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Abstract—Cloud infrastructure providers and data center
operators spend a major portion of their operations budget
on the electric bills. We present RED-BL (Relocate Energy
Demand to Better Locations), a framework for determining an
optimal mapping of workload to an existing set of data centers
while considering the cost of workload relocation. Within each
workload mapping interval, RED-BL solution exploits the geo
diversity in electricity price markets. The temporal diversity
in those markets is simultaneously exploited by considering a
planning window comprising several mapping intervals.

Using workload traces from live Internet applications and
electricity prices from the US markets, RED-BL can reduce
the electric bill by as much as 81% from the case when the
workload is equally distributed. Compared to a single data center
deployment, an average reduction of 27% in electric bill can be
achieved when RED-BL uses 10 or more data centers, a common
case for most operators. When compared to existing workload
relocation solutions, RED-BL achieves a further reduction of
13.63%, on average. While modest, this reduction can save
millions of dollars for the operators. The cost of this saving is an
inexpensive computation at the start of each planning window.

I. INTRODUCTION

To enable resilient and low-latency public and private cloud

services, companies such as Amazon, Google and Microsoft

deploy a huge infrastructure in the form of distributed data

centers. The cost of electricity needed to run these data centers

accounts for a significant portion of the total capital and op-

eration expenditure [1]. Furthermore, the fraction representing

the cost of electricity is on the rise [2, 3], making it important

for the cloud providers and data center operators to cut down

on their electric bills.

The electricity cost for the data center network, for a given

interval, depends not only on how much workload is being

computed, but also on where it is being computed. Since

electricity prices exhibit temporal as well as geographical

diversity, it was proposed that workload could dynamically be

shifted between data centers to optimize for the electricity cost.

Towards that end, an operational planning window, such as a

day, could be divided into multiple intervals, and a state tra-

jectory optimization problem would be used to determine the

optimal states for each interval during the planning window.

Preliminary evaluations of this scheme have been reported

in [4–6].

Fig. 1 shows an example of a three-interval planning cycle

of mapping workload to three data centers. Only three states

for each interval are shown for simplicity. Each state is

represented by a rectangle, with one circle for each data center.

The shading within a circle represents the amount of workload
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Fig. 1: A motivating example

that would be mapped to the corresponding data center if that

state were chosen in that particular interval. The height of

the circle within a state reflects the electricity price: a circle

placed higher in the box means higher cost of electricity at

that data center during that interval. The cost of operating

in a particular state for an interval is also shown within the

same rectangle. Using labels on the arrows between states, the

figure also shows a transition cost associated with relocating

workload between data centers. This transition cost has largely

been ignored by prior work [4–6].

Previously proposed techniques for relocating workloads

typically make a greedy choice of state in each interval [4–

6]. We refer to these as Relocate Energy Demand to Cheaper

Locations (RED-CL). In Fig. 1, the greedy choice corresponds

to the path S2→S6→S8 with a sum of state costs equaling 30.

This is clearly the lowest possible sum of state costs without

considering any transition costs. However, transition costs exist

in practice and may represent a significant proportion of the

energy cost in a single interval. With transition costs included,

the greedy solution yields a total cost of 42.

One may also consider a static deployment configuration

where an operator selects the data centers that have the

lowest average electricity price over the planning window.

This corresponds to the path S1→S4→S7, with a total sum

of state costs equal to 42. Since the workload mapping does

not change, there are no transition costs, and hence the total

solution costs is also 42. In general, with transition costs

included, the static solution could be better or worse compared

to the greedy solution.

The optimal solution from Fig. 1 is the path S3→S5→S9,

with a total cost of 39. For this state path, the sum of state

costs is 39, which is higher than the corresponding component

for the greedy solution. However, the sum of transition costs

is 0 resulting in an overall lower total solution cost than the
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static or greedy strategy. This simple example illustrates that

it is important to consider the costs associated with relocating

demands in operational data centers.

