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Abstract—Network-wide traffic measurement is important for
various network management tasks, ranging from traffic ac-
counting, traffic engineering, and network troubleshooting to
security. Existing techniques for traffic measurement tend to
be sub-optimal due to poor choice of monitor deployment
location or due to constantly evolving monitoring objectives
and traffic characteristics. It is not feasible to dynamically
reconfigure/redeploy monitoring infrastructure to satisfy such
evolving measurement requirements. In this paper, we present a
distributed measurement-aware traffic engineering protocol based
on a game-theoretic re-routing policy that attempts to optimally
utilize existing monitor locations for maximizing the traffic
measurement gain while ensuring that the traffic load distribution
across the network satisfies some traffic engineering constraint.
We introduce a novel cost function on each link that reflects
both the measurement gain and the traffic engineering (TE)
constraint. Individual routers compete with each other (in a
game) to minimize their own costs for the downstream paths,
i.e., each router dynamically gathers its cost information for
upstream routers and use it to locally decide how to adjust
traffic split ratios for each destination to the next-hop routers
among these multiple equal-cost paths. Our routing policy
guarantees not only a provable Nash equilibrium, but also a quick
convergence without significant oscillations to an equilibrium
state in which the measurement gain of the network is close
to the best case performance bounds We evaluate the protocol
via simulations using real traces/topologies (Abilene, AS6461
and GEANT). The simulation results show fast convergence (as
expected from the theoretical results), improved measurement
gains (e.g., 12 % higher) and much lower TE-violations (e.g., up
to 100X smaller) compared to static, centralized measurement-
aware routing framework in dynamic traffic scenario.

I. INTRODUCTION

Achieving accurate and efficient network-wide traffic mea-
surement is often plagued with multi-faceted challenges. While
packet and flow sampling mechanisms are widely deployed
(e.g, NetFlow [1]), detailed packet capture and analysis (e.g.,
deep packet inspection ) is computationally expensive. Hence,
typically only a subset of nodes are equipped with such high-
fidelity monitoring capabilities. To reap the maximum mea-
surement benefits without incurring huge deployment costs,
these high-fidelity monitors need to be configured properly
and strategically placed across the network. Most previous
work on the latter domain focused on deriving the optimal
monitor placement that maximizes the monitoring utility for
a given routing and traffic profile. They are typically intended
for longer time-scales and assume a priori knowledge about
the traffic characteristics. However, both traffic characteristics
and measurement objectives can dynamically change over

time, rendering a carefully designed placement of monitors
sub-optimal. To address these limitations, a measurement-
aware routing framework, MeasuRouting, was recently pro-
posed to assist traffic measurement [2]. It introduces routing
as another degree of freedom and intelligently routes traffic
sub-populations over pre-deployed monitors to maximize the
traffic measurement gain. However, MeasuRouting requires the
existence of centralized controller and offline analysis to find
the optimal routing strategies for every traffic sub-populations,
which is unrealistic in production IP networks. It can therefore
only be interpreted as the best-case performance bounds for
routing-assisted measurement.

In this paper, we present Distributed MeasuRouting
(DisMR), a new traffic engineering protocol that attempts to
optimally utilize existing monitor locations for maximizing
the traffic measurement gain while distributing the traffic
load evenly across the network. DisMR takes advantage of
alternative paths in a network by leveraging existing equal-
cost multi-path (ECMP) routing. It maximizes the traffic
measurement gain by adjusting the traffic split ratios among
these paths to the same destination. DisMR is derived from
a game-theoretic re-routing policy that captures the dynamic
decision-making process and interactions among distributed
routers. In our model, we design a cost function on each
link that reflects both the measurement capability and TE
constraint, i.e., links with larger measurement resources have
a smaller cost but links with a larger TE score (e.g., link
utilization) have a larger cost. The cost function is designed
such that flows are attracted to links with better measurement
capabilities while avoiding TE violations. Routers compete
with each other in a game-theoretic manner in order to
minimize their own costs for the downstream paths. In DisMR,
every router periodically gathers/propagates sub-path cost in-
formation for upstream routers. Based on this information,
each router makes local decisions on how to adjust routing
split ratios for each destination traffic to the next-hop routers
among these multiple equal-cost paths. Our routing policy
guarantees not only a provable Nash equilibrium but also a
fast convergence without significant oscillations. Meanwhile,
the measurement gain of the network at the equilibrium state
is close to the maximum achievable gain calculated using
offline, centralized MeasuRouting. Previously, REPLEX [3],
TeXCP [4] and MATE [5] have been proposed as dynamic TE
solutions to minimize the path latency or the link utilization
by adjusting the split ratios of traffic among the paths with the



