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Abstract—A significant fraction of network events (such as
topology or route changes) and the resulting performance dga-
dation stem from premeditated network management and oper-
ational tasks. This paper introduces a general class dBraceful
Network State Migration(GNSM) problems, where the goal is
to discover the optimal sequence of operations that progresvely
transition the network from its initial to a desiredfinal state while
minimizing the overall performance disruption. We investigate
two specific GNSM problems: (a) Link Weight Reassignment
Scheduling (LWRS) studies the optimal ordering of link weidt
updates to migrate from an existing to a new link weight assig-
ment, and (b) Link Maintenance Scheduling (LMS) looks at how
to schedule link deactivations and subsequent reactivatits for
maintenance purposes. LWRS and LMS are both combinatorial
optimization problems. We use dynamic programming to find tre
optimal solutions when the problem size is small, and levege
Ants Colony Optimization to get near-optimal solutions for large
problem sizes. Our simulation study reveals that judiciouly
ordering network operations can achieve significant perfomance
gains. Our GNSM solution framework is generic and applies to
similar problems with different operational contexts, underlying

In the case of premeditated tasks, network operators have
the prerogative to decide the sequenceatifmic operations
that comprise such a task. This papertroduces a general
class of problems referred to &raceful Network State Mi-
gration (GNSM) problems, which typically involve migrating
a network from itsinitial state to afinal state by executing
a series ofatomic operations. Each of these operations may
cause som@erformance disruptiorthat is a function of the
network’s changed state. The GNSM problem is to discover
the sequence of operations that progressively transitien t
network to the final state while minimizing the overall dis-
ruption. This paper looks at two specif@&NSM problems, as
described below.

A. Link Weight Reassignment Scheduling

Setting link weights is the primary tool used by network
operators to control network load distribution and traffic

network protocols or mechanisms, and performance metrics. engineering [9-11,22]. Link weights are optimized based

on an estimate of the traffic matrix. They are usually not
modified in response to short-term fluctuations in the traffic
l. INTRODUCTION matrix. However, the estimated traffic matrix may change

The Internet has been an enabling technology for missiotignificantly over a longer period of time, prompting netlor
critical applications and services such as Voice over |RPerators to re-optimize and reset link weights. In such a
VPNs, e-commerce applications, and multimedia streamirffiS€: network operators need to migrate from one weight
Such applications rely upon consistent Quality of Servi&€tting to another. The sequence in which the link weigfts ar
(QoS) provisioning by Internet Service Providers (ISPs)hw ch_ang_ed d_etermmes the disruption to network traffic during
five-nines availability (99.999% uptime) becoming the norfliS migration process.
rather than the exception. The end-to-end perceived QoS
can potentially be affected due to the dynamic nature of
networks. For instance, network topology may change due to
transient router/link outages or long-term network engiirey.
Furthermore, protocol configuration parameters may beealte
to migrate from one setting to another. Ideally, QoS guamst
should persist across such dynamic conditions.

Some of these dynamic changes aradvertente.g., Ones Frig. 1. Example Network
due to faulty interfaces, router crashes, and accidentat fib

cuts. However, other changes ensue from deliberatepagdd  We illustrate this with the help of a toy example. Fig. 1
meditatedactions of network operators (e.g., routine mairgives a network with the arc labels representing IGP link
tenance). A failure characterization study of an IP backboqeights. Suppose all links have capacifynd traffic demands
[18] observed that planned maintenance activities accfuint petween node pair&s, g) and (b, g) are bothic. The traffic
more than 20% of transient failures. Other studies [8] havRmand between all other node pairsdisThe link weights
also observed the prevalence of such planned maintenagepicted in Fig. 1 are optimal for such a traffic matrix given
activities. Premeditated network tasks also include netwothe objective of minimizing the maximum link utilization
upgrade activities such as adding new routers or overf@ulfMLU). Now suppose that the traffic demand between node
link capacity. Another example of a premeditated netwosk tapair (b, g) increases tcéc. Shortest path routing using Equal
is migrating an existing OSPF [20] or IS-IS [29]nk weight Cost Multi-Path (ECMP) yields a new optimal weight setting
assignment to a new assignment that has been optimized bag@€ corresponds to all weights beiiid10]. This means that
on the most up-to-date traffic matrix estimates. three links weights«(c, €), w(c, f), andw(d, f)) have to be

IMost common intra-domain (IGP) protocols. 2This paper is an extended version of our previous work [28].



Schedule | Schedule 11 Naive Scheduling Optimal Scheduling
Step Operation MLU Operation MLU Step Operation MLU Operation MLU
1 Switch w(c,e) 100% Switch w(c,f) 75% 1 De-activate(b,c) 50% De-activate(b,c) 50%
2 Switch w(d,f) 62.5% Switch w(c,e) 62.5% 2 Re-activate(b,c) 50% De-activate(c,f) 50%
3 Switch w(c,f) 50% Switch w(d,f) 50% 3 De-activate(c,f) 100% Re-activate(c,f) 50%
Cost (Max. MLU) | 100% || Cost (Max. MLU) 75% 4 Re-activate(c,f) 50% Re-activate(b,c) 50%
Cost (Max. MLU) | 100% || Cost (Max. MLU) | 50%

TABLE |
LINK WEIGHT REASSIGNMENTSCHEDULING TABLE 1l
LINK MAINTENANCE SCHEDULING

changed tol. There are3! = 6 possible orders of changing

these link weights (one link at a time). Table | shows two Again we refer to the network in Fig. 1. All links have
such migration schedules. We see that Schedule | reswé&pacityc. We have a traffic demand of 2 each between node

in a maximum transient MLU ofl00% during the weight pairs(a,g) and (b, g), and zero elsewhere. Suppose we need
migration. In comparison, the MLU never excedd$; during to take down link(b, ¢) and (¢, f) for maintenance. Table II
any stage of the migration process represented by Schedyiles two possible schedules for the required maintenance.
II. This shows that the sequence in which link weights al/e find, somewhat counter-intuitively, that the solutiomatth
changed can be crucial to the extent of disruption to netwolas both links simultaneously deactivated is better th&n th
traffic during the migration process. solution that fails and restores the links one by one.