In this paper, we present Relocate Energy Demand to Better

Locations (RED-BL), a framework for optimizing an opera-

tor’s electricity costs by dynamically re-assigning workload

to available data centers at discrete intervals in a planning

window. This optimization considers not only the electricity

cost of a particular workload assignment, but also the cost

of transition from one network state to another. Note that the

goal of this paper is not to accurately model the exact sources

of transition costs, which can vary from provider to provider.

Instead, we take a parameterized view of transition costs and

study the sensitivity of workload relocation schemes to the

magnitude of transition costs relative to cost of network states.

Due to this abstraction, any operator should be able to apply

our results to their own deployment with minimal effort.

We find that using RED-BL workload relocation solutions,

an operator may save up to 81% of their electric bill, for

a wide range of transition costs, compared to the case of

uniformly distributing the workload among data centers. This,

on average, is 13.63% better as compared to the existing RED-

CL solutions. While this percent additional saving is modest,

it can translate into millions of dollars of savings for large

operators. To realize these savings, RED-BL requires a quick

computation at the start of each planning interval. Altogether,

this paper makes the following contributions:

1) RED-BL, the first electric bill minimization solution for

data center operations considering the cost of workload

relocation.

2) A formulation of the network state trajectory optimiza-

tion problem; the solution (RED-BL) picks a sequence

of network states over a look-ahead planning window.

3) A thorough evaluation of RED-BL and comparison with

RED-CL using electricity prices from the US markets

and workload data from live Internet applications, for a

wide variety of operators (with number of data center

varying from 1 to 33), and data centers of varying

capacity. We also performed a sensitivity analysis of

the RED-BL solution as the cost of activating and

deactivating a data center changes.

4) To the best of our knowledge, the first study to evaluate

the sensitivity of workload relocation solutions (RED-

BL and RED-CL) to workload prediction accuracy,

amount of over provisioning, and geographical diversity.

Our solution provides detailed operational planning informa-

tion in the form of:

• A list of data centers to be kept active for each interval

in the planning window, and

• The workload distribution amongst these data centers.

The rest of the paper is organized as follows. Section II

presents a model for a cloud operator’s network. Section III

describes the experiment setup and the datasets that we used.

In Section IV we present a summary of the results of our

study. In Section V, we draw our conclusions.

Parameter Description

m Number of data centers
n Number of intervals in a planning window
ci Normalized workload capacity of data center i
σ Penalty for activating a unit capacity data center as a fraction

of its energy consumption at full load in one interval
δ Penalty for activating a unit capacity data center as a fraction

of its energy consumption at full load in one interval

e
j

i
Unit cost of electricity at data center i during interval j

λ Duration of an interval in hours

wj Operator’s workload during interval j

x
j

i
Workload mapped to data center i during interval j

p
j

i
1 if data center i is active (either computing workload or
idling) during interval j, 0 otherwise

b
j

i
1 if data center i is activated at interval j, 0 otherwise

s
j

i
1 if data center i is deactivated at interval j, 0 otherwise

TABLE I: Data Center Network Model Parameters

II. PROBLEM FORMULATION

A cloud operator’s infrastructure consists of several inter-

connected geographically diverse data centers. The workload

consists of client requests for hosted applications. Every

request is routed to one of the data centers in the network.

For the problem of mapping the workload to data centers

over several consecutive intervals in a planning window, we

aim to formulate an optimization problem using variables and

parameters defined in Table I.

Fan et. al. have modeled the electrical energy consumption

of a data center as a linear function of the average CPU utiliza-

tion of servers, with a non-zero idle power consumption [7].

Our power consumption model is equivalent but less granular:

we also use normalized values for workload (0 representing

no workload and 1 the peak workload) but for the entire data

center rather than individual servers. Data center capacities are

also expressed on the same scale. Thus, the sum of data center

capacities must be at least 1 to serve the peak workload.

