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Measurement-Aware Monitor Placement and
Routing: A Joint Optimization Approach for

Network-Wide Measurements
Guanyao Huang, Chia-Wei Chang, Chen-Nee Chuah, and Bill Lin

Abstract—Network-wide traffic measurement is important
for various network management tasks, ranging from traffic
accounting, traffic engineering, network troubleshooting to
security. Previous research in this area has focused on either
deriving better monitor placement strategies for fixed routing,
or strategically routing traffic sub-populations over existing
deployed monitors to maximize the measurement gain. However,
neither of them alone suffices in real scenarios, since not
only the number of deployed monitors is limited, but also the
traffic characteristics and measurement objectives are constantly
changing.

This paper presents an MMPR (Measurement-aware Monitor
Placement and Routing) framework that jointly optimizes
monitor placement and dynamic routing strategy to achieve
maximum measurement utility. The main challenge in solving
MMPR is to decouple the relevant decision variables and adhere
to the intra-domain traffic engineering constraints. We formulate
it as an MILP (Mixed Integer Linear Programming) problem and
propose several heuristic algorithms to approximate the optimal
solution and reduce the computation complexity. Through
experiments using real traces and topologies (Abilene [1],
AS6461 [2], and GEANT [3]), we show that our heuristic
solutions can achieve measurement gains that are quite close
to the optimal solutions, while reducing the computation times
by a factor of 23X in Abilene (small), 246X in AS6461 (medium),
and 233X in GEANT (large), respectively.

Index Terms—

I. INTRODUCTION

G IVEN the sheer size and complexity of the Internet
today and its increasingly important role in modern-day

society, there is a growing need for high-quality network traffic
measurements to better understand and manage the network.
Obtaining accurate network-wide traffic measurement in an
efficient manner is a daunting task given the multi-faceted
challenges. First, there is an inherent lack of fine-grained
measurement capabilities in the Internet architecture. Second,
the rapidly increasing link speeds make it impossible for
every router to capture, process, and share detailed packet
information. Earlier work on traffic monitoring has focused
on improving single-point measurement techniques, such as
sampling approaches [4, 5], estimation of heavy-hitters [6],
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and methods to channel monitoring resources on traffic
sub-populations [7, 8]. To achieve network-wide coverage,
previous studies have focused on the optimal deployment
of monitors across the network to maximize the monitoring
utility (as determined by the network operator) with given
traffic routing [9–11]. The optimal placement for a specific
measurement objective typically assumes a priori knowledge
about the traffic characteristics. However, both traffic
characteristics and measurement objectives can dynamically
change over time, potentially rendering a previously optimal
placement of monitors suboptimal. For instance, a flow of
interest can avoid detection by not traversing the deployed
monitoring boxes. The optimal monitor deployment for
one measurement task might become suboptimal once the
objective changes.

To address the limitation mentioned above, MeasuRout-
ing [12] was recently proposed to strategically/dynamically
route important traffic over fixed monitors such that it
could be best measured. Using intelligent routing, it can
cope with the changes of traffic patterns or measurement
objectives to maximize measurement utility while meeting
existing intra-domain traffic engineering (TE) constraints,
e.g., achieving even load distribution across the network, or
meeting Quality of Service (QoS) constraints. It is oblivious
of the monitor placement problem. The key idea is that the
routes of important and unimportant flows can be exchanged
to achieve better measurement and load balancing. However,
MeasuRouting is based on the assumption that monitor
locations have already been decided a priori and fixed. It does
not consider the flexibility of deploying new monitors and
replacing old ones, or altering the existing monitor placement
strategies.

In practice, current routers deployed in operational networks
are already equipped with monitoring capabilities (e.g.,
Netflow [13], Openflow [14]). Network operators would
not turn on all these functionalities because of their
associated expensive operation cost [9–11] and measurement
redundancy [15], and hence there are potentially hundreds of
monitoring points to choose from to achieve network-wide
measurements. Given routing could be changed dynamically
to aid measurement, the optimal monitor selection/placement
strategies may also change to take advantage of this new
degree of freedom. Therefore, previous approaches that treat
monitor placement and routing as two separate problems may
be sub-optimal (as demonstrated in Section 2 with an example
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scenario). This naturally leads to the following open question:
Given a network where all links can be monitored, which
monitors should be activated and how to strategically route
traffic sub-populations over those planned monitors such that
both the measurement gain is maximized and the limited
resources is best utilized.

In this paper, we propose an MMPR (Measurement-aware
Monitor Placement and Routing) framework that jointly
optimizes monitor placement and traffic routing strategy, given
traffic characteristics and monitor capacities as inputs. In our
framework, the optimal routing strategy is determined for
each flowset, which is defined to be any aggregation of flows
which share the same ingress/egress routers and have the
same routing decision. The goal is to maximize the overall
measurement utility, which quantifies how well each individual
flow is monitored (e.g., how many bytes or packets are
sampled), weighted by its importance. We strive to adhere to
the existing intra-domain traffic engineering (TE) constraints
such that we maintain similar load distributions in the network
(e.g., maximum link utilization) as in default routing case. We
also attempt to constrain measurement resources by activating
no more than 𝐾 monitors in arbitrary links.

The properties of monitors and importance of flows in
the paper are modeled in a very generic form such that our
framework can be applied to a wide variety of measurement
scenarios. We assume that the dynamic traffic/measurement
changes will stay for long enough time for us to re-optimize
monitor placement and flowset routing. Implementation issues
for continuous measurement are discussed in Section VII or
left as future work. We highlight our contributions as follows:

∙ We formulate the MMPR problem as an MIQP (Mixed
Integer Quadratic Programming) problem, and show how it
could be reformulated as a standard MILP (Mixed Integer
Linear Programming) problem by decoupling the two key
decision variables.

∙ We investigate several approximate solutions that can
approach the performance of the optimal MILP solution,
but yet they require dramatically shorter computation
times. Our heuristic algorithms include K-Best, Successive
Selection, Greedy and Quasi-Greedy.

∙ We perform detailed simulation studies using real
traces and topologies from Abilene [1], AS6461 [2],
and GEANT [3]. Our results show that the optimal
MMPR solution can achieve measurement gains up to
a factor 1.76X better when compared to baseline cases
(optimal Placement-only or MR(MeasuRouting)-only). We
also show that our heuristic algorithms can achieve
measurement utilities that are quite close to the optimal
solution, while reducing computation times by a factor of
23X in Abilene, 246X in AS6461, and 233X in GEANT,
compared with the MILP (optimal) solution.

The rest of the paper is organized as follows. Section II
illustrates through a motivating example the benefits of a joint
optimization approach that considers both monitor placement
and traffic routing together. Section III formulates the MMPR
problem, and Section IV presents our heuristic solutions.
Section V presents detailed experimental results using our
proposed methods, and Section VI outlines related work.

Fig. 1. MMPR motivational example.

Finally, Section VII discusses practical implementation issues
and concludes the paper.

II. MOTIVATING EXAMPLE

In this section, we showcase the importance of both monitor
placement and traffic routing through an illustration. Consider
the topology in Figure 1. We define a flow based on the five
tuple < 𝑠𝑟𝑐𝑖𝑝, 𝑑𝑠𝑡𝑖𝑝, 𝑠𝑟𝑐𝑝𝑡, 𝑑𝑠𝑡𝑝𝑡, 𝑝𝑟𝑜𝑡𝑜 >. We assume that
due to budget considerations, only one monitor is allowed to
be deployed in any one of the 12 links. The network operator
wants to identify the best monitor location and the best routing
for “important” flows, to achieve maximum measurement gain,
i.e., measuring as many important flows as possible. At the
same time, the operator wants to ensure that the monitor
placement and any routing changes have least impact on
existing QoS metric, which is defined as the “average path
length” of every flow.

