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Abstract—Detection and diagnosis of failures in wireless net-
works is of crucial importance. It is also a very challenging
task, given the myriad of problems that plague present day
wireless networks. A host of issues such as software bugs,
hardware failures, and environmental factors, can cause per-
formance degradations in wireless networks. As part of this
study, we propose a new approach for diagnosing performance
degradations in wireless networks, based on the concept of “fault
signatures”. Our goal is to construct signatures for known faults
in wireless networks and utilize these to identify particular faults.
Via preliminary experiments, we show how these signatures
can be generated and how they can help us in diagnosing
network faults and distinguishing them from legitimate network
events. Unlike most previous approaches, our scheme allows us
to identify the root cause of the fault by capturing the state of
the network parameters during the occurrence of the fault.

I. INTRODUCTION

Wireless networks have become increasingly prevalent over
the last few years and are being widely deployed across
universities and enterprises ( [1] [2]). Administrators of these
networks have to deal with a variety of changes such as
variation in topology, changing user behavior, and others, that
can impact network performance. The fact that communication
networks have become critical in today’s world calls for an
efficient mechanism that can help in the smooth functioning
of the network. In the case of wireless networks, this problem
is even more acute as environmental factors also become a
critical component along with the above mentioned issues.
It is extremely important to be able to detect and diagnose
problems correctly, and quickly, in order to minimize their
impact on the end users’ performance.

Several tools exist in order to troubleshoot present day
wireless networks. However, a major drawback of the existing
tools is that they are unable to distinguish between the root
causes of various performance degradations. This happens
because these tools tend to consider higher layer parameters
such as traffic load, delay, and packet loss as indicators of
network health. These metrics tend to aggregate the variations
of multiple MAC and physical layer parameters such as re-
transmissions, signal strength, noise floor, and modulation
rate. As a result, even though a performance degradation is
detected, the cause of the fault is often misdiagnosed, or in

some cases not even identified.
In this work, we propose the idea of constructing signatures

for commonly occurring faults in wireless networks. The
basic premise of our work is that these faults will mani-
fest themselves as performance degradations. Our goal is to
model these performance degradations as network anomalies
and use a signature-based anomaly detection scheme for
identifying network faults. We propose to build a statistical
model of “normal” network performance and identify network
anomalies as events where network performance deviates from
this normal behavior. We also propose to construct unique
“fault signatures” for commonly occurring faults in wireless
networks. In particular, by analyzing individual faults, we can
learn how these faults result in anomalous behavior for certain
network parameters, while not impacting other parameters.
This characterization of network faults can potentially be
used to distinguish one fault from another. By comparing
the current network state against the fault signatures, we can
detect the presence of these faults in the network and analyze
their root cause. The key contributions of our work are:

• As our first contribution, we show how existing network
diagnosis tools may misdiagnose performance degrada-
tions in wireless networks, or even confuse them with
legitimate network events. We further identify different
network parameters from multiple protocol layers and show
why it is necessary to follow a cross-layer approach to address
this problem.
• As our second contribution, we explore the idea of
constructing signatures for some commonly occurring
faults in wireless networks. We simulate these faults by
purposefully injecting them into our laboratory testbed and
collect statistics both during the normal functioning of the
network and when the faults are introduced. By capturing the
state of the network parameters during the occurrence of the
faults, we are able to build unique signatures that can help us
distinguish one fault from another.
• As our third contribution, we introduce a scheme for
network diagnosis, based on the concept of fault signa-
tures. We show how we can statistically model the network’s
performance as normal and anomalous. By abstracting out



the state of the network parameters, we create a template
for the normal behavior of the network, which will capture
the time-varying nature of the network. By matching this
performance template against the fault signatures, we can
detect the occurrence of a network fault, diagnose its cause,
and differentiate it from legitimate changes in the network
environment.

Paper Outline. Section II outlines some of the previous
work, along with the motivation behind our work. In Sec-
tion III we describe how to abstract the normal behavior of
the network and classify data points as normal or anomalous.
Section IV outlines the process of generating fault signatures.
In Section V, we conclude the paper by discussing the
challenges and future work.

II. RELATED WORK & MOTIVATION

Detection and diagnosis of faults in wireless networks
remains an open issue. Previously proposed solutions for
troubleshooting wireless networks can be primarily classified
into two categories. The first one involves using active mea-
surements for detecting faulty links ( [3] [4] [5]). However,
such schemes focus only on detecting lossy links, and not
performance degradations in general. Moreover, they intro-
duce extra overheads in the wireless network. The second
class of works are based on the idea of using passive wireless
sniffers. Traces from several sniffers are merged together to
build a complete picture of the network that is used for
network troubleshooting ( [6] [7] [8]). The problem with
such approaches is that they require dedicated monitoring
agents to be deployed in the network and only provide off-
line troubleshooting. Moreover, the problem of collecting and
merging traces from several different sniffers is not trivial and
requires tight synchronization among the sniffers. There has
also been some previous work on generating signatures for
IEEE 802.11 networks. However, these works have either fo-
cussed on fingerprinting wireless radios and device drivers [9],
or on how to uniquely identify a wireless network user [10].