A Link Weight Reassignment Schedul{hyVRS) problem A Link Maintenance SchedulingMS) problem is charac-
is characterized by a set of links that we refer to asjobr terized by a set of links we refer to as gob-set All links
set All links in the job-set have amld weight and anew are initially active. All links in the job must be deactivetat
weight. Anatomicoperation involves switching the weight ofleast once for maintenance, and then must be reactivated. An
a link in the job-set from theld weight to thenewweight. atomicoperation involves either deactivating an active link or
The LWRS problem is to find theninimum-cossequence of reactivating a deactivated link. The LMS problem is to fine th
atomic operations to switch the weights of all links in thb-jo minimum-cossequence of operations to complete the job. As
set. The notion of the cost of a sequence of operations danthe case of LWRS (Table 1), we use the maximum MLU
vary. Our example in Table | used the maximum MLU acrosscross all stages of the migration process as a measure of
all stages of the migration process as a measure of disruptifisruption cost in Table II. Similar to LWRS, the size of the
cost. solution space of LMS depends on the number of links in

For a job-set consisting of links, the solution space for the job-set. Since we have two atomic operations (deaetivat
LWRS consists ofz! schedules. LWRS is a routine networkand reactivate) for each link in the job-set we can h@se)!
management task faced by network operators. One might askedules for a job-set with links. However, we have the
why do we stipulate that only a single link weight be changeatided constraint that for each link, deactivation must gutec
at a time (as opposed to multiple link weights being simdtanthe reactivation. So the actual number of feasible schedsle
ously changed). We understand this to be a common method @f)!/2".
operation for LWRS as a result of conversations with network The preceding examples for LWRS and LMS are contrived
operators. A key reason for this is that certain failureli@ste scenarios presented to elucidate the LWRS and LMS problems.
and loop-avoidance mechanisms during IGP convergence Wqte performance gain in a realistic scenario may or may
under the constraint that at most one link changes at a tiBie [hot be as significant. In order to see that, Fig. 2(a) plots
21]. [14,17] show how multiple simultaneous changes in thfie distribution of the disruption cost across all the paissi
network can result in significant performance degradation. 71 — 5040 schedules for an LWRS problem, where we migrate
the weights of7 links from one setting to another, in the
Abilene [1] network for a given traffic matrix. For the same
network and traffic matrix, Fig. 2(b) plots the distributiof

Network links need to be temporarily taken down fothe disruption cost across the all poss3@0 schedules for an
maintenance purposes [18]. Since these link deactivatiohs LMS job consisting oft links. In either case we consider the
as normal failures, they have the same impact on netwghigruption cost to be the maximum MLU experienced during
traffic as normal failures. The difference is that, when moRny stage of the migration. We can see from Fig. 2(a) that
than one link needs to be maintained, network operatdh¢ difference between the optimal schedule and a randomly
can determine the order in which links are deactivated agfiosen schedule can Be% of link utilization for our LWRS
reactivated. During each step either a link can be deaetivaProblem. Similarly, Fig. 2(b) shows that the differencevbetn
or a deactivated link can be reactivated. It is possible tBe optimal schedule and a randomly chosen schedule can be
have multiple links deactivated during an intermediatgeta more thanl5% of link utilization for our LMS problem.
However, current practice is to fail and restore elements on Two things ought to be noted. Firstly, we speculate that
by one. The intuition behind such a scheme is that the greattee difference between judicious scheduling and rulehaf¥b
the amount of network resources available, the lesser is theuristics stands to be greater for larger job sizes where th
disruption to network traffic. This may not always hold as casolution-space is large. This is because a larger solupanes
be seen with the help of a counter example. increases the probability that an arbitrary migration sicie

B. Link Maintenance Scheduling



is better than a rule-of-thumb migration schedule. Judigionodes or links fail. In such networks network failure trigge
scheduling allows us to search for and select such betpptocol re-convergence which may result in transientingut
schedules. Fig. 2 shows the distribution of the solutiorcepaloops. Extensions to routing protocols have been propased t
for job sizes that are small enough for it to be feasible to dovoid such transient loops [12]. A common theme of such
so. Our purpose in doing so is to present a preliminary pgctusolutions has been ordering forwarding table updates durin
of the diversity in solution costs. Results for larger netwo protocol convergence so that transient loops are circuteden
and realistic job sizes, and confirmation of our hypothesis, Proactive approaches to mitigate the effects of failurestzdso
deferred until Section V. Secondly, our solution has me#sitre been proposed, especially for Multi-Protocol Label Swiitgh

if the average difference between judicious scheduling a(dPLS) networks [2, 27]. Bandwidth guaranteed backup paths
rule-of-thumb heuristics is not large. This is because affencan be pre-configured so that the traffic can immediately be
rule-of-thumb heuristics work well on average their warase transplanted onto backup routes in event of failure. [1}, 32
performance can be unacceptable. A tractable, well-fodindguppresses failure notification and leverages interfaeeitic
mechanism for planning these operations has merit sincefdtwarding tables to reroute packets across alternatiep-lo
can avoid the pitfalls of using a schedule a human engindeze paths.

assumes to be ‘reasonable’ but which turns out to be highlya) the above solutions attempt to achieve disruption-free

disruptive and inferior in practice. network operation by making routing mechanisms and pa-

We summarize our contributions as follows: rameter settings resilient to unexpected failures that aeh

« We propose the Graceful Network State Migratiomo control over. However, a significant fraction of failures
(GNSM) problem that seeks to minimize the disruptioare actually part of planned maintenance activities. Fehsu
cost of network operations. Although LMS and LWRS argremeditated maintenance activities we can control therord
presented as examples in this paper, the general categay timings of such failures and reconfigurations. Not much
of GNSM problems is not restricted to them. Anotheattention has been directed towards examirgnaceful net-
example of a GNSM problem is to determine the optimalork state migrations for premedicated tasks. Certain-best
sequence of upgrading a network by adding new routgsgactices exist such as scheduling maintenance activities
and links. the evening when traffic load is low [18]. This increases the

« We provide a generic solution framework for GNSMpperating costs of the network and falls short of optimizing
problems, on how to find the optimal scheduling fonetwork operations for the existing traffic conditions. @th
a series of network operation. We propose a dynaméglutions involve heuristics such as unit increments tokdi
programming algorithm to find the optimal solution forweight till no traffic traverses it [5], setting a link weigtat the
problem sizes where it is feasible to do so. We propoggaximum value to gracefully reroute traffic before failuBd],
an Ant Colony Optimization (ACO) based heuristic tand failing links at most one at a time to minimize disruption
find near-optimal solutions for larger problem sizes. Our
solution framework is also general and can be applieE
to any GNSM problem. It can also incorporate differen

More recently, Francois et al. proposed an attractive gslut
at involves progressively iterating through a sequeridialo

) ) . . eight changes in order to fail a link or reconfigure its weigh
underlying routing protocols as well different metrics o 13]. Their solution is specific to avoiding transient ragfi