Initially there are two important flows, flow 1 and 2, with
their default routing show in Figure 1. Obviously the optimal
monitor location is on link 𝐶 → 𝐷 where the two important
flows traverse. There are many other unimportant flows (not
shown in the figure) from each OD (origin-destination) pair.
All of the 𝑁 unimportant flows (including flow 3) use shortest
path routing. Suppose their average path length is 𝜁.

Suppose now flow 3 becomes important over time, with
its default route 𝐴 → 𝐹 → 𝐺 → 𝐻 . With the current
monitor placement (previously determined to be optimal),
flow 3 will not be monitored at all. In order to capture this
flow, a second monitor (additional resources) will be needed
along the path 𝐴 → 𝐹 → 𝐺 → 𝐻 if the routing remain
unchanged. Alternatively, a dynamic routing approach like
MeasuRouting would redirect flow 3 through link 𝐶 → 𝐷
(assuming the resulting link utilization is below a desired
threshold). However, the detour increases path length for flow
3 from 3 to 4. Since every other flow uses shortest path routing,
the average path length increases from 𝑁𝜁+6

𝑁+2 to 𝑁𝜁+7
𝑁+2 , which

clearly has a negative impact on the QoS metric.
Instead, it would be better to move the monitor from 𝐶 →

𝐷 to link 𝐺→ 𝐻 , and redirect the flow 1 and 2 both through
link 𝐺 → 𝐻 . The new routes for flow 1 and 2 can be 𝐵 →
𝐹 → 𝐺 → 𝐻 and 𝐶 → 𝐺 → 𝐻 → 𝐼 , respectively. As
such, no flow has increased its path length, i.e. average path
length remains 𝑁𝜁+6

𝑁+2 . All flows can be monitored with only
one monitor (without additional resources).

One other practical concern is that the redirection of flow
1 and 2 may overload link 𝐺 → 𝐻 . This can be simply
avoided by switching flow 2 with another unimportant flow
from 𝐵 to 𝐻 , as long as that flow has equal traffic amount
and was originally routed through 𝐵 → 𝐹 → 𝐺 → 𝐻 . Flow
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3 can be similarly treated by switching with a flow originally
routed as 𝐶 → 𝐺→ 𝐻 → 𝐼 . MeasuRouting [12] has already
shown ways to switch flows for better measurement. In our
situation, by switching flow 1 and 2 with other unimportant
flows, both average path length and link load can be preserved
at initial conditions. The same scenario may lead to different
optimal solutions (the new placement location and new routes)
with other TE metric definitions. The problem becomes more
complicated for larger topology, with more important flows
and different TE metrics.

The example above reveals that MeasuRouting without
considering changing monitor placement (referred to as
MeasuRouting- or MR-only) may become suboptimal. Simi-
larly, changing the optimal monitor placement alone (referred
to as Placement-only) without the flexibility in re-routing
may be infeasible without introducing additional measurement
resources (e.g., adding a second monitor in this example).
A better monitor placement combined with strategic routing
can achieve optimal solution while meeting the QoS or
TE constraints. This motivates us to formulate the joint
optimization problem of both monitor placement and traffic
routing under the MMPR framework and propose optimal
solutions that achieve best measurement utility with limited
monitor resources. We will later compare the performance of
optimal MMPR solution with MR-only and Placement-only
in Figure 2. In the example above, Placement-only strategy
will miss flow 3 completely. Both MR-only and MMPR can
monitor all flows. However, MR-only increases the average
path length (QoS metric) to 𝑁𝜁+7

𝑁+2 , which is undesirable, while
MMPR reduces it to 𝑁𝜁+6

𝑁+2 .
The main focus on this paper is to provide a theo-

retical framework for MMPR problem and examine the
cost/performance trade-offs for the optimal solution and a
variety of heuristic approaches. There are several practical
issues which remain to be addressed in order to realize MMPR
solutions. For example, MMPR assumes prior knowledge of
traffic importance, which is usually inaccurate in practice.
All the related implementation issues will be discussed in
Section VII.

III. MMPR FRAMEWORK

We now present a formal framework for MMPR in the
context of a centralized architecture, which jointly optimizes
monitor placement and traffic routing assuming it has
global knowledge of 𝑎) the network topology, 𝑏) the size
and importance of traffic sub-populations, 𝑐) the monitor
capability, and 𝑑) the TE policy.

A. Definition

𝐺(𝑉,𝐸) represents our network, where 𝑉 is the set of nodes
and 𝐸 is the set of directed links. 𝑀 = ∣𝑉 ∣ is the total number
of links. An OD pair represents a set of flows between the
same pair of ingress/egress nodes for which an aggregated
routing placement is given. The set of all ∣𝑉 ∣ × ∣𝑉 − 1∣ OD
pairs is given by Θ. Γ𝑥

𝑖𝑗 denotes the fraction ([0, 1]) of the
traffic demand belonging to OD pair 𝑥 placed along link (𝑖, 𝑗).
{Γ}𝑥∈Θ

(𝑖,𝑗)∈𝐸 is an input to the MMPR problem and represents
our original routing. We assume {Γ}𝑥∈Θ

(𝑖,𝑗)∈𝐸 is a valid routing,

i.e. flow conservation constraints are not violated and it is
compliant with the network TE policy.

An OD pair may consist of multiple flows where some
of them have higher measuring importance than others. The
purpose of traffic measurement is to capture those important
flows as much as possible. However, it is impractical to
enforce individual routing decision for each flow. On the
other hand, flows are aggregated as flowsets according to flow
semantics, e.g: prefix based routing. In this paper, we define
flowset to be any aggregation of flows which share the same
ingress/egress routers and have the same routing decision. We
use 𝜃 to denote the set of mutually exclusive flowsets and Υ𝑥

to denote the set of flowsets that belongs to the OD pair 𝑥.
Each flow is assigned to one flowset in 𝜃.

We denote the fraction of traffic demand of flowset 𝑦 placed
along link (i,j) as 𝛾𝑦

𝑖𝑗 . {𝛾}𝑦∈𝜃
(𝑖,𝑗)∈𝐸 represents our flowset routing

and is the set of decision variables of the MMPR problem.
According to this definition, flows belonging to the same
flowset 𝑦 should have the same routing. We denote {Φ}𝑥∈Θ

and {𝜙}𝑦∈𝜃 to be the traffic demands (e.g., the sizes) for
the OD pair Θ and flowset 𝜃, respectively. It follows that
Φ𝑥 =

∑
𝑦∈Υ𝑥

𝜙𝑦 . ℐ𝑦∈𝜃 denotes the measurement utility of the
flowset 𝑦. This is a generic metric that defines the importance
of measuring a flowset, which is related to the importance of
its individual flows.

In this paper, we assume traffic measurements are conducted
on links. We define our measurement infrastructure and
measurement requirement in abstract terms. {𝑆}(𝑖,𝑗)∈𝐸

denotes the measurement characteristic of all links, i.e. the
ability of a link to measure traffic. For example, 𝑆(𝑖,𝑗) can be
equal to 𝑝𝑖𝑗 , the sampling rate of link (𝑖, 𝑗). Since packet
sampling is the de facto deployed measurement method,
we will use 𝑝𝑖𝑗 and {𝑆}𝑖𝑗 interchangeably to denote the
measurement ability of each link, and we discuss other
possible measurement functions in Section III-C. In summary,
{𝑆}(𝑖,𝑗)∈𝐸 and ℐ𝑦∈𝜃 are inputs given to our MMPR problem.