same ingress/egress nodes. In contrast to them, our introduced
link cost function is a novel combination of link measurement
ability and TE constraint. Moreover our path cost is defined
as the product of link costs instead of traditional summation
operation. We outline our contributions as follows:

o We de-centralize MeasuRouting in a game-theoretic set-
ting and propose a novel cost function that balances
the potentially contradicting measurement and traffic en-
gineering objectives. The cost function is designed to
encourage flows to be routed through monitors with
abundant resources while avoiding TE violation and we
prove the existence of Nash equilibrium on the new cost
function.

o We design a new traffic engineering protocol, Distributed
MeasuRouting (DisMR), based on the routing game.
DisMR converges fast to equilibrium point and achieves
comparable measurement gain with centralized Mea-
suRouting in static traffic scenario.

o We evaluate DisMR via simulations using real traces from
Abilene [6], AS6461 [7], and GEANT [8]). The simula-
tion results show fast convergence (as expected from the
theoretical results), improved measurement gains (e.g.,
12 % higher) and much lower TE-violations (e.g., up
to 100X smaller) compared to static, centralized Mea-
suRouting in dynamic traffic scenario.

The rest of this paper is organized as follows: We first
prove the existence of equilibrium on the new cost function in
Section II. We next study the rerouting policies in a “dynamic
round-based” variant of equilibrium and present practical
Distributed MeasuRouting algorithm in Section III. We show
it to be stable and converge quickly in a game-theoretic model
under realistic conditions and present performance evaluation
in Section IV. Section V concludes the paper.

II. ADAPTIVE TRAFFIC MEASUREMENT PROBLEM

In this section, we formulate the Distributed MeasuRouting
problem in a game-theoretic setting. It strikes the balance be-
tween maximizing measurement gain of the network and mini-
mizing the TE violations by introducing two novel definitions:
U (effective non-sampling rate) and ¢ (link penalty function).
We present theoretical results regarding the static convergence
of the game. Note that our work differs fundamentally from
Beckmann’s work [9] in that our introduced link cost function
is a novel combination of link measurement ability and TE
constraint while their link cost function represents only TE
metric (e.g., latency or link utilization). Moreover, our path
cost function is defined as the product of link costs, which
makes the proofs of existence of Nash Equilibrium different
from [9]. The dynamic behavior of this game and its dis-
tributed implementation are presented in next section.

We consider a measurement objective of maximizing G
(sampling resolution function), which characterizes the overall
measurement utility of the whole network. In contrast to
MeasuRouting [2],we assume independent uniform sampling
across all participated routers, where each router independently
selects a packet with a sampling probability (typically between
0.001 and 0.01) and aggregates the selected packets into
flow records (e.g., via Netflow [1]). Let S, be the given

fixed sampling rate at every arc a € A where A stands
for the set of all arcs in the network. The total effective
sampling rate of a path P € P with respect to flow set,
[f] = {fp, P € P}isdefined as: Sp(fp) =1— [] (1 — Sa).

acP
Therefore G(f) = . Sp(fp)- fp. We define ¥, to be the
PEP

effective non-sampling rate at arc a € A: ¥, =1 — S,. The
total non-sampling rate of a path P € P with respect to fp is
then the product of the non-sampling rate of the arcs on that
path: Up(fp) = [[ Tu(fp), P € P. Therefore the total non-

acP
sampled amount is defined as C(f) = PZP Up(f)- fp. Given
€

fixed traffic demand, maximizing G(f) could be equivalent to
minimize the cost function C'(f).