C\ftwﬁrk dl;srlgptlﬁn. | d a detailed simulati Ioops during convergence. [13] is closest in spirit to ourkvo
+ Ve Show by ot example and a etaile simu ation .Stugg/nce both leverage the network administrators contror ove
that.J.Ud'C'ous scheduling .Of network.operatmns. erIdﬁ1aintenance activity to mitigate network disruption. Hoae
significant p_erforman_ce gamg over haive schedulm_g. our problem is different. [13] looks at the progressive virtig
The rest of this paper is organized as follows: We discugfanges for a single link in order to migrate the link from
related work in Section_ll. Section Il presents our generigy initial to a final state. We focus on how atomic jobs on a
GNSM problem formulation and shows how LWRS and LMS3et of links (or nodes) should be ordered so as to minimize
can be framed within the GNSM context. Section IV presenggerall network disruption. Our work is complimentary to
two generic solutions for_GNSM: a) a Dynamic Programmlng3]’ in that once an optimal sequence has been determined
solution, and b) a solution based on the Ants Colony ORyr the LWRS problem, their solution can be employed to
ti_mizatipn meta-heuristic. Section V gives the results af o progressively change the weight for each link. For example,
simulation study for LWRS and LMS, and we conclude anghce we determine the sequence in which links are to be
discuss further applications in Section VI. deactivated and reactivated, each individual deactinaiod

reactivation in the sequence can be realized according3{o [1

Il. RELATED WORK Finally, our state migration problem shares many features
There exists a rich body of work geared towards avoiavith similar problems in artificial intelligence and conitro

ing disruption to network traffic in the presence of failtheory such as robotic motion planning [16]. The general
ures and reconfigurations. In networks employing linkestasolution methods that we use, i.e. dynamic programming and
routing protocols such as OSPF and 1S-IS, traffic balancisgvarm intelligence algorithms have also been shown to be
is achieved by judiciously configuring link weights. [11applicable to solve such decision-theoretic problems] [15
22] present solutions that attempt to optimize weights sughovides an excellent overview of such problems and prapose
that the configured weights remain optimal even if networsolutions.
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Fig. 2. Example distribution of disruption costs for LWRSdaoMS problem instances in the Abilene network. Links in tbb-get are randomly selected
and the disruption cost for these results is defined as thenmiax MLU seen during any stage of the migration process.

I1l. PROBLEM FORMULATION problem context.
A. Graceful Network State Migration (GNSM) A _sc_JIution to the GNSM problem is a sequence of state
transitionsx = (Sinitial = S0, 51,52, -+ Sn—1,8n = Sfinal)-
Our definition of LMS and LWRS problem applies togq. 1-5 give the formal specification of the GNSM problem.
networks employing IGP protocols such as OSPF and IS-IS.
We, therefore, restrict our problem formulation to the ext
of OSPF/IS-IS for ease of exposition. However, the class of min I'((50, 51,52, --Sn—1,5n)) 1)
problems falling within the rubric of GNSM is much broader. (20,81,22,.--5n—1,8n
For instance, one can consider a counterpart of the LM8bject to:
problem for MPLS networks. Our problem formulation can

easily be extended to cover such problems. 50 = Sinitial (2)
We consider a networki(V, E), whereV is the set of Sn, = Sfinal 3)
nodes andFE is the set of links. We have a traffic matrix (sir8i41) € A VO<i<n (4)

{Q}i.5)evxy that gives the traffic demand between node-
pairs. We definev to be a weight functiony : E — Z1 Uoo,

that assigns a positive integer oo to each link in E.  Eq. 2, 3 stipulate that the solution represents a migration
w(e) = oo implies that linke is down. We also define afrom the initial state to the final state. Eq. 4 constrains the
progressvector Z used to indicate the overall job progressyansitions to correspond to atomic network operations.&Eq
We use the 4-tupleG;, 2, w,T) to represent a networitate  represents the budget constraint that stipulates the nuamim
Let S denote the set of all network states. The network ca@umber of transitions ) allowed to complete the migra-
be in a single unique state at any given point in time. Wgon, Our objective (Eq. 1) is to minimize the overall cost
transition from one network state, = (G,€a,wa,Zs) 10  function I'(z), wherez is the sequence of state transitions
anothers, = (G, %, wy, Ty) by altering the weight function () ;. s, ...5,,,, s,). I'(.) is explained in Section I1I-B.

from w, to wy, wherew, # wy. In reality a change of the  \we now formulate the LMS and LWRS problems within
weight function can result in a change in the traffic matriiyis framework.

as is the case if the BGP egress point for a prefix changesi) Link Weight Reassignment Schedulingt the Link

at a router [6]. Our formulation and solution framework Caveight Reassignment Scheduling (LWRS), 1€f,:iia1 rep-
easily account for this. However, for simplicity we assumgssent the old weight setting and lebyi,, represent
that a change in the weight function does not affect the traffl,e ew weight setting to which we need to migrate.
matr|?<, i.e., we assumg, = Q,. _We also h.ave a disruption Therefore, simiiar = (G, Winitiat, Linitiar) aNd Sinal =
funcup_n d: S xS — R that gives the d|srupt|on_ cost to(G,Q,wfmaz,Ifmaz)- Let J C E represent oujob-setthat
transition from one network state to another. We disel(S5 gntains those linkg for Which w;pisiar (j) # wfinai(5). The

in detail in Section I1I-B. _ _ _progress vectof is a |J| element vector, with an indicator
As mentioned in Section I, GNSM basically involves miyariaple associated with each link in the job-set:

grating the network from an initial statenija € S to a
final state sina € S. This migration can be realized by (e {0 if e has weight set tav;,iziai (€)
e) =

n<B (%)

(6)

executing a series of permissitd¢omic network operations 1 if e has weight set tav;,q (e)

For every given state € S, we let the\/(s) denote the set of

network states to which we can transition by a single atomfitence,Z;,,;iqi(e¢) = 0 Ve € J, andZs;,qi(e) = 1 Ve € J.
network operation. In other words, the sét= {(s,, s)|s € We define an atomic operation as switching the weight of
S ands, € N(s,)} corresponds to the set of all permissibl@ link in J from winitiai(j) 10 wfinai (). Therefore,(s, =
atomic network operationg/” and.A depend upon the specific (G, Qa, wa, Zo), 5o = (G, U, wp, L)) € A implies that:



o we(e) = wp(e) for all links except for a single link € J,
for which wy(j) = wfina(4)-
o Z,(e) = Ty (e) for all links except for a single link € J,
for which Z,,(j) = 1 andwy (j) = winal(4)-
We set B |7], which is the minimum number of
transitions required to migrate from the initial state te fmal
state.

paper we are primarily interested in looking at measures of
link utilization seen on the network after the routing picib
has converged. In other words, the disruption effst,, s;) of

a transition froms, = (G, Qq, wa, Z,) t0 sp = (G, Qpy, wy, Ip)

is a function of the link utilizations resulting from rougjif2,

on G according taw,. However, we also look at another metric
that roughly corresponds to the transient conditions pidor

2) Link Maintenance Schedulingn the Link Maintenance convergence. The metrics used to model the disruption cost

Scheduling (LMS), let/ C E represent oujob-set Let wq
represent the starting weight function. All links are iaily .
active i.e.wp(e) # oo Ve € E. The progress vectdf is a

|J| element vector, with a variable associated with each link
in the job-set. .

