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ABSTRACT

Streaming network traffic measurements and analysis is crit-
ical for detecting and preventing any real-time anomalies in
the network. The high speeds and complexity of today’s
network make the traditional slow open-loop measurement
schemes infeasible. We propose an alternate closed-loop
measurement paradigm and demonstrate its practical real-
ization. To the heart of our solution are three streaming
algorithms that provide a tight integration between the mea-
surement platform and the measurements. The algorithms
cater to varying degrees of computational budgets, detection
latency, and accuracy. We empirically evaluate our stream-
ing solutions on a highly parallel and programmable mea-
surement platform. The algorithms demonstrate a marked
100% accuracy increase from a recently proposed MRT algo-
rithm in detecting DoS attacks made up of synthetic hard-
to-track elephant flows. Our proposed algorithms maintain
the worst case complexities of the MRT, while empirically
demonstrating a moderate increase in average resource uti-
lization.

Categories and Subject Descriptors

C.2.3 [Computer-Communication Networks]: Network
Operations—Network Management ; G.4 [Mathematics of

Computing]: Mathematical software—Algorithm design and
analysis; C.3 [Special-Purpose and Application-Based

Systems]: Real-time and embedded systems

1. INTRODUCTION
Accurate traffic measurement and monitoring is key in

a wide range of network applications such as detection of
anomalies and security attacks, and traffic engineering. A
number of critical network management decisions such as
blocking traffic to a victim destination, re-routing of traffic,
or detection of anomalies, require extraction and analysis
of real-time spatio-temporal patterns in network traffic. A
high-quality network measurement tool is crucial for extract-
ing such patterns of interest and making informed decisions
to ensure proper network operation [1].
Today’s high speed networks see huge amounts of stream-

ing traffic, posing enormous computational and storage re-
quirements for accurate traffic measurements. Traditionally,
the measurements are performed by maintaining limited in-
formation of the streaming data. This is done by program-
ming conservative sampling factors over to the routers, that
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(a) Traditional Open Loop
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(b) Proposed Closed Loop

Figure 1: Network Measurement Paradigms

maintain some very limited local storage. The collected sam-
ple is next periodically expired to high-end servers where it is
post-processed in answering some higher level user-queries,
such as traffic passing through a subnet or detecting a net-
work anomaly [12]. A high level depiction of the traditional
paradigm is shown in Figure-1(a). The traditional paradigm
is open-loop based in which the measurements are typically
blind, or orthogonal, to the user requirements.

Being orthogonal, the open-loop schemes not only perform
redundant measurements, but the scheme’s reliance on sam-
pling incurs significant measurement inaccuracies. There is
a vast amount of research that is based on open-loop schemes
and their shortcomings. However, the speed and scale, the
size, and complexity of today’s networks limit the feasibility
of the paradigm in closing the loop between the measure-
ments and the requirements in a streaming setup [7].

We address the problem using smart, goal-oriented closed-
loop measurement solution, as shown in Figure-1(b). Cen-
tral to our proposed scheme is a tight integration between
the measurement requirements, available resources, and the
actual measurements. This is achieved by breaking a higher



level user-query into multiple rules of finer granularities and
their iterative refinement over time until the user-query gets
answered. The contention is that the interesting traffic pat-
terns could be detected or learned on the fly, via iterative
rule based traffic measurements, online analysis of collected
information, and closed-loop evolution of subsequent rules
for further and finer traffic inspection. Each round in the
iterative process guides the subsequent measurements to-
wards the goal, thereby reducing redundant measurements
and leading to answering the user-query over time.
The closed loop scheme thus temporally distributes the

complexity in answering the user query by breaking it down
into multiple rules, or a rule-set, to be answered over mul-
tiple iterations. Multi-Resolution Tiling (MRT) Algorithm
[14] has been previously employed in coming up with the
rule-sets in an offline closed loop settings, performing mul-
tiple passes over the same data. In an online setting, such
a multiple-pass flexibility is not available, and may neces-
sitate an aggressive formation of the rules, leading to large
and redundant rule-sets. Thus the challenge in closed-loop
streaming measurements is in the formation of a represen-
tative set of rules that can accurately answer the user query
in reasonable time, while remaining within the computing
budgets.
In this work, we present an online closed-loop measure-

ment system that provides solution to the above challenges.
Fundamental to our streaming solution are three novel al-
gorithms that cater to different levels of computational and
storage budgets, detection latencies, and user level knowl-
edge of the anomaly. A key goal of our work is to reduce
redundant measurements by closely associating the compu-
tational resources towards the required query, that is, direct-
ing the limited resources where they are needed the most.
Another consideration in the design of our algorithms is
to maintain scalabilities in computation and storage costs,
while not compromising on the accuracy and latency of the
final answer. We integrate our proposed algorithms using
state of the art rule-processing platform, the BURAQ [10],
that provides highly parallel and programmable computa-
tional resources on a commodity FPGA device.
We provide both empirical and analytical analysis of our

algorithms. The worst case computational complexities of
the proposed algorithms are similar to that of the MRT,
whereas two of the three algorithms also demonstrate simi-
lar worst case storage complexities. We empirically evaluate
our solution by injecting varying degrees of heavy flows [7],
representing spatio-temporally distributed and intermittent
DoS attacks. The results show a marked 100% increase in
the detection accuracies from the MRT, with low to mod-
erate resource utilization of the BURAQ platform. Finally,
we provide mathematical upper bounds on expected false
alarms while using our solution. The bounds yield interest-
ing insights in fine tuning the system accuracy and latency,
under any given network conditions and computational bud-
gets.

2. BACKGROUND
Network traffic measurement fundamentally involves quan-

tification of traffic that satisfies some criteria. The traffic is
generally quantified in terms of flows, where a flow refers
to a set of packets that have the same n-tuple value in
their header fields. Typical definitions of the flow include
6-tuple: {prt, tos, sip, spt, dip, dpt} where, prt is the proto-

col field, tos is type of service, sip and dip are the source
and destination IP addresses and spt and dpt are the source
and destination ports, respectively. We define a flowset to
be an aggregation of flows. For instance, the CIDR prefix
is a particular type of a flowset that aggregates over all the
flows that have matching significant bits corresponding to
the size of the prefix.