Let P idle be the idle and P peak be the peak power

consumption for the entire data center network. If ci and

U j
i , respectively, are the normalized workload capacity and

the utilization of data center i, during interval j, the power

consumption is P j
i = ci(P

idle+U j
i (P

peak−P idle)). The idle

power consumption may be expressed as P idle = fP peak (0 ≤
f ≤ 1). Our model thus becomes: P j

i = P peak(f+(1−f)U j
i ).

Dividing both sides by P peak, we get the normalized power

consumption: P̂ j
i = ci(f + (1− f)U j

i ).
If xj

i represents the amount of workload mapped to data

center i during interval j, the utilization of data center i
during interval j is given by U j

i = xj
i/ci. Thus, P̂ j

i =
ci(f + (1 − f)xj

i/ci). Multiplying this with λ and the unit

price of electricity gives the electricity cost spent on computing

workload at data center i during interval j. Using this model

for electricity cost computation, the RED-BL optimization

problem is stated as:

minimize

n∑

j=1

m∑

i=1

cie
j
i (p

j
iλ(f + (1− f)

xj
i

ci
) + bjiσ + sji δ)
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subject to:

xj
i ≤ ci ∀i, ∀j (1)

m∑

i=1

xj
i = wj ∀j (2)

pji , b
j
i , s

j
i ∈ {0, 1} ∀i, ∀j (3)

pji ≥ xj
i ∀i, ∀j (4)

bji ≥ pji − pj−1

i ∀i, 2 ≤ j ≤ n (5)

sji ≥ pj−1

i − pji ∀i, 2 ≤ j ≤ n (6)

b0i = p0i , s
0

i = 0 ∀i (7)

The sum of state costs (i.e., cost of computing the workload)

in the optimal trajectory is represented by the first two terms in

the objective function. The multiplication of the first term by

pji ensures that idling cost is incurred only when a data center

is active. Transition costs are taken into account by considering

the cost of activation and deactivation of data centers and is

represented by the last two terms in the objective function.

The workload capacity constraint is given in (1). Eq. (2)

ensures that all incident workload is handled, while (3) repre-

sents the binary-value constraint. Inequality (4) ensures that a

data center is active whenever there is any workload mapped to

it, while the rest of the constraints are related to the feasibility

of activation and deactivation.

III. EXPERIMENT SETUP

In this section, we describe the experimental setup to

perform a comparative study of different workload placement

algorithms under various scenarios.

A. Application workload

We used an year-long trace of hourly workload for 3
social networking applications, with a subscription base of

over 8 million users [8]. We sliced the trace into week-long

segments and considered each slice as workload for a different

application, for the same week. We normalized the sum of

these trace vectors so that the peak cumulative workload

corresponds to a value of 0.9. The qualitative nature of the

workload is described in [9].

B. Electricity prices

We selected 33 different regions in the USA (including

New York, California, Midwest, and New England) for which

hourly electricity prices are available online. We used the day-

ahead prices for these locations, i.e., the electricity price nego-

tiated for the same hour on the following day. We formulated

the following deployment scenarios using this dataset:

1) Single site operator: An operator that only has one data

center at a fixed location. We considered 33 different

cases in this type of deployment, corresponding to each

location for which we had electricity price data.

2) Multi-site operator: For a multi-site operator, we con-

sidered six different deployment scenarios. Five of these

scenarios represent operators with data centers at the

first 10, 15, 20, 25 and 30 locations that we selected,

Algorithm Remarks

LI Local optimal with idling
LD Local optimal with deactivation
LS Local optimal with selection
LO Local optimal without transition costs
RED-BL The global optimal
UNIFORM Distribute workload equally over all data centers
STATIC MIN See III-C

TABLE II: Algorithms compared in our work

while the sixth scenario represents an operator with a

data center at all 33 locations.