0 if e has never been deactivated
=<1 if eis deactivated
2 if e has been reactivated after deactivation

(7).
All links in J must be deactivated at least once for main-
tenance, and then must be reactivategia is given by
(G, Q, wo, Linitiat), WhereZ;,iziai(e) = 0 Ve € J. Similarly,
sfinal IS given by (G, Q, wo, Zfinar), WhereZy;nqi(e) = 2 Ve €
J.
We consider a link activation or deactivation to be an atomic
network operation. Therefords, (G, Qa,wa,Zy), s =
(G, Q,wp, Ipy)) € A implies that:
o we(e) = wp(e) for all links except for a single link € J,
for which eitherw,(j) = wo(j) and wy(j) = oo, or
wq(j) = oo andwy(j) = wo(yj).

Z(e)

(d(sa,sp)) in this paper are detailed as follows:

Maximum Link Utilization (MLU) : refers to the utiliza-
tion of the most congested link after the routing protocol
has converged according ta,.

Fortz & Thorup Metric (F&T) : is also a measure of
link utilizations after the routing protocol has converged
according towy. It is the widely used metric proposed in
[10] that represents a piece-wise increasing linear convex
envelope of a non-linear link cost function.

Routing Churn (CHURN): is a measure of the volume
of traffic that is routed differently between one state and
the other. For each OD pair we count the number of links
for which one of two things is true: a) the link had traffic
for the given OD pair incident on it as per, and does
not carry traffic for the given OD pair as pey, or b) the
link did not have traffic for the given OD pair incident on
it as perw,, and carries traffic for the given OD pair as
perw,. CHURN is the sum of such counts over all OD
pairs weighted by the traffic volume associated with the
OD pair. A high value for this metric roughly corresponds
to higher transient disruptions such as routing loops and
packet drops before the routing protocol converges.

» Za(e) = Ti(e) for all links other thary, for which: Our model can easily be extended to account for other and
1 more complex measures of network disruption.
1(j) = {2 Similarly there exist a number of ways to aggregate the

individual disruption costs to compute the overall cbst)

The initial and final state both correspond to the startinfgr a solutionz. To conserve space we restrict ourselves to
weight settingwy. The definition ofsinitial, siinal, @nd.A ensures the meanof the individual disruption costs. Hence,
that all links in J are deactivated and re-activated at least 1
once. We seB = 2 x |.J|, which is the minimum number of 2izo
transitions required to migrate from the initial state te fmal
state.

if we(j) = wo(j) andwy(j) = oo ®)
if we(j) = oo andwy(j) = wo(4)

d(si,siv1)
n

9)

T'((so, 81,82, ---Sn—1,8n)) =

IV. GNSM SoLUTION FRAMEWORK
A. Dynamic Programming Solution

We define a dynamic programming formulation to compute
the optimal sequence for GNSM. We exploit a special property
. ) : e of our problem: the transition cost from one state to another
(si,si+1) €  if and only if there exists a transition frOmstateonlydepends upon the two states (independent of how we

s; 10 s;41 In z. Section IlI-A defined the disruption function’ .
. . ) - arrived at the current state). Hence we can reduce the number
d: Sx S — ¥ that gives the disruption cost to transition from

one network state to anothdt(x) is basically a function of of stages by half by breaking up the dynamic programming

o . . - - formulation for our optimal scheduling problem.
the individual disruption costs across all transitionseijn.e., L .
. . ) Let Py (x, z) denote the minimum cost of going from state
d(s;,s;+1) for all (s;, si+1) € z. The disruption function can

be defined in a variety of ways. In our context of OSPFI/IS- o statez in k S.tel?s' We can, therefore, define the following
recurrence relation:

IS, moving from one network state to another can result in
transient routing loops and packets losses during the time
it takes the routing protocol to converge. Once the routing
protocol has converged, the traffic distribution across theg. 10 implies that the minimum cost of going from state
network may change. Our problem formulation and solutido statez in 2k steps can be obtained by the minimum cost
is independent of the choice of disruption function. Fosthiof going from stater to a possible statg in k£ steps and

B. Network Disruption Metric

We now detail the overall cost functidi{x), wherez is the
sequence of state transitio(, s1, s2, ...Sn,, S ). We define

PQk(IvZ):%E(Pk(xvy)_FPk(yvz)) (10)



then going from state to statez in k steps. The boundary Algorithm 1 AOS

condition is given by Eq. 11. 1: initialize pheromone values
2 seqgiobal <= NULL
d(@,z) i g
P (I’ z) = B (I,Z) €A (11) 3: for [ =110 l,,4, dO
00 otherwise 4 seqioear < NULL
The solution of the optimal cost is given by 2 for i :<:1et>? %arz()do
P (sinitiat, $pinat) 1f B is @ multiple of 2. Else, it is jzgl l i i (504, 5eqoms)
given by minyen (s, i) (A(Sinitiat, y) + Pe-1(Y, Sfinal))- & end foorca »orloca

In Eq. 11 we divided(z, z) by B so that, corresponding to
Eq. 9, the final cost represents the mean of the individuail?j
disruption costs.

Note that the state-space grows exponentially with the
size of the job setJ|. The LWRS problem hagl’! states ,
corresponding to the!”! unique values the progress vectof*90rithm 2 explore
7 can take (Eq. 6). Similarly, the LMS problem ha§'| 1 seq < NULL
states corresponding to th#’/ unique values the progress 2 fandomly choose from w
vector Z can take (Eq. 7). Hence the utility of our dynamic 3 @ppendc to seq and remove fromiV’
programming solution is restricted to those job-sets foicvh  4: While W 7 () do
the dynamic programming solution remains tractable. Thké¢ ne > ¢ < uniform(0, 1)
section presents an approximation algorithm based on An  if ¢ < qo then

update pheromone values based 21;,q.

S€(global < min (Seqlocalv SeQQlobaZ)
11: end for

Colony Optimization that can be used as a heuristic for largé: n < maxgewr (p(c, x) x k(z)~")

problem sizes. 8 else o N Do) k(n )
9: n <: n’ with probability St Glea) X F@) )
10: end if

B. Ant Colony Optimization based Scheduling
o ] 11:  appendn to seq and remove froniV
Ant Colony Optimization (ACO) algorithms have been;,. ..,
used to produce near-optimal solutions to combinatorial 0R3. end while
timization problems, such as the traveling salesman pnoble,. return seq
[3]. ACO is motivated by the foraging behavior of ants in
nature. Ants traveling from nests to food sources deposit

a chemical,pheromong along their routes. Ants following the network disruption cost to go from the current network

them choose routes based upon the deposited pherom%?e to the next state if we carry out operatiofas defined in

and deposit pheromone themselves along their routes.&@hod, i 1), Initially, all p(u, v) are initialized to a common
pheromone trails get reinforced since the pheromone along o e assign a score to each operatioe W7 that

less attractive routes evaporates. The ant colony is, firere measures the attractiveness of choosingo be our next
able to converge to the optimal route. A detailed eXDOSitiodberation The score is set fdc, ) x k(z)~?. It should be

of ACO can be found in [7]. . evident that an operation € W7 has a higher score if the