Another input to the MMPR problem is 𝐾 , the maximum
number of monitors that would be turned on inside the
network. In this paper, monitors can be turned on any of
the 𝑀 links. The (0,1) boolean variable 𝑢𝑖𝑗 is used to
denote the placement strategy. Finally, we use a measurement
resolution function (𝛽) to characterize the overall performance
of traffic measurement. 𝛽 assigns a real number representing
the monitoring effectiveness of flowset routing, flowset utility,
and monitor placement strategy for given measurement
characteristics. The objective of MMPR is to maximize 𝛽.
Notations are summarized in Table I.

𝛽 : ({𝛾}𝑦(𝑖,𝑗), {𝑆}(𝑖,𝑗), {ℐ}𝑦, 𝑢(𝑖,𝑗))→ ℜ (1)

B. Formulation

In our problem, we can formulate the measurement gain
through two kinds of popular reward models [10]. Let utility
function 𝑇𝑦 denote the benefit gained by monitoring flowset
𝑦. We assume that there is no additional benefit gained
by repeatedly monitoring the same traffic. Thus 𝑇𝑦 can be
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TABLE I
SUMMARIZATION OF NOTATIONS

Notation Description
𝑥 OD pair
𝑦 flowset
Θ set of OD pairs
𝜙 set of flowsets
Φ𝑥 traffic demands of the OD pair 𝑥
𝜙𝑦 traffic demands of the flowset 𝑦
Γ𝑥
𝑖𝑗 original routing for OD pair 𝑥

𝒮(𝑖,𝑗), 𝑝(𝑖,𝑗) measurement characteristic of link (i,j)
ℐ𝑦 measurement utility of the flowset 𝑦
𝑇𝑦 measurement gain of flowset 𝑦

𝛾𝑦
(𝑖,𝑗)

routing decision variable for flowset 𝑦

𝑢(𝑖,𝑗) monitor placement variable for link (𝑖, 𝑗)
𝛽 optimization objective

expressed in either of two ways:

𝑇𝑦 = 1−
∏

(𝑖,𝑗)∈𝐸

(1− 𝑝𝑖𝑗𝑢𝑖𝑗𝛾
𝑦
𝑖𝑗) (2)

𝑇𝑦 =
∑

(𝑖,𝑗)∈𝐸

𝑝𝑖𝑗𝑢𝑖𝑗𝛾
𝑦
𝑖𝑗 (3)

Equation (3) approximates equation (2) if 𝑝𝑖𝑗𝑢𝑖𝑗𝛾
𝑦
𝑖𝑗 is

very small. This is true for most core-networks since the
sheer traffic volume/speed prohibits high rate measurement.
Equation (2) models the case where monitors independently
sample flows, while in Equation (3), monitors measure
non-overlapping traffic. This can be achieved by CSamp [15]
like methods, in which disjoint hash-based filters are placed
before flows get sampled. In this paper, we use the later reward
model since it is linear, allowing us to better compare the
various MMPR solutions.

Maximize 𝛽 (4)

𝛽 =
∑

𝑦∈𝜃

ℐ𝑦𝑇𝑦 (5)

=
∑

𝑦∈𝜃

∑

(𝑖,𝑗)∈𝐸

ℐ𝑦𝑝𝑖𝑗𝑢𝑖𝑗𝛾
𝑦
𝑖𝑗 (6)

𝛾𝑦
𝑖𝑗 ≥ 0, ∀𝑦 ∈ 𝜃, (𝑖, 𝑗) ∈ 𝐸 (7)

𝑢𝑖𝑗 ∈ {0, 1}, ∀(𝑖, 𝑗) ∈ 𝐸 (8)

In our model, 𝑇𝑦 is the summation of the product of 𝑝𝑖𝑗 ,
𝛾𝑦
𝑖𝑗 , and 𝑢𝑖𝑗 . Therefore the objective function 𝛽 is related

to the product of two decision variables 𝑢𝑖𝑗 and 𝛾𝑦
𝑖𝑗 , and

the optimization problem falls into the MIQP (Mix Integer
Quadratic Programming) category. In order to avoid quadratic
programming, we introduce 𝑧𝑦𝑖𝑗 to decouple 𝑢𝑖𝑗 × 𝛾𝑦

𝑖𝑗 by
Equations (10) and (11). It is easy to see their equivalence.
When 𝑢𝑖𝑗 = 0, 𝑧𝑦𝑖𝑗 = 0 from (10); and when 𝑢𝑖𝑗 = 1,
𝑧𝑦𝑖𝑗 = 𝛾𝑦

𝑖𝑗 from (11).

𝑧𝑦𝑖𝑗 = 𝛾𝑦
𝑖𝑗 × 𝑢𝑖𝑗 (9)

0 ≤ 𝑧𝑦𝑖𝑗 ≤ 𝑢𝑖𝑗 (10)

𝛾𝑦
𝑖𝑗 + 𝑢𝑖𝑗 − 1 ≤ 𝑧𝑦𝑖𝑗 ≤ 𝛾𝑦

𝑖𝑗 (11)

After we substitute (10-11) to (6), the formulation becomes
MILP (Mixed Integer Linear Programming) instead of MIQP:

Maximize 𝛽 (12)

𝛽 =
∑

𝑦∈𝜃

∑

(𝑖,𝑗)∈𝐸

ℐ𝑦𝑝𝑖𝑗𝑧𝑦𝑖𝑗 (13)

0 ≤ 𝑧𝑦𝑖𝑗 ≤ 𝑢𝑖𝑗 (14)

𝛾𝑦
𝑖𝑗 + 𝑢𝑖𝑗 − 1 ≤ 𝑧𝑦𝑖𝑗 ≤ 𝛾𝑦

𝑖𝑗 (15)

𝛾𝑦
𝑖𝑗 ≥ 0, ∀𝑦 ∈ 𝜃, (𝑖, 𝑗) ∈ 𝐸 (16)

𝑢𝑖𝑗 ∈ {0, 1}, ∀(𝑖, 𝑗) ∈ 𝐸 (17)

We set the maximum number of allowed monitors to be no
more than 𝐾:

∑

(𝑖,𝑗)∈𝐸

𝑢𝑖𝑗 ≤ 𝐾 (18)

After introducing MMPR, the new routing should not
violate the TE metric (e.g., maximum link utilization) by more
than a certain threshold, as compared with original routing. We
use 𝜎Γ and 𝜎𝛾 to denote TE metric of original routing and
new routing, respectively. We introduce a threshold 𝜖, which
bounds the violation of TE metric.