Our goal is to let the flow sets at each end point route
their traffic selfishly to better learn a Nash equilibrium of
non-sampling rate while adhering to traffic engineering con-
straints. However, in a distributed environment, flow sets will
all choose the best paths with minimum Up(f) and may
overload some specific arcs. This is because ¥, at every arc
a € A is constant (e.g., sampling rates do not adapt to the
traffic amount). In order to reflect TE constraints, we add
penalty function ((f) to U,, ie., U, (f) = ¥, + ((f) for
each arc a € A. We design the ((f) such that its value
increases sharply when the traffic amount is above the TE-
constraint (e.g., maximum link utilization), otherwise it will
stay at zero. Therefore, W, (f) becomes a function of traffic
for every arc a € A (i.e., a non-decreasing and continuous
function). Suppose every flow set tends to minimize its own
cost, C(fp) = Up(fp)- fp, we prove the existence of static
Nash equilibrium for this game in Section II-A. The details
about how to design the penalty function are discussed in
Section II-B.

A. The Existence of Nash Equilibrium

We consider a model for selfish routing where each of an
infinite population of agents wants to send an infinitesimal
amount of traffic (flows) through a network G = (V. A) with
vertex set V, arc set A, and k source-to-destination vertex
pairs, {s;,t;},7 € [k] = {1,...,k} with flow demand r;. Each
agent belongs to one of the {s;,%;},7 € [k]. Let P; denotes the
set of multiple equal-cost routing paths from s; to ¢; in G and
P = J; Pi, the set of all possible routing paths. The flow set
fp, P € P is feasible if for all i € [k], > pcp, fp =1 Fora
given flow set fp, P € P, we define the aggregated flows on
arc a € Aas fo =) pep.gcp fP- The non-sampling rate of
apath P e Pis Up(f) = |[ Tul(f) where U, (f) = T, +

acP
¢(f) for each arc a € A. We are interested in flow assignments
that are stable in the sense that no agent can improve their
U p(f) by changing their paths selfishly.

Definition 1: A feasible flow set fp, P € P is at a Wardrop
(Nash) equilibrium if for each i € [k] and every path P, R €
P; with fp > 0, it holds that \I/p(f) < \I/R(f)

To prove that the Nash flows always exist in our non-
sampling rate case and the achieved cost is unique, we
use the Karush-Kuhn-Tucker optimality conditions as in the
studies by Beckmann et al. [9] and Dafermos et al. [10]. Let
Qu(z) = In(¥,(x)) for every arc a € A (i.e., also non-
decreasing and continuous). Similar to [9] and [10], we con-



struct a convex program (CP) as following with continuously
differentiable and convex functions (hy).c4, Which is defined

as hy( f Qa(x
Minimize Zhu(fa) (1)
ac€A
s.t. Z fp=m Vielk] (2
PeP;
fa= > fr Yac A (3)
PeP:acP
fP>0 YVPeP @)
fa
holfo) = [ Qula)de )

0

Based on the Karush-Kuhn-Tucker optimality conditions, a
feasible flow set fp, P € P is an optimal solution for this
convex program if and only if

Vi € [k],YP,R € Pi, fp >0 (6)
= ha(fa) <Y hu(fa) = Br(f), )
acP a€ER

where h/ (x) refers to the first derivative of h,(z). Therefore

=Y hu(fa) =Y Qalfa) = D> W(Talfa))  ®

a€P a€P a€P
=In(]] Ya(fa)) =n(¥p(f)) )
ac€P
<Y ha(fa) = Qalfa) =D In(Va(fa))  (10)
a€R acER a€ER
=In(J] Pa(fa)) = In(¥r(f)) (11)
a€ER
It means In(¥p(f,)) < In(Pgr(f,)), which implies

Up(fa) < Ur(f,) for Vi € [k],YP,R € P;, fp > 0. The
optimality condition of the convex problem coincides with the
condition of the Nash equilibrium.

infocom-mini

B. Design of Penalty Functions

In the routing game, after the current link capacity U,
exceeds Up,q., We add a sharp penalty to the metric U, (f)
such that selfish agents are aware of the TE constraints.
The more U, exceeds Up,q., the larger the penalty U,(f)
will be. U, = Cin, where C, is the link capacity and
f is the current traffic on link a. Here we use additive
operator to embed penalty function ((f) into U,(f), i.e.,
Vo (f) = (1—5.)+C(f). We keep ¢(f) =0if Uy < Upax
and make ((f) increase sharply if U, > U,q. as follows:

() = { 0, if Uy < Upaa;

(Ua - Umam) U if Ua Z Uma:z:;
and therefore
(1_Sa)+0a lf o < Uma:m
\IJ =
a(f) { (1_Sa)+(£ _Umax)'mCy lf ? > Uma:v

where m controls the sharpness of the penalty. Usually with a
larger my, it will have fewer TE-violations in the equilibrium

state but with longer convergence time. We find m¢ = 10°
provides a good trade-off between those two effects described
above.

III. DISTRIBUTED MEASUROUTING ALGORITHM

Up to this point, our traffic model is based on the assumption
that agents at end hosts have full control over their traffic
and they can access the current TE cost value of all paths.
Obviously, none of these is true in the real-world IP networks.
In this section, we study our Nash equilibrium model that
both considers effective non-sampling rate and TE-violation
penalty in a dynamic/distributed, round-based variant. Suppose
agents at end hosts are activated every 7 seconds and are
allowed to change their routes simultaneously. Since they
all intend to migrate traffic to a path with minimal cost
value, such global migration behavior will result in greatly
increased congestion on the optimal path (from measurement’s
perspective) and lead to oscillations. Fischer et al. proposed the
so-called (a-p)-exploration-replication policy in [11] to avoid
traffic migration oscillation by using adaptive path-sampling
methods. Although [11] is designed for the cost model defined
for latency, we apply and modify it to our newly defined non-
sampling rate cost model.

In this section, we present our adaptive algorithm, Dis-
tributed MeasuRouting (DisMR), which runs on each individ-
ual routers to make routing decisions on how to adjust routing
split ratios for each destination traffic. In order to do this, each
router first needs to measure the non-sampling rate U(R,V;)
for each link to next-hop routers V; and exchanges informa-
tion with other routers by using Distributed V-Propagation
Algorithm. After receiving A(V;, D), the expected average
non-sampling rate of the path to every destination D via V;
from next-hop routers, each router can compute V(R, D, V;)
locally and use this information to conduct the Adaptive
Weight Calculations. A(V;, D) can be treated as the condensed
information of expected non-sampling rate beyond V;. Here
we assume synchronized routing-updates of these link/path
costs. The impacts of asynchronous update issue could be
solved similarly in [5] where we defer as our future work. In
summary, each router R needs to maintain the following sets
of information for all possible next-hop routers V; € N(R, D)
to every destination D:

1) U(R,V;): the non-sampling rate value that also includes
the penalty value to reflect the current link utilization on
link R — V.

2) A(V;, D): the expected average non-sampling rate value
to destination D via V; (V; --» D) which is received
periodically from neighbor router V.

3) w(R,D,V;): current dynamically changeable weights
for traffic routed from current router R to destination
D via V.

Algorithm 1 describes the distributed W-metric propagation
procedure of DisMR in details. Every T seconds, the set of
U(R,D,V;) values are updated at each router by using the
information of current U(R,V;) and previous A(V;, D) from
neighbors (line 7) where T controls how often the partici-
pated routers update their traffic split ratios. Subsequently, the
new A(R,D) values are re-calculated by using the current



Algorithm 1 Distributed ¥-Propagation Algorithm

1: assume current node is R
2: while every T secs do
3:  initialize new update message M (T5)
for each destination D in routing table do
for every next-hop nodes V; € N(R, D) do
measure U(R, V;)
end for
AR, D)= >
VieN(R,D)
10: Append A(R, D) in M (Ts)
11:  end for
12:  Execute one of the Adaptive-Weights calculations
13:  Send M (T5) to all neighbor nodes
14:  After receiving M (Ts) from neighbor node U;
15:  for each A(U;, D) in M(Ts) do
16: if U; € N(R, D) then
17: Update A(U;, D) from M (T)
18: end if
19:  end for
20: end while

R A

w(R,D,V;)- U(R,D,V;)