C. Algorithms for Workload Distribution/Relocation

In this paper, we report comparative results for seven work-

load placement algorithms, listed in Table II. These algorithms

differ on the basis of the following criteria:

1) Data center selection: LI, LD, LS and LO pick the

⌈wj/ci⌉ cheapest data centers for every interval to

map the workload to. STATIC MIN picks a single

data center with the cheapest average electricity price

over all intervals and maps workload to it during all

intervals. UNIFORM distributes workload equally over

all data centers, whereas RED-BL’s data center selection

is driven by a global optimization solver.

2) Unused data center behavior: LI keeps all data centers

active during all intervals. In contrast, LD and LO deac-

tivate any data center to which no workload is mapped

during a given interval, thus avoiding idle power. With

LS algorithm, a data center with no mapped load in a

given interval can either be kept active (and consume

idle power) or it may be deactivated, whichever option

is cheaper1. RED-BL’s choice in this regard is driven by

the global optimization solver.

3) Reported total electricity cost: LO represents the elec-

tricity cost reported by the originally proposed greedy

algorithm [5]. The total cost reported by this algorithm,

hence, does not include transition costs. All other al-

gorithms include transition costs, if any, in the total

electricity cost.

D. Scenarios

To evaluate the above algorithms, we formulated four differ-

ent scenarios. For each scenario, we ran 7 experiments (one for

each day of the week) and report the average of the total elec-

tricity cost for each algorithm. Each experiment determines

an operational plan for a planning window consisting of 24
one-hour intervals.

1) Over-provisioning: With data centers at all 33 locations,

we varied ci between 0.03 and 0.12 (in increments of

0.01). This covers a variety of operators whose work-

load capacity ranges from just over expected peak to

almost 300% over-provisioning. We computed the total

1Consuming idle power may sometimes be cheaper than deactivating and
subsequently reactivating a data center due to shutdown and bootup costs.
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Fig. 2: Percentage savings with over-provisioning

electricity cost for all algorithms, except STATIC MIN.

In this scenario, we set f = σ = δ = 0.65.

2) Diversity: We compared all the algorithms as the num-

ber of data centers is varied from 10 to 30 (see 2 in

Section III-B), while the total deployed capacity is fixed

at 3.0 (which results in rational values for ci in each ex-

periment). In this scenario, we kept f = σ = δ = 0.65.

3) Transition cost: We determine the total electricity cost

for each algorithm (except STATIC MIN), as the acti-

vation/deactivation overhead is varied between 0 and λ,

in increments of 0.1. The lower bound on σ (and δ)

implies the ideal condition of no transition overheads.

We set the upper bound to λ so that the transition costs

equal the cost of operating a data center at full load for

an interval. A transition cost higher than this does not

make sense. In this scenario, we kept f = 0.65.

4) Workload estimation error: For LS, LD and RED-

BL, we added a zero mean Gaussian random variable

to the workload and compared the solution cost to

that obtained using error-free workload estimates. The

variance of the random variable ranged from 0 (perfect

estimates) to 0.12 (representing a maximum perturbation

amounting to 40% of peak workload with 99.7% proba-

bility). In this scenario, we kept f = σ = δ = 0.65. We

repeated each experiment for 20 different realizations of

the Gaussian error, and computed the average absolute

error in the total electricity cost.

IV. RESULTS

A. Scenario 1 (Extent of over provisioning)

The percentage savings in total electricity cost by various

algorithms compared to UNIFORM are plotted against the

data center capacity over-provisioning in Fig. 2. An inter-

esting observation is that for the wide range of capacity

over-provisioning that we considered, LI is able to do only

slightly better than UNIFORM. This is because LI is unable

to deactivate data centers that are not computing any workload,

which results in significant idling costs.

The cost of the greedy strategy can be significantly im-

proved, compared to that of LI, by deactivating unused data
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Fig. 3: Percentage savings with increased diversity

centers. Prior work has reported this (shown as LO) while

ignoring transition costs. Such costs, however, exist and the

curves for LD and LS indicate that the total cost (including

transitions) is higher. For example, LS is 18.48% higher than

LO, on average. The cost of RED-BL solution, however, is

not too far from the LO prediction.