𝜎𝛾 ≤ (1 + 𝜖)𝜎Γ (19)

The traffic constraints can be formulated as follows:
∑

𝑖:(𝑖,𝑗)∈𝐸

𝛾𝑦
𝑖𝑗 −

∑

𝑘:(𝑗,𝑘)∈𝐸

𝛾𝑦
𝑗𝑘 = 0 𝑦 ∈ 𝜃, 𝑗 ∕= 𝑖𝑛𝑦, 𝑜𝑢𝑡𝑦

(20)
∑

𝑖:(𝑖,𝑗)∈𝐸

𝛾𝑦
𝑖𝑗 −

∑

𝑘:(𝑗,𝑘)∈𝐸

𝛾𝑦
𝑗𝑘 = −1 𝑦 ∈ 𝜃, 𝑗 = 𝑖𝑛𝑦

(21)
∑

𝑖:(𝑖,𝑗)∈𝐸

𝛾𝑦
𝑖𝑗 −

∑

𝑘:(𝑗,𝑘)∈𝐸

𝛾𝑦
𝑗𝑘 = 1 𝑦 ∈ 𝜃, 𝑗 = 𝑜𝑢𝑡𝑦

(22)

In MMPR, to maximize 𝛽, important flowsets might get
repeatedly routed through monitors. In reality, loop-free
routing is desirable to avoid huge delays. MeasuRouting [12]
proposed two methods (RSR and NRL) to provide candidate
routes which are loop-free. They pre-calculate allowable
acyclic paths for each OD pair. The optimization problem then
selects the best routes from these candidates. In this paper, we
borrow the idea of NRL (No Routing Loops MeasuRouting
[12]). It allows us to select paths other than original routing
Γ𝑥, by introducing Ψ𝑥:𝑦∈Υ𝑥:

𝛾𝑦
𝑖𝑗 = 0 𝑦 ∈ 𝜃, (𝑖, 𝑗) ∕∈ Ψ𝑥:𝑦∈Υ𝑥 (23)

Equation (23) states that only links included in Ψ𝑥:𝑦∈Υ𝑥

may be used for routing flowset 𝑦. We use the heuristic
algorithm in [12] to construct these paths. For each OD pair,
it iteratively adds new link to Ψ𝑥:𝑦∈Υ𝑥 in decreasing order of
sampling rate, as long as it does not introduce any loops.
C. Extensions

In this section, we extend our formulation and discuss some
related issues. First, our formulation only introduces parameter
𝐾 to bound the number of monitors, without formulating
any detailed cost functions. In reality, the operation cost of
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monitors also depend on their sampling rates. Let 𝑓𝑖𝑗(and 𝑔𝑖𝑗)
denote the unit monitor deployment (and operation) cost at
link (𝑖, 𝑗), and 𝐵(and 𝐶) represents the maximum budget
for deployment (and operation) cost. We could add these two
constraints as follows:

∑

(𝑖,𝑗)∈𝐸

𝑢𝑖𝑗 × 𝑓𝑖𝑗 ≤ 𝐵 (24)

∑

𝑦∈𝜃

∑

(𝑖,𝑗)∈𝐸

𝑝𝑖𝑗𝑢𝑖𝑗𝛾
𝑦
𝑖𝑗 × 𝑔𝑖𝑗 × 𝜙𝑦 ≤ 𝐶 (25)

We can also treat the sampling rate, 𝑝𝑖𝑗 , as another decision
variable if the operator tends to better configure the operation
cost of monitors. The new problem becomes complicated since
both the optimization objective (13) and the constraint (25)
become quadratic. In reality, it is difficult to compare and tune
the settings for different measurements. It is impractical to
mathematically compare these costs with measurement gains.
Instead, we formulate the fundamental situation where the cost
is only related to the number of monitors, and each monitor
has fixed configuration. It is equivalent to the case where 𝑓𝑖𝑗
is identical to all of the monitors.

Second, our formulation is based on “uniform” measure-
ment. That means, each monitor will treat any traffic that
traverse it equally. The objective function then becomes
linear. In reality, more sophisticated measurements can
intelligently adapt to different flows [7, 8]. Because of this,
the measurement gain function 𝛽 might become nonlinear,
or, other parameters are needed to reflect the difference
in how flows are measured by the same monitor. We
will explore different measurement methods (e.g.: flow
sampling, flexsample [7], etc) in our future work. Our current
formulation applies to any measurement scheme where all
packets are treated equally by the same monitor. For example,
DPI (deep packet inspection) can be simply viewed as 𝑝𝑖𝑗 = 1.

Finally, our formulation can be easily extended to
Placement-only problem. It is defined to maximize 𝛽 with
respect to the decision variable 𝑢𝑖𝑗 only, while flowsets are
routed along their original routes:

Maximize 𝛽 (26)

𝛽 =
∑

𝑦∈𝜃

∑

(𝑖,𝑗)∈𝐸

ℐ𝑦𝑝𝑖𝑗𝑢𝑖𝑗Γ
𝑥
𝑦∈Υ𝑥

(27)

𝑢𝑖𝑗 ∈ {0, 1}, ∀(𝑖, 𝑗) ∈ 𝐸 (28)

IV. MMPR SOLUTIONS

In this section, we first describe the optimal MMPR solution
by solving the associated MILP problem in Section IV-A.
Since the time-complexity of MILP is generally NP-hard, we
propose several heuristic solutions to approximate the optimal
performance: “K-Best”, “Successive Selection”, “Greedy” and
“Quasi-Greedy”. It is easy to see that MMPR becomes a
LP (Linear Programming) problem if the monitor placement
strategy is given (i.e., with fixed 𝑢𝑖𝑗). Therefore, all of
our heuristic solutions tend to decide the monitor locations
first. They all start from an initial configuration in which
all 𝑀 monitors are fully deployed. We refer to this initial
configuration as the “All-On” stage.

In particular, we first propose K-Best (Section IV-B), the
most lightweight algorithm among our heuristic methods.
It directly disables 𝑀 − 𝐾 monitors according to their
performance in the All-On case, based on some ranking
metrics (e.g., traffic amount, topology, link capacity, etc).
We then propose several increasingly complex algorithms,
“Successive Selection”, “Greedy”, and “Quasi-Greedy”, that
iteratively select monitors to disable, based on the planned
monitor placement strategy decided from the previous
iteration. This process is repeated until only 𝐾 monitors are
left. The Successive Selection algorithm (Section IV-C) uses
the same heuristic metrics as K-Best to successively disable
monitors at each iteration. The Greedy and Quasi-Greedy
(Section IV-D) algorithms are the most complex since they
select monitors to disable in each iteration by testing them.

All the proposed heuristics seek the least important monitors
(in accordance to some metric) to disable and then maximize
the measurement gain 𝛽. They all start from the All-On stage
and gradually exclude monitors until 𝐾 are left. Our approach
is complementary to previous work on monitor placement [9,
10] that starts with zero monitors and gradually add new
monitors until there are 𝐾 of them. The reason for our
design is the following: whenever monitors are chosen, the
best routing for the flowsets needs to be re-calculated, which
may change substantially after new monitors are introduced.
Instead of testing possible placement and flowset routing, it
is more straightforward to disable unimportant monitors from
a stage with more enabled monitors. We therefore propose
algorithms that start from the All-On stage.

A. Optimal Solution

The optimal solution searches for the best 𝛾𝑦
𝑖𝑗 and 𝑢𝑖𝑗

assignments for the MMPR problem. The MMPR formulation
is an MILP problem since 𝑢𝑖𝑗 is a binary decision variable
and 𝛾𝑦

𝑖𝑗 is a continuous decision variable. There is a variety
of optimization tools that we can leverage. In particular, the
optimal solution can be found using an MILP solver (e.g.,
CPLEX [16]). We refer to this solution as “Optimal”. For
small to medium size networks, the optimal MMPR solution
can be readily found. However, given that MILP problems are
in general NP-hard, the solvers are not fast enough for large
networks.

