectively.

which facilitates the implementation of CS-MDFE framework.
Furthermore, our new inference technique Eq.(10) improves
the performance of CS-MDFE framework.

Table II also indicates the processing gains obtained using
CS-MDFE framework. These remarkable, processing gains
are achievable using today’s multi-core parallel computing
architectures where communication delays for distributing
the problem among multi-processors are negligible in com-
parison with processing times. In this table, Measurement
Re-Utilization Factor (MRUF) measures the amount of re-
dundancy between observations among sub-spaces which is
necessary to improve the performance of CS-MDFE, and
it is defined as: MRUF :=

∑L
i=1 mi

m . Note that, in the
design of CD-MDFE framework, the number of subspaces L,
the sub-space estimation technique and the fusion algorithm
must be selected carefully, considering a reasonable trade-
off between accuracy, processing gains and all other practical
constraints. Based on the topology of the network, it is also
possible to improve sequential processing gains, defined as:
∆1
s = 100 × mn−

∑L
i=1 mini

mn , or ∆2
s = 100 × n3−

∑L
i=1 n

3
i

n3 .
This is of particular importance, because processing power is
also a function of computational complexity. Thus, enhancing
∆1
s and ∆2

s can reduce the processing power of the system
and improve the efficiency of the system. For example, for
Abilene network, using configurations (1) and (2) in Table
II, considerable sequential processing gains (∆1

s = 13.5%,
∆2
s = 41%) and (∆1

s = 12.6%, ∆2
s = 34%) can be achieved,

respectively. Note that, although, here, we have used CS-
MDFE framework for network monitoring applications, this
framework can be applied in many other compressive sensing
tomography problems. The improvenemt of the CN of sub-
space observation matricies (by Prop.1) are also evident. This
improves the stability of numerical algorithms used in sub-
spaces for multiple descriptin estimation.

- Robustness of CS-MDFE: CS-MDFE framework im-
proves the robustness of the system against noise in measure-
ments, failures and lossy information (Section III-D). Here, this
fact is justified by investigating the robustness of CS-MDFE
in TME. According to [8], noise in link load measurements
(due to disalignment of polling intervals) can be modeled as
a White Gaussian Noise (WGN); therefore, we added WGN

Network Date Duration Resolution TM Size

Abilene 2004-05-01 1 week 5 min. 144 × 2016
GEANT 2005-01-08 1 week 15 min. 529 × 672

TABLE III: Real Datasets under study.

SNR(dB) 6 9 15 20 30
GE 1.0360 0.8712 0.7123 0.6618 0.6328

FEOpt 0.7533 0.6311 0.4884 0.4438 0.4227
FEAvg 0.7739 0.6924 0.6131 0.5928 0.5849

Erased Sub-Space 1 2 3 4 5
GE 0.6457 0.6247 0.6779 0.6302 0.6410

FEOpt 0.4279 0.4491 0.5209 0.4444 0.4594
FEAvg 0.5900 0.5971 0.5988 0.5994 0.6160

TABLE IV: CS-MDFE Robustness against noise and failure.

to link measurement vector Y with different Signal-to-Noise
Ratios (SNR) to evaluate the performance. The improvement
of CS-MDFE in the presence of noisy link-load measurements,
using the 8th configuration in TableII (for Geant network), is
shown in TableIV. This table also indicates that CS-MDFE is
robust against sub-space erasure (or failure) in the system.

B. Traffic Matrix Completion (TMC)

In [4], a Sparsity Regularized SVD (SRSVD) method is
introduced for TM Completion where the columns of traffic
matrix Z is formed by the unknown vector X in our TME
setup at different times (t = 1, ..., T ). Now, assuming Z can
be factored as Zn×T = LRT ; then TMC is formulated as the
following optimization problem to find missed entries of Z.

Ẑ = min
L,R

∥∥∥B −A(LRT )
∥∥∥2
F
+ λ

(
‖L‖2F + ‖R‖2F

)
(14)

Here, B and A respectively denote the set of measure-
ments and a linear operator satisfying A(Z) = B. To apply
our MDFE framework, we adopt this method and modi-
fied the formulation in Eq.(14). In our Modified SRSVD
(MSRSVD) method, At = [diag(Mt);H] and bt = [Xt. ∗
Mt;Yt] where Mt is a binary column vector (where zeros
represent missing entries), H is the routing matrix, Yt =
HXt denotes tth link load measurement vector; accordingly,
A = {blockdiag(A, At)}Tt=1, B = [b1; ...; bT ] and M =
[M1, ...,MT ]. Figure 1 shows that our new MSRSVD TM
completion method significantly improves the performance
where TMC is applied onto normalized TMs where Xbase [4]
is assumed to be known. It also compares the TM completion
performance between Global-TMC and CS-MDFE-TMC on
real Abilene and GEANT networks and data. Here, the 3rd
and 8th configurations in Table II are considered and we
set MSRSVD as sub-space TMC technique in CS-MDFE
framework. Also, λAbilene = 0.01 and λGEANT = 0.1 and for
both networks we fixed r = 2 (i.e. rank-2 approximation). The
Normalized Mean Absolute Error (NMAE) is computed over



Fig. 1: NMAE v.s probability of loss in TM completion (G: global).

Fig. 2: GE and FEAvg vs. the proportion of congested links for the 3rd and 4th

configurations in Table.II where # of beacons S=1000 and # of iterations = 100.

interpolated values as NMAE =
∑

i,j:M(〉,|)=0|Z(i,j)−Ẑ(i,j)|∑
i,j:M(i,j)=0|Z(i,j)| . It

is clear that, CS-MDFE can improve the performance for high
loss probabilities where MDFE framework reduces the number
of unknowns in each sub-space and helps to improve spatial-
temporal correlations. For low loss rates, the performance of
both methods are close together. However, CS-MDFE can
speed-up the TMC process and improve its robustness.

C. Loss Inference

Considering Y = HX , loss inference is an UDLI problem
where H is a routing matrix, and X and Y are defined
as X = {xj}nj=1 = {logφ̂ej}nj=1 and Y = {yi}mi=1 =

{logφ̂i}mi=1. Parameter, φ̂i represents the fraction of S probes
that arrive correctly at the destination and φ̂ej is the fraction
of probes from all paths passing through link ej that have not
been dropped by that link [6]. The loss inference algorithm
is adopted from [6] as the sub-space estimation technique
to apply the MDFE framework. Both Abilene and Geant
networks are considered and the proportion of the links that
are congested is fixed and is varied to evaluate the performance
of MDFE framework with set-covering in terms of GE and
FEAvg . Here, congested and non-congested links have loss
rates uniformly distributed in [0.05, 0.2] and [0,0.002], respec-
tively. Figure 2 shows the improvement achieved by applying
MDFE with set-covering for loss inference in two networks
and indicates that MDFE is more effective for higher loss rates.

V. CONCLUSION

In this paper, a novel approach for solving CS inference
problems was introduced where a large-scale problem is di-

vided and solved in sub-spaces. By fusing the solution from
sub-spaces, we not only showed that the accuracy of the
solution is improved, but also the efficiency and robustness of
system are enhanced. These are important factors, particularly,
in distributed and dynamic environments where accurate, quick
and efficient inference are highly demanding. We examined the
performance of CS-MDFE in different applications, and we
showed that CS-MDFE framework is flexible and compatible
with a variety of sub-space estimation techniques, and it is
compatible with today’s multi-processors architectures.
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