In the area of signature-based anomaly detection, several
previous works have focussed on wireless networks. These
works have used both machine-learning based and time-
series analysis based techniques for anomaly detection ( [11]
[12] [13] [14]). However, the primary focus of these works
has been on detecting security attacks (such as DDoS and
wormhole attacks), and not performance degradations and
failures.

The work that is closest to ours appears in [15]. In this
work, the authors have proposed analyzing physical layer
parameters such as signal strength and noise floor in order to
differentiate between faults such as hidden terminal and packet
capture. However, the authors focus only on the physical
layer parameters (and subsequently only on faults that can
be detected by these parameters) and do not utilize the infor-
mation available at the link layer. Variations in physical layer
parameters do not necessarily reflect the state of the link layer
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Fig. 1. Impact of two different scenarios on user throughput. Scenario 2
corresponds to an actual fault, while scenario 1 simply involves a new client
being added into the network.

parameters, as contended by the authors. Our work focusses
on a far broader range of performance degradations, while
utilizing information from across the protocol stack. Another
related piece of work appears in [16]. Here, the authors
propose using fault feature vectors for detecting specific faults
in Ethernet networks, while our goal is to develop signatures
for faults that occur in wireless networks.

A. Fault Misdiagnosis

A major short coming of most previous approaches is that
they are unable to diagnose the root cause of the network
failure. In several instances, these tools may even misdiag-
nose legitimate network events as performance degradations.
Legitimate changes in the network (changing user profiles,
launching of new applications and others) can also cause the
network to depart from its normal behavior, thereby making
it appear as if a fault has occurred. In order to illustrate
this problem, consider the two plots in Figure 1. These plots
show a snapshot of our wireless network while a file transfer
operation was being performed between two nodes. During
the time period from 150 to 250 seconds, we can see how the
sender’s throughput is adversely impacted for the two different
scenarios. While scenario 2 in the figure represents a genuine
fault occurring in the network (we moved the destination node
farther away from the source node resulting in reduced link
quality), the first scenario only involves a new client being
introduced in the network for that time period (a legitimate
network event). Hence, in order to be able to distinguish
between such scenarios, we need to consider a variety of
network metrics from different protocol layers.

III. METHODOLOGY

Our basic premise is that network faults will result in
performance degradation and will cause the network to deviate
from its normal behavior. This deviation in the network’s
behavior can be used to identify potential anomalies. However,
we also need to take into account the time varying nature of
the network status. Network usage will vary as user profiles
change over time and network components are added or
removed. Hence, in order to be able to correctly diagnose
the network, it is crucial that our fault detection system
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Fig. 2. The scatter plot shows the raw throughput data for a particular link
in the wireless network. The line plots show the smoothed data that can serve
as the template for normal network behavior.

adapts itself to these changes in the network environment.
Our scheme involves learning the normal behavior of the
network via continued observation, and classifying future
events and observations as normal or anomalous based on
past experiences.

A. Smoothing Raw Data

The scatter plot in Figure 2 shows the raw throughput
data for one link on our testbed. As can be seen, there is
considerable variation over time, along with several outliers.
For the purpose of generating a template to represent the
“normal” behavior of the network, we need to capture the
general trend or pattern in the data, while diminishing the
impact of outliers. At the same time, we need to avoid over-
smoothing the data and missing significant fluctuations. In
order to achieve this, we evaluated two different techniques.
In LPR, we pass our data through multiple steps of smoothing,
involving adjacent averaging and local polynomial regression.
In FFT, we employ a FFT-based filter to smooth the data.
Both techniques gave fairly similar results, and we use the
LPR technique for rest of the evaluation.

Once the data has been smoothed, it can be integrated into
the current network template by using techniques such as
exponential smoothing. Exponential smoothing can help us
incorporate the effects of persistent events into the template,
while diminishing the impact of temporary variations in
network performance. The rate at which the template adapts
itself to change will be determined by the smoothing constant,
whose value will depend upon the target network and how
stable or dynamic the network is.