B. K-Best Algorithm

The K-best algorithm disables 𝑀 −𝐾 monitors in a single
step, based on their performance in the All-On stage. It starts
from the All-On configuration and calculates the maximum
achievable 𝛽 and optimal traffic assignment 𝛾𝑦

𝑖𝑗 . It then ranks
all monitors in ascending order using one of the following
metrics and directly disables the top 𝑀 −𝐾 monitors:

∙ Least-utility (
∑

𝑦 𝑝𝑖𝑗𝛾
𝑦
𝑖𝑗𝐼𝑦). We disable the monitors with

the least measurement utilities. Since measurement utility
is the same as our optimization objective, we expect this
metric will achieve the best 𝛽.

∙ Least-traffic (
∑

𝑦 𝛾
𝑦
𝑖𝑗𝜙𝑦). The intuition behind this metric

is that the monitors with the least amount of traffic
passing through them are also expected to have the least
contribution to the overall measurement utility.
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∙ Least-importance (
∑

𝑦 𝛾
𝑦
𝑖𝑗𝐼𝑦). This metric only considers

the flowset importance, regardless of the sampling rate.
It treats all flowset with the same traffic demand and all
monitors with the same sampling rate.

∙ Least-rate (𝑝𝑖𝑗). We disable monitors with the least
sampling rates since they are the least capable.

∙ Least-neighbor (
∑

𝑘:(𝑘,𝑖)∈𝐸 1 +
∑

𝑘:(𝑗,𝑘)∈𝐸 1). From a
topology perspective, the monitors that are the least
connected are also likely to provide the least amount of
freedom to MMPR for routing optimization.

The K-Best algorithm greatly saves computation time since
only two LP problems are involved. The first LP decides the
𝛾𝑦
𝑖𝑗 for the All-On stage. Ranked in ascending order using

one of the above metrics, the top 𝑀 − 𝐾 monitors are
disabled. Then, with these 𝑀 − 𝐾 monitors turned off, a
second LP is solved to maximize 𝛽 using MeasuRouting [12].
However, since K-Best ranks the importance of each monitor
based on metrics evaluated from the initial All-On stage, the
measurement gain is predicted to diverge from the optimal.

C. Successive Selection Algorithm

Algorithm 1 Successive Selection Algorithm
1: while More than 𝐾 monitors are left do
2: Maximize 𝛽 by using all remaining monitors
3: find the corresponding 𝛾𝑦

𝑖𝑗

4: for Each remaining monitor (𝑖, 𝑗) ∈ 𝑀̂ do
5: Calculate its performance metric for one of the five

principles with 𝛾𝑦
𝑖𝑗

6: end for
7: Disable 𝐷 monitors with least performance-metric
8: end while

The Successive Selection algorithm also starts from the
initial All-On configuration with all 𝑀 monitors and
iteratively chooses 𝐷 monitors to disable. Here, we use the
same five metrics introduced in Section IV-B. The selection
of which 𝐷 monitors to disable is based on the ranking
of remaining monitors 𝑀̂ using one of the five metrics.
In particular, it disables 𝐷 monitors based on their ranking
calculated from the previous iteration (Line 7). This means we
use the information from the previous iteration (i.e., planned
routes 𝛾𝑦

𝑖𝑗 , etc.) to calculate the metric for each monitor in the
current iteration (Line 5).

Note that if the metric used is either the “least-rate” or the
“least-neighbor” metric, both Successive Selection and K-Best
will have the same selection of monitors and measurement
gain since the metrics do not involve 𝛾𝑦

𝑖𝑗 .

D. Greedy Algorithm

Similar to Successive Selection, the Greedy algorithm also
disables 𝐷 monitors in each iteration, until 𝐾 monitors
are left. However, it is more complicated since it tests
all remaining monitors 𝑀̂ in each iteration. In order to
test a monitor, it re-computes the maximized 𝛽 after
turning it off (Line 2-7), which essentially involves using
MeasuRouting [12] (Line 4). Based on the testing of every
remaining monitor, it disables 𝐷 of them that have least impact
on 𝛽 (Line 8).

Algorithm 2 Greedy Algorithm
1: while More than 𝐾 monitors are left do
2: for Each remaining monitor (𝑖, 𝑗) ∈ 𝑀̂ do
3: Disable the monitor
4: Maximize 𝛽 based on remaining monitors
5: Store 𝛽
6: Enable the monitor
7: end for
8: Find 𝐷 monitors with largest 𝛽 ∈ 𝑀̂ when they are

disabled
9: 𝑀̂ ← 𝑀̂/{(𝑖, 𝑗) ∈ 𝐷}

10: end while

Since the Greedy algorithm exhaustively tests individual
monitors at each iteration, its performance is hypothesized
to be close to the optimal solution. It is still suboptimal
since it tests individual monitors instead of every possible
combination. However, the algorithm remains computationally
costly, since it tests 𝑂(𝑀̂) monitors with 𝑂(𝑀̂ ) LP
problems in each iteration. For a moderate sized topology,
an MILP solver can sometimes work faster than this greedy
approach. To reduce the computation time, we propose a less
heavy-weighted algorithm called “Quasi-Greedy”, which is a
derivation of the Greedy algorithm. In Quasi-Greedy, instead
of testing every remaining monitor, it only tests 𝜆 fraction
candidates, where 0 < 𝜆 < 1. We use 𝐶 to denote candidate
sets.

Algorithm 3 Quasi-Greedy Algorithm (𝜆)
1: while More than 𝐾 monitors are left do
2: Maximize 𝛽 by using all remaining monitors
3: Calculate measurement utility of each monitor (𝑖, 𝑗) ∈

𝑀̂
4: Choose 𝐶=𝜆 fraction remaining monitor (𝑖, 𝑗) ∈ 𝑀̂ as

candidates
5: for Each candidate monitor ∈ 𝐶 do
6: Disable the monitor
7: Maximize 𝛽 based on remaining monitors
8: Store 𝛽
9: Enable the monitor

10: end for
11: Find 𝐷 monitors ∈ 𝐶 with largest 𝛽 when they are

disabled
12: 𝑀̂ ← 𝑀̂/{(𝑖, 𝑗) ∈ 𝐷}
13: end while

The candidates 𝐶 are chosen based on the least-utility
metric (Line 4), where utility is defined as

∑
𝑦 𝑝𝑖𝑗𝛾

𝑦
𝑖𝑗𝐼𝑦 . It

benchmarks how much utility a monitor measures (Line 3).
In each iteration, the Quasi-Greedy algorithm re-computes all
the corresponding 𝛽 by turning off one-by-one the remaining
monitors in 𝐶 to find the least important 𝐷 monitor to disable
(Line 5-11). It then disables these chosen 𝐷 monitors from
the remaining monitor set, 𝑀̂ (Line 12). Besides least-utility,
candidates can also be identified by using other heuristic
metrics defined for the K-Best algorithm (Line 3).
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E. Algorithm Examples

Suppose we have 𝑀 = 32, 𝐾 = 24 and 𝐷 = 4. The K-Best
algorithm directly disables 8 = 32 − 24 monitors in a single
step. On the other hand, the Successive Selection algorithm
involves two iterations. In each iteration, 𝐷 = 4 monitors
are selected for exclusion based on their performance in the
previous iteration, in accordance to one of the metrics defined
in Section IV-B. The Greedy (Quasi-Greedy) algorithm also
disables 𝐷 = 4 monitors in each iteration. However, it
selects the least important 4 monitors based on testing every
(candidate) monitor one-by-one and solving the corresponding
LP problem in each iteration, which is very time consuming.
For the Greedy algorithm, it involves solving 32 and 28 LP
problems in the first and second iteration, respectively. For the
Quasi-Greedy algorithm, it involves solving 32×𝜆 and 28×𝜆
LP problems in the first and second iteration, respectively.