Traditional measurement schemes work by maintaining
unique “per-flow” based statistics. The collected informa-
tion is post-processed offline for answering higher-level user-
queries [3] such as detecting an anomalous behavior. How-
ever, the per-flow schemes require storing information about
potentially huge number of flows. The un-scalability of the
per-flow scheme has traditionally been resolved using con-
servative packet sampling [6, 13], thereby infusing inaccu-
racies in answering the user-queries. Furthermore, as the
collected sample is orthogonal to the user-query, the scheme
involves potentially redundant data storage and subsequent
data processing, making the traditional schemes practically
infeasible for answering the queries in real-time.

Recently, there has been an interest in developing online
closed-loop schemes to address the challenges in network
measurement and analysis [11, 14]. The key observation of
the schemes are top-down, goal-oriented measurements as
desired by the user-query rather than the blind, bottom-up
offline measurements as is done conventionally in sampling
based approaches. The smart measurements are based on
Multi-Tiling Resolution (MRT) Algorithm that iteratively
tries to answer the user query through a progression of fi-
nite set of intermediate rules. A rule can be viewed as an
intermediate question in pursuit of the user-query that if an-
swered can help lead the search in a more intelligent manner.
We will discuss the rules shortly in the context of MRT.

Modern networks are plagued with a variety of Denial
of Service (Dos) attacks. One broad category of DoS at-
tack tries to deplete available network bandwidth by spatio-
temporal insertion of redundant data into the network. The
inserted data could be in the form of a few over-sized or
heavy flows, referred to as Elephant or Heavy-Hitter (HH)
flows, or using a large number of small flows, the Mice flows.

There is a rich amount of research work that addresses the
above types of attacks. Elephant flows have been the focus
of researchers in [5, 7] that use sampling in the hope that it
favors high intensity data. The mice attacks have been ad-
dressed by locating the heavy flowsets, or Hierarchical Heavy
Hitters [4, 15], that aggregate over mice flows such that the
aggregated flowsets meet the heavy-flow requirements.

2.1 Multi-Resolution Tiling Algorithm
Multi-Resolution Tiling (MRT) [14] is a recursive top-

down heuristic that relies on a simple but powerful obser-
vation that if a flowset does not contain an anomaly, then
no flow in that flowset can be anomalous. For instance,
in the case of elephant flows, if a flowset does not con-
sume θ-fraction of the entire network bandwidth, then no
flows within that flowset may be an elephant flow. In terms
of CIDR notation, the algorithm states that if a prefix is
not elephant, then all its constituent prefixes of higher sizes
(granularities) can be discarded from further consideration.
The algorithm is tabulated in Algorithm-1.

AnMRT iteration for two dimensional tuple space {source,
destination} involving a Zoom Ratio (ZR), or Expansion
Ratio, of four is illustrated in Figure-2. The ZR dictates



Algorithm 1: MRT Algorithm

input : Pt: Packet enumerator at time t
input : Φ: The expansion/zoom ratio
input : R: Active rule-set
input : Ri.Size: Aggregate size for rule Ri

input : δ: Measurement Interval
input : θ: Threshold bandwidth consumption ratio
input : λ: Link rate (bits/second)
output: Ef{}: set of elephant-flows

SizeTh ← λ ∗ θ ∗ δ
/* Measurement Phase */

1 while t ≤ δ do

2 for Ri ∈ R do

3 if Ri = Pt then

4 Ri.Size← Ri.Size+ Pt.Size

/* Decision Phase */
5 for Ri ∈ R do

6 if (Ri.Size > SizeTh) then

7 if Granularity(Ri) = MAX then

8 Ef ← Ef + Ri

9 else R.replace {Ri, Expand (Ri,Φ)}

10 else Ri.drop

that the sample space is initially partitioned into four equal
sub-regions. Statistics are next collected for the sub-region
for a given measurement interval. This is achieved using
rules that partition the subspace in four. Thus a rule in
the context of the MRT can be viewed as a Boolean bit-
mask on specific header bits that helps qualify the incoming
packets. In the case of HH, the qualification helps in col-
lection of statistics corresponding to the total bytes passing
the sub-regions. The sub-regions that exceed the threshold
θ, marked with a cross in the figure, are next selected for fur-
ther zooming-in, or expansion, in the next-iteration. Thus
each iteration in the given example results in resolution of
two bits, one in each tuple space. MRT thereafter contin-
ues iterating between partitioning, statistics-collection and
expansion phases until the anomalous flow is isolated.
The MRT’s worst case expansion scenario corresponds to

a spatio-temporal distribution of flowsets/flows such that
every tracked MRT sub-region passes the threshold test.
Assuming the tracked flowsets/flows remain consistent, the
worst case leads to logΦ(n) MRT iterations, where n being
the number of bits of the search space resolved during the
expansion, the expansion granularity. If MRT is viewed as
tree structure with nodes defining the rules and levels de-
scribing the MRT iterations, then the algorithmic complex-
ity of MRT’s decision phase corresponds to the total number
of nodes in the tree structure, given as Θ[ΦlogΦ(n)−1/(Φ−1)]

3. MOTIVATION AND PROBLEM

STATEMENT
The MRT algorithm helps in guiding the measurements

in the vast n-tuple search space. However, the limited vis-
ibility under which the guided measurements have to base
their decisions can lead to false negatives and positives in
detecting an anomaly. For instance, a brief spike in activ-
ity may lead the MRT to incorrectly declare presence of a
heavy flow, when it may only be a Flash crowd [9]. Simi-
larly, a brief absence of an anomaly can lead the MRT to
disregard a region from future consideration. Thus when the
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Figure 2: MRT with zoom ratio of four

anomalous behavior returns, the MRT will have to restart
its tracking process from the highest granularities, resulting
in false negatives and wastage of measurement resources as
well as increased detection latencies.

The issue of false positives can easily be addressed by
continuously tracking a declared anomalous flow. However,
solving the problem of false negatives due to MRT resets is
more involved. A naive solution to the problem could be to
increase measurement intervals, δ, at the cost of increased
tracking latency. However, as the network traffic is usually
spiked and varied due to the traffic loads and network condi-
tions, it is quite difficult to come up with an interval that can
universally address the problem. Furthermore, the attacker
can easily outsmart the solution by purposefully going under
the measurement radars for a while.