1) Adapting ACO for GNSMAlgorithm 1 repres_ents_the eromone alondc, z) is high and the associated network
ACO meta-heuristic adapted for GNSM. In each iteration (ﬁji;ruption cost is low,3 is a configurable parameter that
thg outer Ioor_mam ants !ndepenQentIy explore a SEQUENCetermines the relative weight to be given to the pheromone
This process is dgtaﬂed n Algorithm 2. We T8l represent value with respect to the network disruption cost. The next
the set of all atomic operations. Hence, for the LWRS problelgperation is chosen to be the operatioif’ with the highest

since an atomic operation entails switching a link Weigh&core, with probabilityg,. To avoid getting stuck in local

w con_tams an ope_ratlon fo_r each I_|nk n the job-_set_. Fq{ptima, the next operation is randomly chosen in proportion
LMS, since an atomic operation entails either deactivaing ;. s score. with probabilityl — ¢,

reactiv_ating a Iink,W.cor?tains one activate and. one deactivate At the end of each iteration of the inner loop in Algorithm 1,

operation for each link in the pb',set' We deﬁne the 18et the best sequence is used to update pheromone values accord-

to represent the set of permissible operations that can IHS to Eq. 12.

performed next. For LWRSW7” = W. However, for LMS, .

W7 is defined as having all operations ¥ except for plu,v) = {P(u,v)(l—ef)JerW (u,v) € seqiocal

link reactivation for links whose corresponding deaciivat ’ p(u,v)(1 —ef) (u,v) & sediocal

operations are also iWW. This is because one can only (12

reactivate a link after it has been deactivated. Here, cost(seqiocat) represents the cost ofeqiocqr and ey
Algorithm 2 progressively chooses operations to performepresents the evaporation factor that determines thehivieig

until W is empty. Two value®(c,z) and k(z) are used to be given to previous pheromone valuesg,.»q.; represents

guide the choice of the next operatierat any stagep(c,z) the best sequence returned by our algorithm.

represents the amount of pheromone on the route segmer) Tuning ACO ParametersAs evident from the preceding

(¢, z) wherec is the last operation performekl(z) represents description/,,qq, nant. go. 3, @andey are tunable parameters of




Parameter

lmacv

Description
The number of iterations of the outer loop in Algo-
rithm 1.
The number of ants, or the number of iterations |of
the inner loop in Algorithm 1.

Determines the relative importance of pheromadne
p deposition and the disruption cost in choosing the
next operation (Algorithm 2: Lines 7 and 9)
q0 is the probability of choosing the next operatign
with the best pheromone value (Algorithm 2: Line
7); 1 — qO0 is the probability of choosing the next
operation in proportion to the respective pheromgne
values (Algorithm 2: Line 9)
er The evaporation rate of pheromone values (Eq. 12)

Tant

q0

TABLE Il
ACO PARAMETERS

e« ACO based Scheduling (AOS) AOS uses the ACO

meta-heuristic as described in Section 1V-B.

2) Simulation TopologiesWe essentially use three net-
works for our simulations. ThAbilene network hasl1 nodes
and 28 directional links with 10 Gbps capacity. The other
two networks are Tier 1 POP-level topologi¢SP A and
ISP B, shown in Fig. 3. The link capacity for each link is
set as1000 units in each direction, modeling the capacity
of OC-192 circuits. There ar€l0 ingress-egress pairs in the
Abilene network, and 90 ingress-egress pairs in each of the
other two networks. For generality, our problem formulatio
in Section Il presented the job-sétas a set of unidirectional
links. However, in practice failure of a link in one direatio
implies failure of a link in the other direction [18]. Theos€,
in this section we simplify the notation and let the definitio
of J depend on the context. Specifically, represents a set
of bidirectional links if the problem under consideratian i
LMS, and it represents a set of unidirectional links when we
discuss the LWRS problem. Section V-C presents results for

Nant B | er 90 lmag

bione WRS [ 20 [ 3 [01[07] 20

LMS 20 | 3]01|07]| 20

IWRS [ 20 [ 2 03|09 20

ISPA&ISPB | s 80 |2]03|07]| 20
TABLE IV

ACO PARAMETER SETTINGS

our algorithm. Table Il contains a brief description of ske
parameters. We predominantly use three network topologies
for our simulation study (see Section V-A2). We tune the ACO
parameters separately for each topology. [7] proposed idea
values of the ACO parameters. We select a discrete set of
values for each parameter, similar to the ones proposed,in [7
and search for the best combination from within these sets.
Table IV summarizes the selected parameter setting for each
topology used in our simulation experiments.

V. SIMULATION EXPERIMENTS
A. Simulation Setup

This section describes a detailed simulation study to evalu
ate the performance of GNSM scheduling algorithms.
1) GNSM Schemes:

some larger topologies as well.

(b) ISP B

« Naive Scheduling (NS) NS represents the crude heurisfig. 3. Simulation Topologies

tic currently employed. In the context of LMS, the NS

solution entails failing at most one link at a time. It should 3) Synthetic Traffic Matrix GeneratioriVe use three syn-
be evident from Eq. 9 that, if we fail at most one link at dhetic traffic matrix generation methods employed by [23].

time, the overall cost is independent of the order in which
links are failed. The intuition behind NS is that since
the number of simultaneous failures is never greater than
one, it would serve to keep the overall network disruption
low. In the context of LWRS, NS computes a random
permutation of links in the job-set which represents the
order in which they are reassigned weights. For LWRS we «
also define a scheméS+ that entails computing0 such
random permutations and selecting the one that yields the
minimum network disruption cost.

« Optimal Scheduling (OS} OS computes schedules that
yield the optimal network disruption cost using dynamic
programming as described in Section IV-A. OS is feasible «
for small problem sizes and we use it to benchmark the
performance of our heuristic algorithm.

Gravity Model (GM) : GM models the observed char-
acteristics of PoP-to-PoP traffic matrices in Sprints IP
backbone [19]. GM specifies three volume categories for
traffic demands [4]. The fan-out of traffic originating at
a given node is then determined as per the observations
in [19].

NegativeExponential Model (NegExp) NegExp gen-
erates traffic matrix entries according to a negative ex-
ponential distribution. NegExp is motivated by studies
revealing that a fraction of demands in the Sprint IP
Network can be explained by the negative exponential
distribution [4].

LogNormal Model (LogNorm): LogNorm generates
traffic matrix entries according to a log-normal distri-
bution. [24] finds that LogNorm describes a subset of



traffic demands seen in actual networks. The estimatpdrforms very closely to OS. Also, CHURN shows the most
parameters for the distribution from [24] wegie= 16.06  significant performance improvement. One notable diffeeen

ando = 1.04. Therefore, we use log-normal distributiongrom the results for LWRS is the difference between the
whereo = %M- average F|g._5(a) and the maximum Fig. 5(b) cost reduction
over NS achieved.