The reason for greater savings with RED-BL compared to

LS and LD is that the latter two make a greater number of state

transitions in a planning window than RED-BL. RED-BL often

incurs more cost on computing workload at locations that are

not the cheapest in the given interval, but compensates for this

additional expense by a reduction in the number of transitions.

B. Scenario 2 (Geographical Diversity)

Fig. 3 shows the savings in electricity cost achievable

using various algorithms compared to the electricity cost of

STATIC MIN against the number of data centers. Since the

total deployed capacity is held fixed, per data center capacity

(ci) drops with an increase in the number of data centers.

LI and UNIFORM both fare poorly compared to the strategy

of using just one data center throughout a given day. However,

if the greedy solutions are allowed to deactivate data centers

that are not computing any workload in a given interval, the

savings due to diversity start to show (see the plots for LS and

LD).

The savings achievable using LD, LS and RED-BL exhibit a

slightly decreasing trend with increase in diversity. This is due

to a corresponding increase in the electricity cost of computing

workload. As diversity increases, the total deployed capacity

being fixed, the individual data center’s capacity decreases. As

a result, a greater number of data centers, which on average are

relatively more expensive, must be chosen by these algorithms

to serve a given workload.

C. Scenario 3 (Activation/Deactivation overhead)

In Fig. 4, we observe that the electricity cost for the data

center network, when using UNIFORM and LI is independent

of transition costs. This is because these algorithms do not

change the data center states and keep all data centers active

all the time.
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Fig. 5: Cost estimation error due to workload estimation error

On the other hand, the LS and LD adaptations of the LI

algorithm scale linearly to the magnitude of transition costs.

Both LS and LD also bring an average reduction in electricity

cost by a factor of 4, compared to that of LI. RED-BL not only

scales better than LS and LD but also achieves an electricity

cost that is fairly close (only 2.95% higher, on average) to that

of LO which neglects the transition costs altogether.

D. Scenario 4 (Workload estimation error)

The average absolute error in total electricity cost due to

erroneous workload estimates is plotted in Fig. 5 for LS, LD

and RED-BL. According to the properties of the Gaussian

distribution (used as additive noise to simulate erroneous

workload estimates), the swing in standard deviation from 0
to 0.12 represents a perturbation in the range from 0% to 40%
of peak workload.

RED-BL exhibits a sensitivity behavior that is different

from that of greedy algorithms. RED-BL’s curve is almost

linear. Furthermore, if the absolute perturbation in workload

estimate is less than around 20% of the peak workload, the

absolute error in estimated electricity costs is lower for RED-

BL than that for the greedy algorithms. For worse workload

estimates, however, RED-BL’s estimated total cost is in greater

percentage error than that for LD and LS. We do not expect

that an operator’s workload estimation mechanism would be

erroneous by more than about 10% over a planning window

of 24 hours. In that regime, RED-BL is less sensitive to such

errors compared to the greedy algorithms.

V. CONCLUSION

Representing the mapping of workload to a set of data

centers as a system state, we model a look-ahead optimization

problem of finding a state trajectory that minimizes the total

electricity cost of operation over a multi-interval planning

window. Previous approaches to this problem ignore costs of

transitions between system states.

Using live Internet application traces and electricity prices

for 33 different locations in the US, we determine that tran-

sition costs can be a significant contributor to the total cost

of the solution. Using RED-BL, the average electricity cost is

reduced by 13.63% compared to an improved version of the

previously proposed greedy solution. From the scenarios that

we tested, we conclude that having geographic diversity in the

data center network can reduce the average electricity cost by

27% when using RED-BL. Furthermore, RED-BL performs

much better (more than a factor of 5 savings in electricity

cost) than distributing workload equally over all data centers.

With the price of electricity rising much faster than the

drop in server computing power per watt, the race against

rising electricity costs for data centers is a tough battle. Such

costs can be reduced significantly by employing RED-BL as

a complementary approach to the use of energy efficient data

center architectures and energy efficient server hardware.
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