Another solution to the problem of frequent MRT resets
could be to continuously track all the sub-regions. However,
the strategy could lead to tracking a huge number of re-
gions, or rules, that may well overwhelm the measurement
resources and render the detection infeasible in real-time.
An intelligent measurement solution therefore needs to iso-
late the true rules from redundant rules for better utilization
of limited computing resources. Unfortunately, it is quite
difficult to predict if a rule is relevant to the search query
unless it has been answered. Thus the challenge here is also
to quantify the rules in determining an optimized rule-set
that can yield accurate answers in optimal times while re-
maining within resource budgets.

In this work, we present streaming algorithms that ad-
dress the above challenges in goal oriented rule-based online
traffic measurements. A key challenge answered in designing
the streaming measurement algorithms is to maintain mea-
surement scalability, by maintaining an optimized rule-set.
We demonstrate streaming solutions that can maintain the
accuracies while significantly reducing the resource budget
from naive methods. We demonstrate the algorithms in the
context of heavy hitter flows. However, we will show that
our solutions are quite generic and can easily be adapted for
various other kinds of streaming anomalies.

4. STREAMING ALGORITHMS FOR

SMART GUIDED-MEASUREMENTS
The key idea of the MRT is that one can, by observing a

flowset, infer the characteristics of its subsets or objects (the
flows). Therefore, one can selectively zoom into flowsets that
might contain anomalies, such as heavy hitters, while ignor-
ing others. As the algorithm explores the network landscape,
it logs explored regions in a tree structure where nodes rep-
resent monitored regions in the IP-space. Parent nodes rep-



resent regions in IP-space which are supersets of the region
covered by its children nodes, with the root node of this tree
covering the entire IP-space. The number of children of a
given parent node is determined by the expansion ratio.
The MRT algorithm requires persistence presence of an

anomaly for its detection. This requirement is seldom met in
practice where an anomaly may go under the radars, only to
reappear shortly. In this section, we present streaming algo-
rithms that overcome the challenges associated with isolat-
ing temporally distributed anomalies while preserving com-
putational and storage scalabilities in the detection process.

4.1 Equilibrium Rollback
The Equilibrium Rollback (ER) Algorithm addresses the

problem of MRT resets by adjusting the granularities of the
expanded flowsets according to the temporal variations in
the traffic. This is in contrast with the MRT that resets the
granularities to the highest levels if the threshold require-
ments are not met. Instead, the Equilibrium Rollback algo-
rithm takes into account the slow temporal variations in traf-
fic patterns in collapsing, or zooming-out, of the expanded
flowsets corresponding to the variations in the tracked re-
gions. The algorithm thereby achieves an equilibrium point
over the zoomed hierarchy that just passes the θ threshold
requirements.
The pseudocode for ER is presented in Algorithm-2. The

contention is that when the anomaly reappears, the graceful
degradation over the zoomed granularity will lead to a quick
re-expansion of the flowsets, instead of the slow expansion
of the MRT. The cost of the algorithm is an increase in the
storage requirements to keep the entire traversed hierarchy.
It is to be noted that even though the entire hierarchy is
stored, it is only the leaf nodes that are actively being eval-
uated, or constitute the active rule-set.

Algorithm 2: Equilibrium Rollback

/* Decision Phase */
1 for Ri ∈ R do

2 if (Ri.Size > SizeTh) then

3 if Granularity(Ri) = MAX then

4 Ef ← Ef + Ri

5 else R.replace {Ri, Expand (Ri,Φ)}

6 else if Granularity(Ri) > 1 then

7 R.replace {Ri, Collapse (Ri)}

8 else Ri.drop

Proposition 1. The computational and storage complexity
for Equilibrium Rollback is Θ[ΦlogΦ(n) − 1/(Φ− 1)] per rule.

The computational complexity of ER (decision phase) is
the same as that of MRT, assuming the consistency of the
tracked flowsets/flows as in the case for MRT. However,
whereas the storage complexity of MRT is Θ(2n) per rule
in maintaining just the leaf nodes, the ER algorithm’s stor-
age complexity corresponds to the storage requirements of
the entire hierarchy for the worst case expansion.

4.2 Flow Momentum
The Equilibrium Rollback helps to gracefully degrade the

zoomed granularity when an anomaly temporally goes un-
der the measurement radars. However, in doing so, the al-
gorithm ends up maintaining information about the entire
traversed hierarchy in the hope that it may be needed if the
algorithm needs to rollback. The Flow Momentum (FM)
algorithm addresses the problem by instead giving the leaf
nodes grace durations in the active rule-set, owing to the
temporal variations in the anomaly. The grace durations are
proportional to the intensity, or momentum, of the anoma-
lous flows that guided the measurements towards the leaf-
node in the first place. Thus in the case of the HH, a leaf
node may be more active if the anomalous flow were of higher
size.

The pseudocode for the FM Algorithm is presented in
Algorithm-3. Besides reducing the storage overheads, an-
other benefit of the FM over ER is an even faster re-expansion
of the tracked flowsets when the anomaly re-appears. The
price paid is a potentially bigger active rule-set size corre-
sponding to the higher number of tracked leaf-nodes. How-
ever, the worst case storage and computational complexities
for FM are the same as that of MRT.

Algorithm 3: Flow Momentum

λi : Flow rate for flowset/flow i
k : Algorithmic iteration

/* Measurement Phase */
1 while t ≤ δ do

2 for Ri ∈ R do

3 if Ri = Pt then

4 Ri.Size← Ri.Size+ Pt.Size
5 Ri.M ← Ri.M + Pt.Size

/* Decision Phase */
6 for Ri ∈ R do

7 λi ← Ri.M/k ∗ δ
8 if (Ri.Size > SizeTh) then

9 if Granularity(Ri) = MAX then

10 Ef ← Ef + Ri

11 else R.replace {Ri, Expand (Ri,Φ)}
12 Rexpanded.M ← Rparent.M

13 else if (λi/λ ≥ θ) then

14 Ri.Hold

15 else Ri.Drop

Proposition 2. The computational and space complexity
for Flow Momentum algorithm is Θ[ΦlogΦ(n) − 1/(Φ − 1)]
and θ(2n) per rule respectively.