B. GNSM for the Abilene Network We expect NS to work well for LMS on average, since it

We first conduct a preliminary evaluation using the Abilen@akes intuitive sense that if there is no more than one link
network. Our choice of Abilene is influenced by the fact thateactivated at a time, the resulting performance degr@uati
problem sizes for Abilene are small enough to be solved W” be low. What we want to evaluate is whether there exist
OS. We use the GM model to synthetically generate traff@@ses where this intuition fails and a different scheduietls
demands for the Abilene network. We set the mean traffic foetter results.
the GM model such that it yields a maximum link utilization ) ) .
of approximately33%. We use the well known local-search The performance improvement for F&T is very sensitive to

meta-heuristic proposed in [9,10] to optimize link weightd1® average traffic load because of the way F&T is defined,
with respect to a given traffic matrix. I.e., at higher utilization even small differences in atiiion

1) Link Weight Reassignment Scheduling (LWR&?: first result in higher differences in the F&T cost. Since our pre-
look at the LWRS problem. An LWRS experiment compriselgmnary experiments consider a traffic load that on average

generating aninitial and a perturbed traffic matrix, that _corresponds 183% of maximum link utilization, difference
represents how the initial traffic matrix has evolved overeti in the F&T costs are not remarkable. CHURN shows the most

Let the optimized weight setting for the initial traffic miatbe significant performance improvement. However, for reasiins

Winitial- W introduce random perturbation in the initial trafficcol\rl‘gl\s/lenestz ar}:ﬁ N I'n? W;th fOtJI‘ g_rlmary_lnten_tlonc;p ev?ua
matrix by multiplying the demand between each node pair by In the the context of tratlic engineering disruptions
fraction uniformly distributed between-p; and1+p;, where we restrict ourselves to the MLU disruption metric for all

py is the perturbation factor used to model change in trafff¢!PSequent LWRS and LMS results.

demands. For the preliminary evaluation we pgt= 0.5. Fig. 6(a) shows the percentage of times OS and AOS result
We optimize the weights for Abilene links with respect (G, a5 jmprovement over NS. We also report the results for

the perturbedtraffic matrix t0 getwyina- BOth winiiar @A \inHop routing where instead of optimizing weights as is
wrina are computed using the well known local-search metgse case inTE routing [9,10], we assign unit weights to
heuristic proposed in [9,10]. The LWRS problem is 10 findach jink. The horizontal axis plots the size of the job-set
the optimal schedule to migrate fromy,isia 10 wrinal 9IVEN  ang the vertical axis gives the percentage of times that a
that 2 is equal to the perturbed traffic matrix. scheme resulted in lower disruption cost than NS. Fig. 6 show
Fig. 4 shows the performance of OS, AOS, and NS+. Thiat GNSM scheduling schemes yield better results than NS.
results are averaged oveil0 experiments. We use the cost Ofrthermore, in almost all experiments where OS registers a
NS as a benchmark and report the reduction in overall nEtW(?ﬁlfprovement over NS, AOS also does so. The improvement is
disruption cost with respect to NS achieved by the Oth?ﬂhrﬁreater for MinHop routing, which suggests that if the iti
sche_mes. Resul_ts are _presented for all the three d'srum\'ﬁé‘ights are suboptimal, the advantage of employing GNSM
metrics de_flned in Section Ill: MLU, F&T and C_HURN. For_scheduling is greater. Fig. 6(b) and 6(c) give the average an
each metric the three GNSM schemes result in a reductigyximum percentage cost reduction of OS and AOS over NS
in the overall disruption cost incurred by NS. We repoiiqqss all the experiments where OS results in an improvemen
both the average(Fig. 4(a)) and the maximum (Fig. 4(b)) cq§fer NS. We see that the average improvement is small but
reduction over the experiments. The maximum cost reductighs maximum improvement can be as much7és We also
is significant since it shows the opportunity cost of not gsinsee that hoth the average and the maximum cost reduction
judicious scheduling in the worst case. Fig. 4 also shows thacrease with increase in the job size i.e., the number &&lin
AQOS performs very close to the optimal given by OS. that are included in the job-set. Section V-C will show how

2) Link Maintenance Scheduling (LMSYe now look at the improvement is more significant for larger networks and
the LMS problem. For each LMS experiment, we have a jgBp, sjzes.

size that represents the number of bidirectional links tiestd
to be maintained. We construct the job-set usingRlamdom If a GNSM schedule represents an improvement over NS,
Selection (RS)model. RS randomly selects links to includghen there is at least one stage with more than one link
in the job-set. This is motivated from prior failure chaextt deactivated in that schedule. Letrepresent the maximum
zation studies [18] that observed no correlation betweagksli number of links that are simultaneously down in a schedule.
included in the same maintenance window. Fig. 7(a) and 7(b) plot the average and maximunfor OS
Analogous to Fig. 4, Fig. 5 presents results for all threend AOS, across all the experiments where an improvement
disruption metrics for LMS in the Abilene network. The rdsul over NS is achieved. We expected to see no more than two
in Fig. 5 use the RS link selection model and the job sizmultaneous deactivations & 2) for the Abilene network,
is set to11. As for LWRS, we see that not only OS andout were surprised to see that the a judicious schedule can
AOS result in a performance improvement over NS, but AOSave as many as four simultaneous deactivatians {).
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C. GNSM for Tier 1 Pop Level Topologies completeness we considerTapological Correlation (TC)

[ h f f AOS f | model that considers such correlations. In TC we start with a
e now evaluale fe periorance o X or our 1ar9%mpty job-set. In each successive iteration we select a node

_netévork_s resrgsgn(';i_ng TLer ﬁ PO:OI§V8| t(;pologiels. Themsegl\/vhich has the highest number of links already included in the
:” ect|onb "B indicated that d per ormls Cosoesto. ob-set (and has additional candidate links for additi@md

All our su sequent experiments do not evaluate > SIinc stiect a bidirectional link incident to the selected nodat th

is intractable to do so. We also use MLU as our disruption. o ¢ yet been added to the job-set. Fig. 13 shows, as for

m_etric fc_)r the remainder of this paper. However, for refeeen RS, AOS can deliver significant performance gains for jois-se
Fig. 8 gives a snapshot of the LMS and LWRS performangﬁat correspond to TC

for different metrics for ISP A. We also evaluate GNSM for a few larger topologies.