B. Fault Detection

We propose a fault detection system wherein the network’s
performance is classified into “normal” and “anomalous” by
performing statistical analysis. Moreover, if the performance
is deemed anomalous, we can classify as to how anomalous it
is. In order to achieve this, we first need to define performance
thresholds which will decide whether a data point is normal or
anomalous. Currently, we use the third and the sixth standard
deviations as our performance thresholds, as they have been
commonly used in the area of statistical quality control in
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Fig. 3. The line plots show a snapshot of the normal performance template
for network load along with the lower 3rd and 6th standard deviations. The
scatter plot shows the raw data for the same time period for a different day.

the past ( [17]). The performance is deemed as normal (and
assigned a score of ‘0’) if it is within the upper and lower
third standard deviations. All data points between the third
and the sixth standard deviations are given a score of 1
or -1 depending on whether they are above or below the
average. Similarly, all data points beyond the sixth standard
deviation are given a score of ‘2’ or ‘-2’ (above or below the
average). At any given instant of time, the state of the network
parameters would constitute what we call the performance
template of the network, which will help us to represent the
network’s behavior in a compact manner.

To highlight this with an example, consider the plot in
Figure 3. Here we show a snapshot of the normal network
behavior in terms of network load on a particular link. The
line plots show the average load along with the lower third
and sixth standard deviations (the upper thresholds are not
shown for clarity). The scatter plot shows the raw load data
on the same link, for the same time period on a different
day. Our fault detection scheme would mark the points that
fall below or above the performance thresholds as anomalous
and assign them the respective scores. All the points within
the acceptable range would be deemed as normal and get a
value of ‘0’. A series of digressions outside the threshold can
indicate a potential fault, thereby helping us in identifying any
potential performance degradations in the network.

IV. GENERATING FAULT SIGNATURES

The main idea behind our work is to construct signatures
for various network faults and use them to identify when that
particular fault occurs in the network. In order to construct
these signatures, we use our laboratory testbed and purpose-
fully inject these faults into the network. We collect data traces
and then analyze them in order to observe any patterns that
might be visible. Once we can construct individual signatures
for various faults, we can match them against the network
performance template and use it for fault detection.

A. Evaluation Methodology

We generated signatures for the following four scenarios:

• The first scenario is termed as Low Sig, denoting low
signal quality. This represents the case where receiver mobility



results in reduced signal strength at the transmitter, thereby
causing performance degradation. We simulate this fault by
moving the transmitter away from the receiver.
• The second scenario is another fault which we call Low
Power. In this case, we assume that the transmitting node uses
lower power (for power conservation or any other reason),
resulting in reduced link quality. We simulate this fault by
lowering the transmission power of the sender’s radio during
data transfer.
• The third scenario is called BSTRM and stands for Broad-
cast Storm. In this scenario, one of the nodes floods the
wireless network with broadcast ping messages resulting in
degraded network performance.
• The fourth scenario is called Int, denoting interference. This
is an example of a legitimate scenario wherein a new client
node joins the network. Due to a shared transmission medium,
this will decrease the throughput of the previously existing
node and can be mistaken as a potential network fault.

The first step towards generating fault signatures is the
selection of parameters that we intend to use for the sig-
natures. The number of parameters should neither be too
small, resulting in inaccurate fault signatures and missed
faults, nor should we include irrelevant parameters into the
fault signature. However, as was shown earlier, we need
to consider parameters from across the protocol stack in
order to accurately diagnose the root cause of the failure.
We selected six metrics and studied their variation over
time. These metrics are throughput, inter-arrival delay, frame
loss, packet count, MAC-layer re-transmissions, and received
signal strength (RSSI). The goal is to define the normal and
anomalous behavior of these metrics, both during the presence
and absence of faults in the network.

Our testbed consists of eight Linux-based devices deployed
on a single floor of a building, running the Madwifi wireless
driver. We use the tcpdump tool to capture network layer
traces of the network’s performance. These traces help us
infer metrics such as throughput and inter-arrival delay. We
further use a network monitoring tool described in [18]
to capture various physical and link layer metrics such as
RSSI, transmission rate, and link layer re-transmissions. We
purposefully inject the above mentioned faults in our testbed
during the normal functioning of our network in order to
capture the required data.

B. Signature Generation

As mentioned previously, the fault signature is an indication
of the network’s status during the occurrence of that fault. We
capture the state of various performance related parameters
during the time when the fault occurs in the network and iden-
tify which parameters manifest themselves in an anomalous
fashion. This representation of the anomalous state of each
performance parameter in the presence of the fault defines
that fault’s signature. The signature will consist of n integers
corresponding to the normal or anomalous state of the n

Time Thr. Delay Loss Pkt.
Count

Rx
RSSI

No. of
Re-Tx

15:41:26 [-2 2 2 -2 -2 1]
15:41:27 [-2 2 2 -2 -2 1]
15:41:28 [-2 2 2 -2 -2 2]
15:41:29 [-2 2 2 -2 -2 2]
15:41:30 [-2 2 2 -2 -2 2]
15:41:31 [-2 2 2 -2 -2 2]
15:41:32 [-2 1 2 -2 -2 2]
15:41:33 [-1 2 2 -1 -2 2]
15:41:34 [-2 2 1 -2 -2 1]
15:41:35 [-2 2 1 -2 -2 2]
15:41:36 [-1 2 2 -1 -2 2]
15:41:37 [-2 2 2 -2 -2 2]
15:41:38 [-2 1 2 -2 -2 2]
15:41:39 [-2 2 2 -2 -2 2]
15:41:40 [-1 2 2 -1 -2 2]