V. EVALUATION

In this section, we evaluate the performance of MMPR. The
experiment settings are described in Section V-A. Section V-B
presents the traces and the metrics of performance/cost to
benchmark MMPR solutions. Section V-C discusses our
evaluation results in detail.

A. Experiment Settings

We first define the settings for individual flows. We denote
the set of flows as ℱ , the traffic demand of flow 𝑓 as 𝑏𝑓 , and
the importance of sampling it as 𝑖𝑓 . We use 𝜐𝑦∈𝜃 to represent
the set of flows that belong to the flowset 𝑦. For our evaluation,
we specify the measurement utility function of each flowset
to be the following: ℐ𝑦∈𝜃 =

∑
𝑓∈𝜐𝑦

𝑖𝑓𝑏𝑓 .
The importance of a flow 𝑓 , 𝑖𝑓 , can be viewed as points

we earn if a byte of it is sampled. The optimization objective
of MMPR is to maximize 𝛽. It is easy to see that 𝛽 can
be expressed in another way:

∑
𝑓∈𝐹 𝑖𝑓𝑏𝑓𝑇𝑣−1(𝑓), which is

exactly the total number of points earned by MMPR. Here
𝑣−1(𝑓) denotes the flowset to which flow 𝑓 belongs.

Most IP networks use link-state protocols such as
OSPF [17] and IS-IS [18] for intra-domain routing. In such
networks, every link is assigned a cost and traffic between
any two nodes is routed along minimum cost paths. In this
paper, we use the popular local search meta-heuristic in [19]
to optimize link weights with respect to our aggregate traffic
demands. The optimized link weights are then used to derive
our original routing {Γ}𝑥∈Θ

(𝑖,𝑗)∈𝐸 . To avoid randomness in [19],
we conduct experiments for the same setting five times, and
only show the average results.

We have the greatest degree of freedom if each flow is
assigned to a unique flowset. However, this is not scalable
from both a computation and an implementation perspective.
Therefore, we have 𝑞 flowsets per OD pair. We also have 𝐿 ≥
𝑞 flows for each OD pair. Each of the 𝐿 flows in ℱ belonging
to a particular OD pair is assigned to one of the flowsets.
There can be multiple ways of making such an assignment.
In this paper, we randomly assign an equal number of flows
to each of the 𝑞 flowsets.

Table II lists the values for the MMPR parameters used for
all the experiments in Section V-C. We generate sampling rates

TABLE II
DEFAULT EXPERIMENTAL PARAMETERS

Parameter Description Value/Distribution
𝑞 Flowsets per OD pair 10
𝜖 TE violation threshold 0.1
𝑖𝑓 Flow importance Pareto (𝜆 = 2)

for each link using uniform distribution between 0 and 0.1. For
one realization of link sampling rate and traffic demand, we
repeat the experiments 10 times with different flow importance
𝑖𝑓 generated from the Pareto distribution. We present the
average measurement gain, unless specified otherwise. We
use CPLEX [16] to find optimal solutions for the LP and
MILP problems. For all the heuristic algorithms, we choose
𝐷 = 4 and 𝐷 = 8 in Abilene and AS6461/GEANT network,
respectively. The algorithms with a larger 𝐷 disable more
monitors in each iteration. However, our evaluation results
suggest that the performance is actually insensitive to the value
of 𝐷, and the results are omitted here.

B. Traces and Performance Metrics

We use these three topologies in our experiments:

∙ Abilene: It is a public academic network in the U.S. with
11 nodes interconnected by 28 OC192 (10 Gbps) links.
The traces used were from April 22-26, 2004 [1].

∙ AS6461: It is a RocketFuel [2] topology with 19 nodes
and 68 links. To generate artificial traces, we first generate
aggregate traffic demands for each OD pair using a Gravity
Model [20]. The traffic demand of flow 𝑓 , 𝑏𝑓 , is then set
equal to the traffic demand of its corresponding OD pair
divided by 𝐿, where 𝐿 = 3000.

∙ GEANT: It connects a variety of European research and
education networks. Our experiments are based on the
December 2004 snapshot [3], which consists of 23 nodes
and 74 links ranging from 155 Mbps to 10 Gbps.

In our experiments, besides the measurement gain 𝛽 and the
TE metric in terms of MLU (maximum link utilization), we are
also interested in the following four performance metrics:

∙ Computation Time: In our experiment, we only collect
computation time for the LP or MILP solver. These
parts usually take longer time than normal numerical
computation, and are therefore the dominant part for our
solutions. Meanwhile, the computation time for LP or
MILP may vary for different solvers. We therefore do not
mix them with other numerical computation.

∙ F&T TE metric: We use MLU as the TE metric in Equation
(19). Besides MLU, we are also interested in the F&T
metric [19], which is defined as weighted summation of
link utilization of all the links. F&T characterizes the
performance of entire network.

∙ APLI(Average Path Length Inflation): It is defined as the
ratio of

∑
𝑦

∑
(𝑖,𝑗)∈𝐸 𝛾𝑦

(𝑖,𝑗)𝜙𝑦 and
∑

𝑦

∑
(𝑖,𝑗)∈𝐸 Γ𝑥

(𝑖,𝑗)𝜙𝑦 .
APLI reflects how flows get detoured. We expect important
flows to have large path inflation since they are re-routed
towards monitors.
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Fig. 2. Compare optimal MMPR with default cases for Abilene, AS6461 and GEANT.

∙ Monitor Selection Overlap 𝜂: It is defined as a ratio. The
numerator is the number of monitors that are both selected
by the heuristic and optimal solution. The denominator is
the total number of selected monitors. A key part of the
MMPR problem is to select the best monitor locations.
This 𝜂 metric reflects how heuristics select monitors.

C. Evaluation Results

In this section, we first compare Optimal MMPR with
two baseline cases in Section V-C1 and show that MMPR
can have better measurement gain up to 1.17X and 2.6X
when compared to Placement-only and MR-only, respectively,
for Abilene, 1.71X and 6X for AS6461, and 1.14X and
6.6X for GEANT. Section V-C2 presents detailed performance
comparison of our proposed heuristic algorithms belonging
to three different categories: K-Best, Successive Selection
and Quasi-Greedy. Section V-C3 shows that all our proposed
heuristic algorithms in each category perform very close to
the Optimal MMPR solution and can reduce the computation
by a factor of 23X in Abilene, 246X in AS6461, and 233X
in GEANT.

In all the figures below, we use “KB”, “SS”, and “QG”
to denote K-Best, Successive Selection and Quasi-Greedy,
respectively. For example, “KB/utility” means K-Best algo-
rithm with the least-utility ranking metric. Optimal MMPR
is denoted as “Optimal” for short. For all the figures on
computation time, the unit is second.