‘1) Link Weight Reassignment Scheduling (LWRSEl. 9 gpecifically, we use topologies drawn from Rocketfuel [30].
gives the reduction in the disruption cost over NS of AOS anpﬁe topologies we use correspond to POP-level topologies
NS+ for LWRS in ISP A and ISP B for different values of the,s os53967 79 nodes, 294 links), AS1755 §7 nodes,322
per_turbatic_)n factops. The re_sults are prgsented as a box-gnqﬁks)’ and AS1221 {04 nodes,302 links). We configure
whisker diagram summarizing the minimum, lower quartileaco-parameters for these topologies in a manner analogous t
median, upper quartile, and maximum cost reduction. TR tion 1\-B2. The job size for LMS for all three Rocketfuel
!lnes depict th_e average dlsruptlon cost. Fig. 9 shows theat _ttopologies is set t®00 and to 50 for ISP A. We use the
improvement is more or less mdepenqlent of the perturbangrs link selection model for LMS. The perturbation factgr
factor. Even for low values op; (for which wyine might be ysed for the LWRS experiment is setd. Fig. 14 plots the
close towiniia1) We See significant performance gains. Wefficiency of the different GNSM schemes for the different
can observe that AOS results in approximat@)yo reduction network topologies and for ISP A. We see that for both LWRS

in the disruption cost that would have ensued if we used Ngyq LMS, the larger the size of the topology/job-set the tgrea
Also NS+ only yields a cost reduction of arou@ls, which is 5 the improvement over NS.

significantly worse than that achieved by AOS. An important
observation is that the reductions for ISP A and ISP B are .
greater than what was observed for the Abilene network. TH#& Hot-Potato Routing

can be attributed to the larger solution space that existisén  previous studies [26,29] on interaction between link con-
case of the larger topologies. Hence, the difference betweefigyrations and BGP routes show that link events can change
random schedule and one computed through an approximaigp routes, thus changing the traffic matrix within the same
algorithm can be significant. The results in Fig. 9 use the GMS. Suchhot-potatorouting occurs when there are multiple
traffic model. Fig. 10 show that our performance gains agjress points for an external prefix and the IGP distance is
similar when different traffic models (Section V-A3) are dse ysed as a tie-breaker. In this scenario, a link deactivation
2) Link Maintenance Scheduling (LMS¥ig. 11 shows link weight reassignment may change the IGP distances and
the LMS performance of AOS for ISP A and ISP B. Agause traffic to shift from the original ingress-egress paia
was the case with LWRS, the performance gains are marew ingress-egress pair.
significant than for the smaller Abilene network. We see that In this section, we stress-test our GNSM framework in the
AOS can result in modest reductions in the average dismiptipresence of hot-potato routing. We use a fixed traffic demand
cost achieved with NS. We also see AOS performing muehatrix (TDM) as input and we maintain a dynamic traffic
better for MinHop routing as compared to TE routing. Thisatrix (TM) during the scheduling process. For traffic darmiy
is consistent with our previous observations for the Alglerat an ingress point of an AS and destined for an external
network. We conjecture that if the original weights are ngirefix, there may exist multiple egress points for leaving th
optimal, we witness a greater advantage of employing AO&S. We assume that the traffic demand between an ingress
We also see greater performance gains for larger job sites. Joint and its “egress-set” is fixed and we use TDM to denote
modest average cost reduction for TE routing is expectemtsirthese demands. On the other hand, a specific egress point is
we expect NS to perform well for the average case. Fig. B2lected from the egress set according to the IGP distance
shows that like LWRS, the performance gain of AOS persisttween the ingress and the candidate egress nodes. The TM
across different distributions of traffic demands. We se# threpresents these ingress-to-egress traffic demands fecdisp
the maximum cost reduction achieved by AOS can be as lan@P weight setting. When a link is deactivated or its weight
as7% and40% for TE and MinHop routing, respectively. Thechanges, we re-select the egress point for each prefix at its
maximum cost reduction seen in LMS is more significant singegress point, and get a new ingress to egress traffic matrix
it underscores the opportunity cost of not having a systemagTM). Therefore, during the process of a scheduling, the TDM
and well-founded mechanism of computing the maintenangemains static while the TM can change.
schedule. We compute the TDM, from BGP dumps and Netflow
An important question is whether our results our specifiecords of the Abilene network. The IGP weights are set to
to the way links are chosen. As stated in Section V-B, tithe IGP weights corresponding to the period of the Netflow
RS link selection model is motivated from prior failure charrecord obtained from the Internet2 Observatory [1]. For LSVR
acterization studies [18] that observed no correlatiomvbeh we construct a job-set by randomly selecting links, and ran-
links included in the same maintenance window. However, fdomly perturb the link weights (not necessarily optimizthg



607 mmmNS+ 607 mmns: 307 mmmAvg. Cost Reduction
. AOS —_ ACS Max. Cost Reduction
9 *
> = <
_5 40 .g 40 7 < 5]
B S 5
= 3 2
S 2 3]
Q
o o ?::
*g 20 @ 207 o 10
o © ®?
S % 3
s ©
<, =

4 - 0 4
MLU F&T CHURN MLU F&T CHURN MLU F&T CHURN

11

(a) LWRS: Avg. Cost Reduction (b) LWRS: Max. Cost Reduction (c) LMS: Avg. and Max. Cost Reduction

Fig. 8. Different Disruption Metrics [Network=ISP A; # Exgients=100; Traffic Matrix=GM; LWRSp; = 0.5; LMS Job Size50; LMS Link Selection=RS]

Fig.

807 _a—AOS 809 _._NS+ 801 _a—AOS 809 _a NS+
AGO* 60 /\607 604
9 *
§ 401 40 § 401 40
° k3]
=} =}
B 204 20+ 3 20 20
o o
g 04 0+ 2 0 0|
o o |
20— 0+ 200 R0
0.1 03 05 07 09 01 03 05 07 09 0.1 03 05 07 09 0.1 03 05 07 09
Perturbation Factor (ps) Perturbation Factor (pg) Perturbation Factor (ps) Perturbation Factor (ps)
(@) ISP A (b) ISP B

9. LWRS: Performance for ISP A & ISP B [# Experimentsl80; Disruption Metric = MLU; Traffic Matrix = GM]

80+

801 _a—AOS —a—NS+ 801 _s—AOS —a—NS+
60+ 60+ 60 60
g g
§ 404 40| § 401 40
°© °
> >
3 20 20| 3 201 20
o o
g 0 0 2 0 0
o | i o |
20— <20 A 2020+
0.1 0.3 0.5 0.7 0.9 01 03 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9 01 03 0.5 0.7 0.9
Perturbation Factor (ps) Perturbation Factor (ps) Perturbation Factor (ps) Perturbation Factor (ps)
(a) LogNorm (b) NegExp
Fig. 10. LWRS: Performance for Different Traffic Models [Metrk = ISP A; # Experiments 200; Disruption Metric = MLU]
507 —=—MinHop 504 —=—MinHop
—a-TE ——TE
N 404
S S
c < 304
il il
© ©
> S 204
e e
(0] (0]
o o
- — 10
1] 1]
S S
o] =—m—=—F—5—F
30 40 50 60 70 80 30 40 50 60 70 80
Job Size Job Size
(a) ISP A (b) ISP B
Fig. 11. LMS: Performance for ISP A & ISP B [# Experiment§8; Disruption Metric=MLU; Job Size50; Link Selection=RS; Traffic Matrix=GM]

80+




12

257 —a—GM
—e— LogNorm _— 257 = GM

o A o

9\_0/ 204 NegExp 8\, —e—LogNorm

c c 204 —a—NegExp

2 9

S 154 8

> 4

3 3 15

&J 10 Cclli)