4.3 Directed Momentum
The streaming algorithms discussed above are quite generic

in nature, that is, they do not take into account much op-
portunities or constraints presented by application or avail-
able computational platform. They are thus suited to the
scenarios where the knowledge of the anomaly or the en-
vironment is limited. However, such an orthogonalization
between the application/platform and the algorithm may
lead to less than optimal use of the computing resources,
leading to large active rule-sets. A very large rule-set can
throttle the system by consuming the resources in process-
ing redundant rules. An intelligent hacker could actually use



Algorithm 4: Directed Momentum

input : R: Active rule-set
input : Q{}: Set of Rule Processors
output: Et{}: set of elephant-flows
Stretch← |R| − |Q|
Pull← |min(Stretch, 0)|

/* Measurement Phase */
1 while t ≤ δ do

2 for Ri ∈ R do

3 if Ri = Pt then

4 Ri.Size← Ri.Size+ Pt.Size
5 Ri.M ← Ri.M + Pt.Size

/* Decision Phase */
6 for Ri ∈ R do

7 if (Ri.Size > SizeTh) then

8 if Granularity(Ri) = MAX then

9 Ef ← Ef + Ri

10 else

11 R.replace {Ri, Expand (Ri,Φ)}
12 Rexpanded.M ← Rparent.M
13 Rexpanded.Static← 0

14 else if DIR_MOM(Ri, Pull)/λ ≥ θ then

Ri.Static← Ri.Static+ 1
Ri.Hold

15 else Ri.Drop

/* Calculates Directed Momentum */
procedure Dir Mom(Ri, Pull)
λi ← (Ri.M/k ∗ δ)

dni ← exp(Pull∗Ri.Static/Granularity(Ri)) /* Dir-Mom */
return (λi/d

n
i )

end procedure

this deficiency to outsmart the detection process in real-time
by injecting a huge number of false flowsets, or leads, to be
tracked. A smart algorithm therefore needs a mechanism to
filter out redundant leads from the active rule-set.
As discussed earlier, it is quite difficult to predict how

relevant a given rule is to the user-query unless it has been
evaluated. However, the knowledge of an anomaly can help
to intelligently quantify the rules using their past behav-
ior. We make use of the anomaly information in designing a
smart Directed Momentum (DM) algorithm that directs the
search process by associating the limited resources where
they are deemed more profitable. We develop the algorithm
in the context of elephant flows. However, the ideas behind
the algorithm are applicable for other types of anomalies.
A characteristic feature of elephant flows are their higher

longevities. In the context of an iterative search process
such as the Flow Momentum, the long lasting property of
the elephant flows translates into higher expansion of the
corresponding flowsets. We utilize this property in harness-
ing the Momentum to be directed towards the anomalous
elephant flows by giving preference to the rules that have
higher granularities. The Directed Momentum algorithm
thus formed is tabulated in Algorithm-4.
Directed Momentum works by scaling the individual flowset

longevities using a measure referred to as Stretch. The
Stretch takes into account the availability of computational
resources and could either be positive or negative. A posi-
tive Stretch describes a scenario where the active rule-set is
smaller than the available rule processing resources. In con-

trast, a negative Stretch implies overshooting of the compu-
tational budget by the active rule-set. The DM algorithm
uses the negative-stretch in coming up with a measure called
pull, or algorithmic effort; such that the higher the pull, the
higher the algorithmic effort in reducing the active rule-set.
The algorithmic pull is combined with a rule’s granularity
to prefer more expanded and expanding flowsets over less-
expanded or static flowsets, in a measure referred to as Dir-
Mom, as shown in the pseudocode.

Proposition 3. The computational and space complexity
for Directed Momentum algorithm is Θ[ΦlogΦ(n)−1/(Φ−1)]
and θ(2n) per rule respectively.

5. THE MEASUREMENT PLATFORM
The streaming algorithms discussed in previous sections

are composed of two parts: (a) a data-plane to match in-
coming packets with the rule-set along with (b) a control-
plane for algorithmic decisions to process rules that lead to
measurements of finer granularities. These two planes have
been previously mapped on software [14], hardware [8] and a
software-hardware co-designed solutions [11]. In this work,
we use the closed-loop BURAQ measurement and analysis
framework [10], that combines the speed of a customized
FPGA based rule-processing engine with the flexibility of
a software based controller, as shown in Figure-3(a). By
combining the speed with flexibility, the BURAQ framework
envisions an online measurement framework that processes
streaming network packets in real-time. We next present
an overview of the system and study in its context the var-
ious constraints and challenges that are faced in an online
measurement framework.

5.1 Rule Processing Data-Plane
BURAQ’s data-plane is a custom architecture on an FPGA

unit that combines a rule processing unit, the Data-Engine,
with associated synchronization and data transfer logic. The
Data-Engine itself is composed of a number of parallel rule
processing units, dubbed as sockets, that are arranged simi-
lar to a systolic array as shown in Figure-3(a). The sockets
are programmable rule matching units that are optimized to
match the programmed rules and count the size of streaming
network packets, independently and concurrently, in real-
time. However, unlike the systolic arrays, the sockets pass
on their results only to the next socket in a chain. These
results from parallel chains in the Data-Engine are collected
by the associated logic and communicated to higher control
and analysis layers for further processing.

A high level depiction of a socket that can process two
tuple {sip, dip} rule is shown in Figure-3(b). The socket is
composed of an array of Look-up-Tables (LUTs) that map
the rules in the form of Boolean bit-vectors. As new rules
get generated on-the-fly during algorithmic iterations, the
LUTs are reprogrammed with updated Boolean bit-vectors
corresponding to the new rules. One of the core features
of the BURAQ framework is its novel use of fine grained
Partial Dynamic Reconfiguration (PDR) of FPGA fabric
in (re)programming the LUTs. The PDR programming
paradigm does away with traditional just-in-time compila-
tion of FPGA configuration data, a highly latency intensive
operation. Instead, the socket (re)programming is based on
minute logic changes involving specific LUTs whose entries
are dynamically and directly updated in the FPGA’s config-
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(b) Dynamically Reconfigurable Socket

Figure 3: BURAQ Measurement Platform [10]

uration memory. The dynamic nature of the PDR implies
that only the operation of the LUT being (re)programmed
is effected while the rest of the design operates as usual. We
refer the interested reader to [10] for the details of the socket
and its (re)programming paradigm.

5.2 Control & Analysis Front-End
The BURAQ’s Control and Analysis Front-End is where

user programs the high-level formulation of the measure-
ment requirements. It incorporates a Dynamic Rule Syn-
thesizer that translates the user requirements into socket
deployable Boolean bit-vectors. The synthesizer also works
in closed-loop with the measurements reported by the data-
plane and a Response-Evaluation Engine in automating the
exploration of the vast search space. It is the response-
evaluation engine where the discussed streaming algorithms
provide the streaming automation. The response evaluation
engine analyzes the intermediate results from the back-end
in assisting the dynamic synthesis of intermediate rules on-
the-fly. The controller also maps the synthesized rules at the
sockets using Hardware Resource Manager that performs a
resource aware rule deployment at the data-plane.