Algorithm 2 Adaptive Weight Calculation

1: after U(R, D,V;) information is updated

2: for each destination D in routing table do

3. for every next-hop node V; € N(R, D) do

4 Wnew (R, D, V;) = w(R,D,V;)

5:  end for

6:  for every pair of next-hop nodes V1,V € N(R, D) do
7

8

9

if U(R,D, V1) > U(R,D,V5)+ € x m¢ then
Calculate Py, = LE:DV1) —W(R.D. V)

U(R,D,Vi)+a

: if with probability P;; then
10: if w(R,D,V3) # 0 then
1 A=(1-8) wRDV2) Agis
12: else
13: = N(f‘i,D) “Afia
14: end if
15: Wpew(R, D, V1) =w(R,D, V1) — A
16: Wnew(R, D, V3) = w(R, D, Vo) + A
17: end if
18: end if

19:  end for
20.  Use wpew (R, D,V;) to distribute the traffic
21: end for

weights w(R, D,V;) and broadcast to all of the neighbor
routers (line 9-10). Meanwhile each router will execute the
Adaptive Weight Calculation procedure to reassign the weights
w(R, D,V;) for all possible next-hop routers V; € N(R, D)
to every destination D by using updated information of
U(R,D,V;) (line 12).

Algorithm 2 presents the Adaptive Weight Calculation pro-
cedure of DisMR. For every pair of next-hop routers (e.g., say
Vi, V), it first compares their cost metric ¥(R, D, V;),i =
1,2 and conducts the migration procedure if the difference of

their cost values is more than the migration threshold ' (e x me)
(line 7). Otherwise, DisMR will not change the weights of 1}
and V5.

Subsequently, it computes the migration probability (line 7-
9) and the adaptive migration amount (line 10-14) according
to the (a-f)-exploration-replication policy [11]. For every pair
of next-hop nodes in each round (line 3), we denote V)
to be the node with larger cost value, ¥(.) and V5 to be
the alternate node. From statistic point of view, the adaptive
migration amount A should be calculated depending on node
Vo. If Vo is already used (e.g., w(R,D,V2) # 0), then
A=(1-p5)-w(R,D,Vs2) Ay, from proportional sampling
perspective. If V5 is unused (e.g., w(R, D, Va) = 0), then
A= % - At from uniform sampling perspective where
Ay, is the unit of weight shifted in one round and it con-
trols the convergence speed of DisMR (details are discussed
in Section IV-A). The migration probability is decided as
Py = \I'(R’é,)(’gll)j_‘% (i’f"%) based on [11] in order to avoid
oscillations from 1élo al synchronized migrations (line 8). This
adaptive migration policy ensures that smaller non-sampling
rate gains, Ay = ¥p — W, only cause a smaller migration
possibility and avoid oscillation. The implementation of dis-
tributing traffic according to W (R, D, V;) for each router can
use the hashing methods described in [3-5]. If W(R, D,V;)
are constant, there is no packet reordering occurred. However
once W (R, D,V;) are shifted, a fraction of the traffic needs
to be rerouted and probably causes packet reordering. The
solution is to make the time interval when W (R, D, V;) shifts
occur not smaller than the time TCP needs to recover from
packet losses in [3].

IV. PERFORMANCE EVALUATION

In this section, we evaluate DisMR using Abilene [6](with
11 nodes and 28 links), GEANT [8](with 23 nodes and 74
links) to AS6461 topology obtained using RocketFuel (with
19 nodes and 68 links) [7]. In each set of topology, we
first calculate multiple paths for every OD (origin-destination)
pair nodes to simulate the (ECMP)-like algorithm in practi-
cal scenarios, and run DisMR on those multiple paths. Our
simulations have three goals: (1) determine good parameters
for the algorithm to quickly reach equilibrium state without
significant oscillations; (2) show that the measurement gain
of the network at equilibrium state is close to the offline
maximum achievable gain calculated by static centralized
MeasuRouting; (3) show that it indeed improves measurement
gain in dynamic traffic scenario compared to static centralized
MeasuRouting.