1) Optimal Solution vs. Default Cases: We first compare
the optimal solution of MMPR with MR-only and Placement-
only, using the same experimental settings (Section V-A).
Placement-only was defined and formulated in Section II.
MR-only, on the other hand, first randomly selects 𝐾
monitors, and then finds the optimal routing 𝛾𝑦

𝑖𝑗 using
MeasuRouting [12]. As shown in Figure 2. We see that
optimal MMPR can have better measurement gain up to
1.17X( 8774 ) and 2.6X( 4

1.5 ) compared to Placement-only and
MR-only, respectively, for Abilene, 1.71X( 3

1.75 ) and 6X( 1.80.3 )
for AS6461, and 1.14X( 3.12.7 ) and 6.6X( 2

0.3 ) for GEANT.
We also present the performance of another baseline case,

“All-On”, in which every monitor is on and flowsets are
routed by the default routing Γ𝑥

(𝑖,𝑗). As shown in Figure 2, the
optimal 𝛽 of MMPR is better than the “All-On” case, even
with only a small fraction of monitors turned on. Without
strategic routing, even deploying monitors everywhere does
not guarantee a comparable performance gain compared with

MMPR with a small number of monitors. As shown in these
figures, MMPR can achieve the same measurement gain as
the “All-On” case, but it can save 16(=28-12), 56(=68-12),
and 54(=74-20) monitors in the case of Abilene, AS6461, and
GEANT, respectively. Meanwhile, the computation time for
optimal solution is fairly long (around 4 minutes) for AS6461,
and increases to around 6 minutes for the GEANT network.

2) Sensitivity Analysis of Heuristic Algorithms: Due to the
potentially long computation times required to solve for the
optimal MMPR, we propose several heuristic algorithms to
reduce the computation time complexity. They are categorized
as “K-Best”, “Successive Selection”, “Greedy” and “Quasi-
Greedy”. We omit performance results for Greedy since it is
computationally too costly.

We first compare K-Best algorithms (using different
metrics) with the optimal solution in Figure 3. As expected,
using the least-utility metric achieves the best 𝛽 (very close to
optimal) in all three topologies. It achieves 2.36X( 2.61.1 ) higher
measurement gain compared to using the least-importance
metric, but only increases 1.1X( 1.221.1 ) in computation time in
AS6461.

As mentioned earlier, the computation time is only collected
for the LP or MILP solver. Results show that using different
ranking metrics lead to very similar computation times.
From the perspective of an LP solver, an unsuitable monitor
placement means either more steps are needed to achieve the
optimal 𝛽 (which is more time consuming), or there is no
way to achieve very large 𝛽 (which means shorter solving
time). If we also consider other numerical computations (i.e:
computation of each metric, ranking monitors based on metric
values), “least-utility”, “least-traffic”, and “least-importance”
definitely take longer, since the calculation of these three
metrics involve all flows and monitors. In contrast, “least-rate”
and “least-neighbor” only need topology information.

Figure 4 compares the Successive Selection algorithms
with different ranking metrics, and the same trend is
observed in Abilene, AS6461, and GEANT networks. We
omit “least-rate” and “least-neighbor” cases since they have
similar measurement gain as in the corresponding K-Best case.
Successive Selection with the least-utility metric also achieves
the best performance. Similar to Fig.3, the three metrics share
very close computation time (figures are omitted). It mostly
depends on the number of iterations, which is linear with
respect to the number of monitors in the Successive Selection
algorithm.
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Fig. 3. MMPR performance for K-best algorithms for Abilene, AS6461 and GEANT.
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Fig. 4. MMPR performance for successive selection algorithms for Abilene, AS6461 and GEANT.
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Fig. 5. MMPR performance for quasi-greedy algorithm for AS6461.

Finally, we compare the Quasi-Greedy algorithm (with
different 𝜆 values) against the optimal solution in Figure 5.
Since Quasi-Greedy is still computationally intensive, we only
present results for AS6461. Note that there are no obvious
improvements on measurement gain for larger 𝜆’s. However,
the computation time increases substantially with larger 𝜆’s.
This implies that even with a smaller number of candidates, the
Quasi-Greedy algorithm can perform very close to the optimal

and saves computation time.

3) Comparing K-Best, SS, and QG: In this section, we
compare all three heuristic algorithms with the optimal
MMPR solution. Results from the previous section show that
“least-utility” is the most effective metric for ranking the
importance of monitors. We therefore adopt “least-utility”
metric as a basis for comparing the K-Best, Successive
Selection, and Quasi-Greedy methods.
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Fig. 6. Compare heuristic algorithms for Abilene, AS6461 and GEANT.
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Fig. 7. Compare other performance metrics for AS6461.

For the Quasi-Greedy algorithm, we present results using
𝜆 = 0.15. It tests 0.15𝑀̄ monitors in each iteration to
choose 𝐷 monitors to disable. Figure 6 shows the achieved
measurement gain 𝛽 and computation time for all the
algorithms for all three topologies. In addition, we present
F&T metric, APLI (Average Path Length Inflation), and 𝜂
(Monitor Selection Overlap) in Figure 7. Only results for
AS6461 are shown, but the same trends are observed for the
other two topologies. We make the following observations
based on our results:

∙ The maximum 𝛽’s are very close for all algorithms.
Both K-Best and Successive Selection algorithms are
practical for large networks; their computation times are
much less than the optimal case. Their best metric is
“least-utility”. Although K-Best is slightly worse than
Successive Selection for Abilene, their achievable 𝛽’s are
almost the same for a large network like GEANT.

∙ Quasi-Greedy approach is very costly. However, its
measurement gains are not noticeably better than the other
heuristics. Therefore, there is no need to iteratively test

monitors one-by-one to decide which ones to disable.
We can just simply disable monitors based on their
performance metrics in the previous iteration.

∙ As shown in Figure 6, K-Best achieves almost the
same measurement gain as MMPR optimal, but reduces
computation times by a factor of 23X( 2.7

0.12 ), 246X( 3201.3 ),
and 233X( 400

1.71 ) for Abilene, AS6461, and GEANT,
respectively, while Successive Selection reduces compu-
tation times by a factor of 10X( 2.7

0.26 ), 64X( 3205 ), and
66X( 4006 ) for Abilene, AS6461, and GEANT, respectively.
Quasi-Greedy also saves computation times by a factor
of 3X( 300100 ) for AS6461. In practice, K-Best is the best
choice since it greatly reduces computation time with
measurement gains that are very close to the optimal.

∙ Values for F&T metric and APLI both increase with larger
number of monitors. With more monitors, MMPR will put
more weight on improving measurement gains, at a cost to
the traffic engineering and packet forwarding performance.
For example, because the same threshold 𝜖 = 0.1 is used to
bound TE violation in Equation (19), all algorithms finally
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achieve the same MLU in every case (graphs are omitted
here). However, both F&T metric and APLI increase with
more monitors. For example, the 20% increase in APLI
implies longer end-to-end forwarding delay, which may be
acceptable for non-real-time traffic. To meet more stringent
QoS requirements, they can be introduced as constraints
in the MMPR formulation.

∙ The optimal solution does not necessarily achieve the best
F&T or APLI results, since the optimal solution only
optimizes for measurement gains with bounded violation
of MLU. Some of the heuristics work better in preserving
the overall network performance.

∙ 𝜂 (Monitor Selection Overlap) shown in Figure 7 for
AS6461 provides insights into why the performance of
different algorithms are so close to the optimal. All the
heuristic algorithms select almost the same set of monitor
locations (e.g., 92%-100%) as the optimal solution, with
the ratio approaching one as the number of available
monitors increases. The same trend is observed for Abilene
and GEANT topologies (results not shown here).

VI. RELATED WORK

Previous work mostly studied traffic measurement on a
single monitor. They either infer traffic characteristics from
sampled data [4, 5, 21–23] or use measurement schemes other
than sampling for special traffic sub-populations [7, 8, 24–27].