5.3 Practical Constraints
Any rule-processing solution is constrained with a num-

ber of computational and communication constraints. A
core constraint is the availability of computational resources
for rule-processing. As rule-set grows, digging deeper in the
vast n-tuple search space, it puts additional computing chal-
lenges on the limited resources. The standard practice is to
pipeline, or roll-over, the additional rules, over the limited
resources in multiple steps. Such a rule-pipelining increases
the overall latency in yielding the final answer. For instance,
in a platform employing N parallel rule-processing units, it
takes ceil(N/|R|) measurement cycles (each having measure-
ment interval δ) for processing a rule-set of size |R| in any
given algorithmic iteration.
The active rule-sets may generally not be an integer mul-

tiple of N , and therefore there may exist available rule-
processing resources in the last measurement cycles during
certain algorithmic iterations. In practice, the controller can
maximize the resource utilization by simultaneously map-
ping new rules for successive measurement phases while a

portion of last rule-set is also active. However, it makes the
design and analysis of an algorithm quite cumbersome. For
simplicity, we therefore detach the rule-sets in discrete mea-
surement cycles by assuming the controller only adapts new
rules once a given rule-set is completely processed. We refer
to such a controller implementation as blocking.

The synthesis of rules, deployment and collection of their
results from the computing platform involve finite latencies,
during which streaming packets may miss observation. We
aggregate the above latencies together as reprogramming la-
tency, denoted by ǫ. The BURAQ platform uses PDR to
maximize the FPGA utilization in increasing the number
of rule-processing sockets. A higher rule-processing oppor-
tunity reduces the pipelining effects, however the downside
of PDR is a slight increase in reprogramming latencies as
compared to a static solution [11]. Both rule pipelining and
reprogramming latencies effect accuracy of reported results.
We here discuss some accuracy measures for the Flow and
Directed Momentum Algorithms with a more detailed ana-
lytical analysis discussed in the Appendix.

Theorem 1. (Measurement Accuracy) If dni represents Dir-
Mom in an algorithmic iteration j, then the Measurement

Accuracy is given by δ/(
∑n

j=1

⌈

N
|Rj |

⌉

(δ+ ǫ).dni ), where dji =

1 for Flow Momentum and |Rj | represents the size of rule-
set in algorithmic iteration j.

Proof. For the measurement to be accurate, the ob-
served measurements should match with ideal measurements.
If E[αj

i ] and E[βj
i ] represent expected values for observed

and ideal measurements in an algorithmic iteration j for
Flow or Directed Momentum algorithms, then for the sys-
tem to be accurate

Measurement Accuracy = E[αj
i ]/E[βj

i ] ≤ 1

Equating the expressions for the expected values as de-
scribed in Appendix leads to the desired result.

Corollary 1. The Measurement Accuracy is less than 1 in
a blocking measurement system.

In a blocking implementation, the reprogramming (ǫ), and
observation (δ) latencies do not overlap in time. This is to



say that the controller only adapts new rules at fixed time
durations, rather than reading and reprogramming the sock-
ets at different times to spread the load. In other words, the
measurement and reprogramming phases are sequentially
chained in blocking implementation, thereby leading to the
above observation.
The system’s accuracy in detecting streaming anomalies

is not only a function of platform’s measurement inaccu-
racies but also to the algorithmic inaccuracies. The algo-
rithmic inaccuracies occur due to various abstractions that
limit the complexity of the problem; for instance the finite
measurement intervals that are iteratively processed. Such
inaccuracies lead to possibilities of false positives and false
negatives during the anomaly detection process. We discuss
these possibilities in more detail and provide mathematical
bounds to the presence of false alarms for heavy flow identi-
fication in the Appendix. The bounds provide tuning knobs
for a user to fine-tune the system’s accuracy and latency,
given any platform and network conditions.

5.4 Cross-cutting Issues
Theorem-1 may appear to suggest that the Dir-Mom has a

strictly inverse relationship with the system accuracy, lead-
ing to a conclusion that FM algorithm must always have su-
perior accuracy than the DM algorithm. However, Dir-Mom
also influences the rule-set size, that has its own effect on the
system accuracy. As earlier stated, a rule-set that is larger
than the available processing resources will have to be rolled
over the platform’s limited resources in successive measure-
ment intervals. The rolling process leads to measurement
disentanglement between the parent and the children rule-
sets. Such a disentanglement reduces system accuracy and

is represented by the factor
⌈

N
|R|

⌉

in the above equation.

Increasing Dir-Mom reduces the effect of the measurement
disentanglement, through reduction in rule-set size, and as
such can positively influence system accuracy. On the other
hand, a very high Dir-Mom can also be counter-productive,

as the factor
⌈

N
|R|

⌉

is bounded by the minimum value of 1.

A balanced Dir-Mom is therefore essential in maximally uti-
lizing system resources. We will discuss the issue more when
we discuss the results in the next section.

6. EMPIRICAL EVALUATION
The experiments are performed using a PC based work-

station on Intel Core i7 Q740 Quad-core processor running
at 1.73-GHz and having 4 GB memory. The BURAQ’s
rule-processing engine is mapped on a Xilinx Virtex-II Pro
FPGA, XCV2VP30, running at 100-MHz, and employing
N = 169 parallel sockets. The rule composition and re-
sults analysis is performed at the PC based controller, that
is connected with the processing-engine over Ethernet. The
complete system setup is shown in Figure-3(a).
We evaluate the proposed algorithms by injecting varying

degrees of anomalies in CAIDA Backscatter data traces [2].
The anomalies piggyback the random trace data, and there-
fore, inherit real life data variations. We inserted 10 ran-
dom heavy-hitter flows contributing from 0.5% to 1.4% of
the total traffic in the trace. We used heavy-hitter threshold
value θ to be 1%. As such, the inserted flows split evenly
between true and false heavy-hitters around the threshold
value, thereby producing edge test cases for evaluating the
algorithms.

We also periodically inject new algorithmic seeds that
have the effect of starting fresh algorithmic threads while
the previous ones are active. This is done to capture new
network conditions that may have been missed being cap-
tured by the previous threads. The rules produced by the
threads are merged to avoid rule repetition.