= i +— 104

%) %)

o) o

O s O 5]

o P

e i 3

04— : ‘ ‘ ‘ : = o
30 40 50 60 70 80 30 40 50 60 70 80
Job Size Job Size
(a) Avg. Cost Reduction (b) Max. Cost Reduction

Fig. 12. LMS: Different Traffic Models [Network = ISP A; # Expments=100; Disruption Metric=MLU; Job Size50; Link Selection=RS]

259 a-GM 257 —a-GM
—e—LogNorm . —e—LogNorm
g 201 —a—NegExp g\i20~ ——NegExp
S s
3 15 S 151
ie] S
o) o]
0 104 o 404
8 —_—t——— . 2
O s © 5
2 3
< 0 = 0
30 40 50 60 70 80 30 40 50 60 70 80
Job Size Job Size
(a) Avg. Cost Reduction (TE) (b) Max. Cost Reduction (TE)

Fig. 13. LMS: Topological Correlation in Job-Set [NetworkSP A; # Experimentst00; Disruption Metric=MLU; Job Size50]

H Max. Cost Reduction 71 mmm Max. Cost Reduction
60+ Avg. Cost Reduction Avg. Cost Reduction
6
o 504 —
) X 54
c 404 c
8 0 O 44
3] ©
S 304
] 3 3
o} o}
o 20 o,
@ @
o o
O 104 O 14

ISP A AS3967 AS1755 AS1221 ISP A AS3967 AS1755 AS1221
(a) LWRS (b) LMS

Fig. 14. Rocketfuel Topologies [# Experimenss Disruption Metric=MLU; LWRS Perturbation Factop { = 0.5); LMS Link Selection=RS; Traffic
Matrix=GM]

weights for traffic engineering). We, however, keep peitigh  Similarly, Fig. 15(b) and Fig. 15(d) show the average cost
link weights until we arrive at a weight setting that resuits reduction of AOS over NS for the experiments where AOS
a better MLU than the original Abilene weight setting. Thigxceeds NS. The average cost reduction is similar for hot-
represents the final weight setting to migrate to. For the LM®tato routing compared to the case with static traffic e
problem we construct the job-set according to the RS mod®le, therefore, see that GNSM performances are expected to
Fig. 15 shows the performance of GNSM in the presengersist with dynamic traffic matrices.

of hot-potato routing for the LWRS and LMS problems.
Fig. 15(a) and Fig. 15(c) show the percentage of experim@_t
runs in which AOS performs better than NS. We can see that ] ) )
with hot-potato routing, AOS shows improvement over NS Table V compares the solution computation times of OS

in more experiments, compared to the case with static trafled AOS for ISP A. Our algorithms are implemented in Java
matrices. are run on a PC with & GHz CPU and3 GB memory,

with the maximum Java heap size set 502 MB. Our

Solution Computation Times
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[WRS (05) [ 002 011071 5 [ 924 6624 Network Evolution & Upgrade: Enterprise, data-center,

LWRS (AOS) | 03 | 2 | 5 7 | 16 | 20 | 93 | 234 | and backbone networks continually need to evolve and be
LMS (OS) | 0041 02| 4 | 144 upgraded. This involves capacity building by adding new
LMS(ACS) | 07 | 4 | 18| 22 | 43 | 58 | 816 | 523 | |inks and nodes and may involve decommissioning older ones.
TABLE V Alternativ_ely, it may involve firmware upgrades on existing
SOLUTION COMPUTATION TIMES (SECONDS) nodes It is easy to see how the problem can be formulated
within the GNSM framework. The current topology of the
network represents the initial state, and the final topolisgy
the desired state after the upgrade activities. An exanfda o
implementation is not optimized for running time, and wetomic operation is commissioning a single link (changisg i
report the computation times to give a rough picture of thejveight fromoo to some positive value). GNSM can chart out
rate of growth as a function of job size. Table V shows thai disruption minimizing trajectory of such upgrade openadi
the average computation time for OS grows much faster thenorder to reach the desired final state.
that for AOS, and quickly becomes intractable. We can seeypLS Route Re-Optimization: We can leverage the
that on average it takes31 times longer to solve an LWRS GNSM framework to discover the most efficient rerouting
problem with a job size 022 using OS as compared to AOS.sequence for label switched paths (LSPs) in Multi-Protocol
Similarly the average solution computation time for an LM$apel Switching (MPLS) networks. Such networks often use
problem with a job size o013 is 6.5 times greater for OS as dynamic LSP placement, wherein LSP demands are routed
compared to ACS. one-by-one, with no priori knowledge of future demandssThi
represents the GNSM initial state. The network bandwidth
utilization may become suboptimal after some time as a
result of such one-by-one LSP placement. In such cases,
Our work was motivated by the observation that a significanetwork operators can compute a globally optimal routing of
fraction of network failures, topology changes, and patame LSPs using knowledge of existing LSPs and their bandwidth
configurations stem from deliberate and premeditated managemands. This represents the GNSM final state. The migration
ment and operational tasks. Since network operators have ftpm the initial state to the final state can be realized by
prerogative to decide the exact sequence of such operatiggsonfiguring the route of each LSP from its initial routeto i
judicious scheduling can minimize network performance digew route in a make-before-break fashion. This represents a
ruption. We formulated GNSM as a general class of probleragomic operation. We can use the GNSM solution framework
that study how to migrate from an initial to a final networko discover the optimal sequence in which LSP demands
state by executing a series of atomic operations. We presgerghould be switched from their existing to their desired esut
LWRS and LMS, two problems routinely encountered by net- Data Center Power Management We may also use the
work operators, as case studies for GNSM. We also presen®dSM framework to determine the optimal states-of-being at
an Ants Colony Optimization inspired heuristic for LWRS andliscrete time slots across an optimization interval. This ¢
LMS. Our simulation study demonstrates that our solutidie accomplished by having placeholder states correspgndin
delivers major improvements over current practices for LSYRto the initial and final states with zero cost transitions ofit
For the LMS problem we saw that, although current practiegnd into them, respectively. Device power consumption and
perform well on average, there exist cases where the diftere associated cooling costs are major drivers of costs indurre
between current practice and our solution can be significanwhile operating data centers. Such costs can be curtailed by
We believe that a major strength of this work is thshutting down computational or networking devices under
generality of the GNSM problem formulation and solutiofow load conditions or configuring power saving mechanisms
framework. It is independent of the underlying network ansuch as dynamic voltage scaling. However, doing so has
link layer mechanisms, and can incorporate different rogtriimplications on job latency and other performance metrics.
for network disruption. The following outlines some poiaht GNSM can be used to determine the optimal trajectory of
applications of the GNSM framework. job-scheduling and power-management decisions to reatize

VI. CONCLUSION & FURTHERAPPLICATIONS



acceptable latency-energy tradeoff. [24]
The above are only a few examples of how network op-
erators can leverage our framework to deal with a host gf
problems specific to their operational contexts. We spéeula
that extending the GNSM framework to deal with a host d#l
similar problems within different operational contextsisich 57,

area for future work.
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