Fault
Signa-
ture

[-2 2 2 -2 -2 2]

TABLE I
GENERATING THE FAULT SIGNATURE FOR “LOW SIG”. THR. REFERS TO
THROUGHPUT, RX RSSI REFERS TO RECEIVED SIGNAL STRENGTH, AND

RE-TX REFERS TO NUMBER OF LAYER 2 RE-TRANSMISSIONS.

chosen network parameters. In our current implementation,
each parameter can take six values: ‘0’ corresponding to
normal and ‘2’, ‘1’, ‘-1’ or ‘-2’ corresponding to anomalous
(explained in the previous section). A score of X means that
the state of this parameter is irrelevant to the fault.

We will use the “Low Sig” fault to further explain how
a fault signature can be generated. Table I shows how the
fault signature for “Low Sig” can be generated using a
fifteen second snapshot of the network during which time
the fault was introduced in the network. We observed that
while some metrics assumed constant values over the time
window, the values of other parameters varied with time. We
require specific rules in order to account for such variation
in parameter values. One such rule we use is the majority
rule, wherein if the parameter retains a particular value for
a major portion of the time window (for example 80% or
more), that majority value is used as the final value. Based
on this rule, we extract the fault signature for “Low Sig” as
shown in the table. Another example of such a rule could
be that if a parameter retains values with the same sign but
different magnitude (for example -1 and -2) within the time
window (with no clear majority), we can assign the lower
magnitude value (-1 in this case). We can also assign the
value X in case none of the rules can be applied, which will
indicate that the value of this parameter is unrelated to the
fault. For example if the parameter takes all three values (1,
0, and -1) within the time window (with no clear majority),
then none of the above mentioned rules can be applied. We
utilized repeated occurrences of the same fault to optimize the
corresponding signature. For example, we simulated the “Int”



Scenario Fault Signature

Low Sig [-2 2 2 -2 -2 2]

Low Power [-2 2 2 -2 X 2]

Int [-2 2 2 -2 X X]

BSTRM [-2 2 2 0 X X]

TABLE II
FINAL FAULT SIGNATURES FOR THE FOUR SCENARIOS. THESE

SIGNATURES WERE OPTIMIZED OVER MULTIPLE SIMULATIONS OF THE
CHOSEN SCENARIOS.

scenario multiple times on our testbed and noticed that the
“No. of Re-tx” parameter did not assume any single value for a
major portion of the time window for all repetitions. Based on
these observations, we concluded that this particular parameter
does not have any relevance for the “Int” scenario and should
be assigned a value of X in the final fault signature. Table II
shows the final fault signatures for our four chosen scenarios.
We were able to generate unique signatures for the selected
faults using the chosen set of parameters. These signatures
can be matched against the network performance template
(Section III-A) in order to diagnose network faults. Similar
signatures can be generated for a wide variety of faults such
as hidden terminals, external noise, and so on. The parameter
set can also be extended to include more metrics such as
modulation rate, noise floor and others.

V. CONCLUSION & FUTURE WORK

In this work, we propose a novel technique for diagnosing
faults in wireless networks. We propose to model performance
degradations as network anomalies and use a signature-based
scheme for differentiating between various faults. We propose
the concept of “fault signatures” wherein we represent a fault
in terms of the anomalous state of various network parameters.
By capturing the variations of various network metrics during
the occurrence of these faults, we can define a unique signa-
ture for each fault. Initial results from our testbed suggest that
we can use this approach to distinguish between various faults
and can potentially utilize it for network diagnosis. Using
signatures will enable us to diagnose the network quickly, and
correctly, while maintaining low false positives. A significant
advantage of our proposed approach over previously existing
works is that it will help identify the root cause of the
performance degradation, instead of just classifying it at a
higher level. Our proposed approach also involves several
challenges that we plan to address in our future work:
• The performance template for normal network behavior
needs to evolve with time and adapt itself to changes due
to persistent events, while discarding the impact of transient
events.
• A systematic approach is required to decide which param-
eters should be included in the process of generating fault

signatures. How to optimize these signatures over repeated
occurrences of the fault is also an important problem.
• The problem of specifying rules that can help decide
whether a parameter is anomalous during the presence of
a fault, and deciding performance thresholds, also requires
further study.

As part of our future work, we plan to build a performance
anomaly detection system that utilizes the concept of fault
signatures to detect performance degradations in wireless
networks and evaluate it on our wireless testbed.
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