We define a parameter Score to quantify the progress of
MRT in identifying the inserted anomalies. Mathematically,

Score =

∑

max|Ri|
∑

|Hi|

where |Ri| represents the size, or expansion granularity,
of the rule, Ri, in an MRT iteration that matches Heavy-
Hitter, Hi. As there could be a number of rules of various
sizes that match a heavy-hitter in any given algorithmic it-
eration, we only take into account the maximally matching
rule or the rule with the highest number of matching bits
with the heavy-hitter. The parameter thus represents the
degree by which the algorithm has correctly (true-score) or
incorrectly (false-score) identified the inserted true (false)
elephant flows, with the maximum value 1 meaning all the
inserted flows being completely identified.

6.1 Streaming Algorithms Analysis
The progression of True-Score (TS) with algorithmic iter-

ations for the presented algorithms is shown in Figure-4. We
also combine presented algorithms in various combinations
as shown in the figure. It can be seen that the MRT per-
forms quite poorly. As discussed in Section-3, this is due to
the bursty nature of the streaming traffic where a rule falls
off the rule-set if it could not consistently meet the MRT
threshold condition, only to start all over again. The Roll-
back improvement avoids such resets by rolling an expanded
rule back to its parent if it falls below the threshold, thereby
showing TS improvement in the results. However, the bursty
nature of the traffic means that the algorithm keeps fluctuat-
ing between the rollback and expansion phases, thus settling
up with a sub-1 steady state score. The difficulties in isola-
tion of the anomalous flows are addressed by the Momentum
type algorithms that only saturate with the unit-score, that
is, after identification of all the induced heavy-hitter flows.
The results also show that the two Momentum type algo-
rithms differ only slightly with respect to the algorithmic
iterations in achieving the unity score.

The variation of rule-set size with algorithmic iterations
for the proposed algorithms is given in Figure-5. As ex-
pected, the rule-set size for MRT is is seen to be suffering
from frequent resets, corresponding to its difficulty in iso-
lating the intermittent anomalies. Similarly, the ER algo-
rithm is seen to be fluctuating around a steady state rule-
set size, corresponding to its fluctuations in between the
expansion and rollback phases. The inability of Rollback to
consistently pursue a flow down to its unique identifiers is
taken care of in Momentum type algorithms. The four vari-
ations of Momentum type algorithms do show nearly iden-
tical amounts of accuracies. However, they vary in the cost
they require in terms of the rule-set size. The higher accu-
racies of FM and FM with ER can be seen to be tied with
the steady increase in rule-set size. A bigger rule-set size
has its consequences on the algorithm’s convergence time
that we will discuss shortly. The DM algorithm shows its
efficacy in maintaining a steady rule-set size, while main-
taining high accuracies. It therefore serves its purpose of a
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Figure 4: True Score progression with algorithmic iterations
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Figure 5: Rule Set Size with algorithmic iterations
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Figure 7: False Score progression with algorithmic iterations

more focused or directed search, by expiring the rules that
are less relevant to the anomaly. A combination of DM with
ER (DM+ER) also shows similar steady state rule-size con-
vergence, albeit with a higher bias. This is because the rules
that are discarded by DM are now being caught in the Roll-
back catch-net. However, it is to be noted that this does
not yield any improvement in TS, thus confirming the fact
that the rules being discarded were indeed less relevant to
the search process.
The latency in finding an anomaly using the streaming al-

gorithms is a direct function of rule-set size. Figure-6 plots
the progression of the presented algorithms with respect to
their latencies. It is interesting to note that although the
streaming algorithms perform quite uniformly with respect
to algorithmic iterations, their differences get pronounced
when algorithmic time is taken into account. It can be
seen that DM outperforms all other streaming algorithms
in anomaly detection latency, thanks to its ability in filter-
ing out most relevant rule-set.
We also present variations in False-Score (FS) with algo-

rithmic iterations in Figure-7. It is to be noted that the
variations only show that the algorithms have filtered down
to certain rules that match the induced false heavy-hitters
with varying degrees. However, a FS value does not mean
that some of the induced flows have been completely iden-
tified. Indeed, in our experiments, none of the false heavy-
hitters ever got detected. This implies that although we

have a False-Score, our algorithms never produced a false-
positive. We note that the FS generally follows the varia-
tions in rule-set sizes. Such variations further highlight the
fact that the FS is a by-product of rules that have randomly
matching granularities with the induced false heavy-hitters,
rather than an actual algorithmic progression towards the
false flows. It is also to be noted that although we do not
empirically have a false-positive, there is still a small but
finite probability of false-positive. These probabilities are
discussed in the Appendix.

The results yield an interesting observation that in a prac-
tical system, the efficiency of an anomalous flow detection
may not necessarily be improved by increasing the rule-set
size. In contrast, an intelligent search directed towards the
most reliable leads can produce equivalent amount of accu-
racies while reducing the detection latency. The notion of
’intelligence’ is of course application dependent and how ef-
ficiently it can be translated into a representative capture
function. The results demonstrate significant gains that can
be achieved.

6.2 Zoom Ratio
The Zoom (or Expansion) Ratio (ZR), has conventionally

been associated with the speed of parsing through the search
space. Conceptually, a higher ZR translates into quicker
drilling down to higher granularities, and therefore should
accelerate the isolation of an anomaly. We hereby investi-
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Figure 9: Variation of ZR with Flow Momentum

gate such a relation of the ZR using the realistic BURAQ
measurement system.
Figure-8 shows the latencies in isolating the five anoma-

lous heavy flows with increasing ZRs using the DM algo-
rithm. The results, to our surprise, indicate that on a prac-
tical measurement system, the ZR actually demonstrate an
inverse relationship with the detection latencies. A closer in-
spection reveals some interesting characteristics of the stream-
ing algorithms. We note that the higher ZRs translate into
an increased zoom granularity of the tracked rules (sub-
regions). However, generally a network is mostly anomalous
free and as such, the increased amounts of inspections with
the higher ZRs translate into tracking sub-regions that do
not contribute in isolation of the anomalies. In practical
terms, this means allocation of higher number of resources
to non-interesting rules/regions, and thereby lowering the
overall detection latency. Thus although the higher ZRs re-
duce the number of iterations (not shown), in practice such
a reduction in the algorithmic length may not translate into
a better timing closure in isolating anomalies.
The results also reveal another interesting observation:

that with higher ZRs, the DM exhibits difficulty in preserv-
ing a continuous true-score progression. This can be ob-
served in the brief plateaus and dips in the TS. The reason
being the nature of algorithm, where it aggressively tries to
offset the rapid increase in the rule-set size due to the higher
ZRs. Since the algorithm is designed to favor delving down
the hierarchy, the algorithmic pull to counter the increase
falls on the old nodes, during which some of good nodes
also end up being discarded by the algorithm, resulting in
the loss of the momentum, or TS. However, such a problem
can be quickly resolved by adjustments in the algorithmic
Stretch parameter, giving increased leniency with increasing
ZRs.
One might argue that the characteristics of the DM al-

gorithm could have played a stronger role in the inverse re-
lationship exhibited by the ZRs with the detection latency.
We further investigate this claim by experimenting using the
FM algorithm that does not have any algorithmic pulls as-
sociated with the rule-set size. The latencies so obtained
are plotted in Figure-9. The plots show that the inverse
relationship generally holds true, with a singular exception
while increasing ZR from 2 to 4. The reason for the special
case lies in a combination of several factors, most notably in

the relatively smaller overheads in the rule-set size while go-
ing to ZR 4. We therefore argue that in a practical system,
one needs to keep the ZRs small by taking into account the
available computational resources.

6.3 Latency Analysis
We also discuss the various latencies involved in the mea-

surement framework. A pie-chart depicting the distribu-
tion of various latencies on the BURAQ framework is shown
in Figure-10. Though the chart employs DM algorithm,
the presented distribution is observed to be quite consistent
across the proposed streaming solutions.

It can be seen that the major chunk of the latencies is the
communication latency, which is an aggregation of the de-
lays associated with transferring the sockets’ statistics and
(re)programming bit-vectors across the Ethernet. The ac-
tual latency involving collecting the rules’ statistics, the
statistics collection latency, comes up at the second spot.
The third major chunk, the rule deployment latency, is made
out of delays involved in (re)programming of the sockets for
deployment of new rules. Finally, the actual delays involv-
ing the rules’ evaluation and synthesis at the algorithmic
layers is seen to be taking up only 1% in the total latency
distribution.

As discussed earlier, the BURAQ framework employs fine
grained PDR for (re)programming the LUTs. The novel
PDR based mechanism does away with slow just-in-time
compilation of FPGA programming data. Instead, by per-
forming minute changes directly in the FPGA’s configura-
tion memory corresponding to the LUTs being (re)prog-
rammed, the mechanism takes only takes up 90µs for (re)pro-
gramming a single LUT, or equivalently 1.8ms for the com-
plete socket composed of 20 (re)programmable LUTs [10].
This latency is seen to be contributing 15% in the total sim-
ulation delays.

The above latencies can be sub-divided into algorithmic
and platform-specific latencies. In particular, the rule syn-
thesis and statistics collection are functions of the algorithm
whereas the other two are by-products of the platform. The
algorithmic latencies are interesting to us as they relate to
the actual computation cost of the proposed streaming so-
lutions.

For our simulations, we chose a statistics collection win-
dow size of 1s per iteration. The choice has been based on
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the amount of data we expected to gather during the collec-
tion window. A rule of thumb is that the collection window
should be wide enough for capturing enough statistics. In
other words, the collection latency is an inverse function of
line-speed, and as such can be re-adjusted (and possibly re-
duced) depending on the framework’s deployment.
The above discussion leads us in identifying the base cost

of our streaming algorithms, the rule analysis and synthe-
sis latency. The base cost relates the discussed algorithmic
complexities in empirical figures and compares them with
the overall latencies of the BURAQ’s closed-loop measure-
ment framework. It can be noticed that the base cost of the
presented streaming solutions is quite minimal. In practi-
cal terms, this implies that there will be fewer packets that
will miss inspection during rule evaluation and synthesis,
thereby increasing the confidence in reported results.

6.4 Resource Constraints
We finally explore the effects of different amount of com-

puting resources on the streaming solution incorporating the
blocking controller as discussed in Section-5. The results are
however orthogonal to the relative efficiencies of the stream-
ing algorithms and are only presented to highlight the in-
terplay of blocking implementation on the overall system
performance.
We use DM algorithm on BURAQ system incorporat-

ing different amounts of rule-processing sockets. The re-
sults so obtained are shown in Figure-11. As expected,
higher computational resources yield better timing closure
to the anomalies, as they tend to reduce the need for rule-
pipelining. However, the returns are seen to be un-propor-
tional to the increase in computational budget. This is be-
cause of the blocking implementation of the controller that
trades-off controller complexity with an underutilization of
computational resources in certain algorithmic iterations as
discussed earlier. The results thus demonstrate the effects
of the trade-off over the performance of the streaming solu-
tions.

7. CONCLUSION
The work addressed the challenges in closed-loop stream-

ing measurements and analysis in today’s high speed and
complex networks. In particular, we addressed the issues

in tracking down anomalous flows within a desired accuracy
and latency, in a given resource budget. The work presented
three streaming algorithms and integrated them with BU-
RAQ measurement platform. We discussed their relative
efficiencies with a recently proposed MRT algorithm. Our
algorithms showed increased effectiveness, with two of the
algorithms demonstrating a marked 100% accuracy increase
from the MRT in isolating heavy-flows. We also presented
mathematical bounds to the system accuracy while integrat-
ing the FM and DM algorithms in a practical measurement
system.