A. DisMR Applied in Realistic Topologies

We first evaluate the performance of DisMR in three re-
alistic topologies: Abilene, GEANT and AS6461 in static
traffic scenario. In order to accentuate DisMR’s performance,
we only consider the traffic traces of the OD pairs with at
least two multiple paths. Our simulation results show that
our performance is largely independent of « and 3. We

e x m¢ controls the granularity of equilibrium DisMR wants to achieve

where m is the severeness of the penalty and € is the inaccurate-rate DisMR
can tolerate.
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find « = 8 = 107° offers a good trade-off between the
consequences discussed in [11] and we use them for all of
our evaluations. About the choice of migration threshold,
€ X m¢, we observe that the performance of DisMR is also
less sensitive to the sharpness of the penalty, m¢ and we
suggest to use m¢ = 10°. However with smaller €, DisMR has
less TE-violation but with longer convergence time and more
oscillations while with larger e, it has more TE-violation but
with shorter convergence time and less oscillations. Therefore,
choosing the right € is a tradeoff between convergence speed
and TE-violations. We suggest using ¢ = 1073, The more
sensitive parameters are mostly migration rate, A y;;. Table 1
compares the performance of DisMR with different choices
of migration rate, Ay, in Abilene where the fixed migration
threshold used in this section is 1000 (e = 1073, m¢ = 10)
and the TE-constraint is U,,., = 0.9. We show that DisMR
with smaller Ay;, incurs less TE-violation but with longer
convergence time, while DisMR with larger A y;;, incurs more
TE-violation but with shorter convergence time. The same
property could be observed in both AS6461 and GEANT net-
work topologies. The simulation results with different choices
of Ay, all show that the measurement gain of DisMR is close
to the maximum achievable gain using offline, centralized
MeasuRouting which is denoted as “Static-MR” in the table
but with subtle TE-violations in static traffic scenario.

B. DisMR Applied in Dynamic Traffic Scenario

Here we compare the performance of DisMR with static
centralized MeasuRouting in dynamic traffic scenario. We
conducted these experiments using GEANT topology with the
traffic snapshots on Apirl 11 and we change the traffic patterns
in every 30 minutes based on the traces in [8]. Here Static-MR
consistently uses the same traffic splitting strategy based on the
initial traffic snapshot (00:30), while DisMR will adaptively
adjust its traffic splitting policy with the new traffic pattern.
Fig. 1 shows the real-time max TE-violations and the changes
of measurement gain for DisMR and Static-MR in GEANT
network/trace. Initially, DisMR has similar gain as Static-MR
after it reaches equilibrium state (00:38) in Fig. 1(a). We
observed that the measurement gain of Static-MR decreases
a lot when traffic pattern changed. When the time interval
increases (03:30), the degradation becomes severe but DisMR
can still outperform Static-MR (e.g., 22211 ~ 11.7%). In
Fig. 1(b), both DisMR and Static-MR have large TE-violation
when the traffic suddenly changes but DisMR can quickly
improve its TE-violation in short period of time compared

045 - DisMR 1
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(b) Max. TE-violation Comparison

Dynamic traffic scenario

TABLE 1
A7 VARIATIONS WITH m¢ = 10%, e = 0.001 IN ABILENE

A 1071 5.1072 1072 5.1073 1073
iterations m 440 3416 7965 23068
TE-violation 3.524-107° | 1.062-107° | 9.236-107% | 1.33-1075 | 1.10-107°
Gain(DisMR) 26719 267172 267157 67154 | 2671537
Gain(Static — MR) 2671.8 2671.8 2671.8 2671.8 26718
. 0.35 : .
to Static-MR (e.g., up to 5555 ~ 100X at time (03:00)).

In brief, DisMR has improved higher measurement gains
and much lower TE-violations compared to static, centralized
MeasuRouting in dynamic traffic scenario.

V. CONCLUSION

In this paper we propose a distributed measurement-aware
traffic engineering protocol, DisMR, based on game-theoretic
rerouting policy. It achieves the decent balance between
measurement-aware routing and traffic engineering objectives
by the introduction of a new routing game and distributed
routing control. We show that DisMR guarantees both a
provable Nash equilibrium and a fast convergence without
significant oscillations. The measurement gain of DisMR at
the equilibrium state is close to the maximum achievable gain
calculated by offline/centralized MeasuRouting in static traffic
case. DisMR also improves the measurement gain and TE-
violations of MeasuRouting in dynamic traffic scenario.
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