Recently, researchers have begun investigating network-
wide traffic measurement problems. Existing approaches [9–
11] generally define and solve some monitor placement
problem for fixed traffic characteristics and monitoring
objectives. [9] defines utility functions for the sampled traffic.
The problem is to maximize the overall utility with bounded
measurement operation/deployment cost. It models variations
of this problem, proves their complexities, and proposes
heuristic algorithms. [11] improves upon [9] by performing
a more rigorous analysis to indicate the convergence of any
heuristic solution. Most recently, [28] proposes Successive
c-Optimal design to optimize the deployment and sampling
rate of large IP networks. However, their measurement goal is
traffic matrix estimation. In contrast, MMPR is not restricted
to any special measurement goal. None of them are suitable
for changing traffic conditions or monitoring objectives.

Our work builds upon the recently proposed MeasuRouting
paradigm [12], which proposes to assist traffic monitoring
by intelligently routing traffic sub-populations over the
corresponding monitors. It assumes fixed and random
monitor placement, and routes flowsets based on their
different measurement importance. It maximizes the overall
measurement gain 𝛽 under the constraint that 𝜎 is preserved
at decent levels. With the freedom of intelligent routing,
flows can better utilize the existing monitor infrastructure. Our
work extends this framework by carefully choosing monitor
locations. Our formulation also builds upon CSamp [15]
like methods, to ensure non-overlapping measurement across
monitors. [15] sets distinct hash filters on each monitor such
that they capture different traffic sub-populations.

VII. DISCUSSION AND CONCLUSIONS

In this paper, we presented MMPR, a theoretical framework
that jointly optimizes monitor placement and dynamic routing
strategy to achieve maximum measurement utility, with limited
monitoring resources. We formulated optimal MMPR as an
MILP problem and proposed four heuristic algorithms to
reduce the computation complexity: “K-Best”, “Successive
Selection”, “Greedy” and “Quasi-Greedy”. We performed
detailed comparative study of these algorithms on three
topologies, using both real traces and synthetic data. Our
results suggest that the simplest algorithm, “K-Best”, is
actually the best choice in practice. It achieves measurement
gains that are quite close to the optimal solutions, but it
reduces the computation time by a factor of 246X in the best
case in our experiments.

The theoretical study of MMPR framework can be extended
by introducing other constraints or variations. For instance,
as discussed earlier, measurement deployment/operation cost
can be formulated in more concrete forms. Meanwhile, how
to decide the proper flow utility function and measurement
objective function remain open problems across different mea-
surement applications. Furthermore, it would be interesting to
treat sampling rate as another degree of freedom [9, 11], to let
monitors dynamically adjust their monitoring capability. All
these issues will be explored in future work.

MMPR, as well as MeasuRouting, require the prior
knowledge of traffic importance in order to route flowsets
differently. Such information need not be accurate in practice.
Real measurements usually conduct hypothesis test procedures
[8, 29]. They first obtain some global knowledge of the traffic,
and zoom into the suspected traffic sub-population for more
detailed analysis. Consider measuring flow size distribution
for small/medium flows as our target, MMPR/MeasuRouting
can depend on external modules to first estimate large flow
identities. MMPR/MeasuRouting then directs the large flows
away from measurement boxes, which are devised with many
small-sized counters such that small/medium flows can be
better maintained. In this example, there is no need to
accurately measure flow sizes in the first step.

There are also many implementation issues of MMPR that
need to be addressed. One important issue is to determine
which exact routing protocols are used. A routing protocol
that strictly routes traffic between an OD pair along only
the shortest paths may provide less opportunities to ’re-route’
important flowsets through monitors. A centralized routing
controller, e.g. [14], is able to detour flows away from the
shortest path. Meanwhile, MMPR requires that the traffic
be dynamically routed/rerouted. Such dynamic forwarding
mechanism can be implemented using programmable routers
[14, 30, 31]. Besides this, two other dynamics issues are also
important: how to estimate flow importance dynamically and
how configure routing table entries dynamically. Our recent
work in [32] summarizes these challenges for MeasuRouting
and proposes corresponding solutions for one measurement
application: global iceberg detection and capture. The
solutions are also applicable to MMPR, which builds upon
MeasuRouting. MMPR extends MeasuRouting by introducing
the opportunity to turn on and off monitors. In reality,
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operators should avoid frequently switching monitor status.
We plan to implement MMPR in OpenFlow [14] or other
programmable routing platforms in future work.
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positioning of active and passive monitoring devices,” in Proc. 2005
ACM CoNEXT.

[10] K. Suh, Y. Guo, J. F. Kurose, and D. F. Towsley, “Locating network
monitors: complexity, heuristics and coverage,” in Proc. 2005 IEEE
INFOCOM.

[11] G. R. Cantieni, G. Iannaccone, C. Barakat, C. Diot, and P. Thiran,
“Reformulating the monitor placement problem: optimal network-wide
sampling,” in Proc. 2006 ACM CoNEXT.

[12] S. Raza, G. Huang, C.-N. Chuah, S. Seetharaman, and J. P. Singh,
“Measurouting: a framework for routing assisted traffic monitoring,” in
2010 IEEE Infocom.

[13] “Cisco netflow,” http://www.cisco.com/.
[14] “The OpenFlow Switch Consortium,” http://www.openflowswitch.org.
[15] V. Sekar, M. K. Reiter, W. Willinger, H. Zhang, R. R. Kompella, and

D. G. Andersen, “CSAMP: a system for network-wide flow monitoring,”
in Proc. 2008 USENIX NSDI.

[16] “IBM cplex software,” http://www-01.ibm.com/software/integration/
optimization/cplex-optimizer/.

[17] “OSPF,” http://tools.ietf.org/html/rfc2328, Apr. 1998.
[18] “IS-IS,” http://tools.ietf.org/html/rfc1142, Feb. 1990.
[19] B. Fortz and M. Thorup, “Internet TE by optimizing OSPF weights,” in

Proc. 2000 IEEE INFOCOM.
[20] A. Medina, N. Taft, S. Bhattacharyya, C. Diot, and K. Salamatian,

“Traffic matrix estimation: existing techniques compared and new
directions,” in Proc. 2002 ACM SIGCOMM.

[21] J. Mai, C.-N. Chuah, A. Sridharan, T. Ye, and H. Zang, “Is sampled
data sufficient for anomaly detection?” in Proc. 2006 ACM IMC.

[22] C. Estan, K. Keys, D. Moore, and G. Varghese, “Building a better
NetFlow,” in Proc. 2004 ACM SIGCOMM.

[23] B.-Y. Choi and S. Bhattacharyya, “On the accuracy and overhead of
Cisco sampled NetFlow,” in Proc. 2005 ACM SIGMETRICS Workshop
on LSNI.

[24] H. V. Madhyastha and B. Krishnamurthy, “A generic language for
application-specific flow sampling,” ACM Computer Commun. Rev., vol.
38, no. 2, Apr. 2008.

[25] X. Li, F. Bian, M. Crovella, C. Diot, R. Govindan, G. Iannaccone,
and A. Lakhina, “Detection and identification of network anomalies
using sketch subspaces,” in Proc. 2006 ACM Internet Measurement
Conference.

[26] C. Estan and G. Varghese, “New directions in traffic measurement and
accounting: focusing on the elephants, ignoring the mice,” ACM Trans.
Computer Systems, vol. 21, no. 3, pp. 270–313, 2003.
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