The proposed algorithms offer parameterizable solutions
in the wide spectrum of design choices involving available
computing and storage resources, detection latencies, accu-
racy, and user’s knowledge of the desired anomaly. The pro-
posed ER and FM algorithms are suitable where detailed
information about the anomalous behavior and computa-
tional platform is not available. The algorithms trade com-
putational complexity with storage costs and detection la-
tencies, with FM offering increased accuracy. The DM al-
gorithm showcases superior accuracy and detection latency
while employing minimal resources, making it an ideal can-
didate in scenarios where exceeding the available resources is
prohibitive and/or increased characterization of an anomaly
is possible.
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APPENDIX

A. ANALYTICAL ANALYSIS
The closed-loop measurement system utilizes snapshots of

the streaming data in coming up with an answer to the user-
query. In a realistic system, these snapshots may differ with
the actual traffic due to measurement inaccuracies, incur-
ring inaccuracies in the final answer. Moreover, the iterative
closed-loop measurement paradigm itself induces inaccura-
cies as any local decision taken in any given iterative step
effects the subsequent search process and consequentially
the system’s answer to the user-query. We hereby model
these inaccuracies and discuss the upper bounds in obtaining
false alarms when given any network condition and system

resource budget while using FM and DM algorithms. Let,
fi represents flowset i.
|f t

i | and |F t
i | represent the measured and actual size for

the flowset i in an iteration t.
δ: is sampling time during which incoming stream can be

observed
ǫ: is configuration time during which incoming stream

cannot be observed.
θ: represents threshold for elephant flows defined in terms

of link usage.
N : represents the number of rule-processing resources.
|Rn|: represents the size of the rule-set in any given algo-

rithmic iteration n.
λ: represents the link bandwidth (bits/second).
λn
i : represents the arrival rate for the flowset fi in itera-

tion n (bits/second). Thus,

λ = λ1
i ≤ λ2

i ≤ λn
i

αn
i and E[αn

i ]: the observed and expected momentum for
flowset fi in an algorithmic iteration n under limited obser-
vation window.

αn
i =

n
∑

j=1

|f j
i |/(n.d

n
i )

E[αn
i ] =

∑n
j=1 λ

j
i δ

n.dni
= µαn

i

where dni represents the directed momentum (Dir-Mom)
for fi in iteration n and is given as

dni =

{

expPull∗fi.Static/fi.Granularity for Directed Momentum

1 for Flow Momentum

βn
i andE[βn

i ]: the actual and expected momentum for flowset
fi in an algorithmic iteration n under ideal measurement
conditions.

βn
i =

n
∑

j=1

⌈

N

|Rj |

⌉

|F j
i |/n

E[βn
i ] =

∑n
j=1

⌈

N
|Rj |

⌉

λj
i (δ + ǫ)

n
= µβn

i

Note that the multiplicative term
⌈

N
|Rj |

⌉

accounts for rule

pipelining on limited resources in any given algorithmic it-
eration j.

τn represents the threshold for the observed momentum
to be classified as a heavy-flow in an iteration n

τn = θ ∗ λ ∗ δ

We define two constants as follows

cαn
i

=
τn
µαn

i

=
n.dni θλ
∑n

j=1 λ
j
i

≤ 1

cβn
i

=
τn
µβn

i

=
nδθλ

∑n
j=1

⌈

N
|Rj |

⌉

λj
i (δ + ǫ)

≤ 1

We assume the incoming stream as having Poisson distri-
bution.



A.1 False Negative
A false negative is the probability of an incorrect absence

of an alarm in an iteration, that is, it is the probability
that the absence of an alarm in an algorithmic iteration t is
incorrect given that there is no alarm in iteration t.
A false negative can occur in an iteration t when if fi that

can be classified as a heavy flow in iteration t is dropped at
an earlier iteration j. This could happen

• when fi falls below the threshold in iteration j due to
measurement inaccuracies but it is heavy in iteration t.
The probability of this happening is P (αj

i < τ)P (βj
i ≥

τ)P (βt
i ≥ τ).

• when fi actually falls below the threshold in iteration
j and it is heavy in iteration t. The probability of for
this can be given as P (αj

i < τ)P (βj
i < τ)P (βt

i ≥ τ).

The latter implies that there is a resurgence in the flowset
activity such that it becomes heavy in iteration t.
If P t

n represents probability of false negative in iteration
t, then combining the above we have

P t
n =

∑t
j=1 P (αj

i < τ)P (βt
i ≥ τ)

P (αt
i < τ)

=

∑t
j=1 P (αj

i < c
α
j
i
µ
α
j
i
)[1− P (βt

i < cβt
i
µβt

i
)]

P (αt
i < cαt

i
µαt

i
)

Applying Chernoff bound, we have

P t
n <

t
∑

j=1

[e
−(µ

α
j
i

−τ)2/2µ
α
j
i

+(µ
αt
i
−τ)2/2µ

αt
i ] ∗

[1− e
−(µ

βt
i
−τ)2/2µ

βt
i ]

Let

kj = µ
α
j
i
/µαt

i
≥ 1

Then

P t
n <

t
∑

j=1

[e
− 1

2µ
αt
i

{(µ
α
j
i

−τ)2+kj(µαt
i
−τ)2

] ∗

[1− e
−(µ

βt
i
−τ)2/2µ

βt
i ]

It is to be noted that µ
α
j
i
≥ µαt

i
≥ τ for j ≥ t, as well

as µβt
i
≥ τ . The above inequality shows that probability

for false negative increases with increase in parameters that
uniquely influence threshold and configuration times (θ, λ
and ǫ), while it has an inverse relationship with parameters
that dictate the amount of data that can be observed in an
algorithmic iteration (λn

i and δ).

A.2 False Positive
A false positive is the probability of an incorrect presence

of an alarm, that is, it is the probability that an alarm in
an algorithmic iteration t is incorrect, given that there is an
alarm in iteration t.
For an alarm to happen in iteration t, fi has to consis-

tently meet the threshold requirements in all iterations j ≤ t.
The alarm will be an incorrect alarm if βt

i < τ but αt
i ≥ τ .

If P t
p represents the probability of false positive in itera-

tion t, then using the above discussion we have

P t
p =

∏t
j=1 P (αj

i ≥ τ)P (βt
i < τ)

P (αt
i ≥ τ)

=

∏t−1
j=1 P (αj

i ≥ τ)P (αt
i ≥ τ)P (βt

i < τ)

P (αt
i ≥ τ)

=

t−1
∏

j=1

P (αj
i ≥ τ)P (βt

i < τ)

=

t−1
∏

j=1

[1− P (αj
i < c

α
j
i
µ
α
j
i
)]P (βt

i < cβt
i
µβt

i
)

Applying Chernoff Bound, we have

P t
p <

t−1
∏

j=1

[1− e
−(µ

α
j
i

−τ)2/2µ
αt
i ][e

−(µ
βt
i
−τ)2/2µ

βt
i ]

The above inequality shows that the probability for false
positive can be positively influenced by increasing param-
eters that increase the size of the observed sample (λn

i , δ),
while it gets negatively influenced by increasing parameters
that uniquely effect threshold and configuration times (θ,
λ and ǫ). The observation is similar to that for false neg-
ative, although the influence of the various parameters on
false positive scales differently that can be bounded using
the above expression.


