
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright

Author's personal copy

A novel self-learning architecture for p2p traffic classification in high
speed networks

Ram Keralapura a,*, Antonio Nucci a, Chen-Nee Chuah b

a Narus Inc., 570 Maude Ct., Sunnyvale, CA 94085, United States
b University of California, One Shields Ave, Davis, CA 95616, United States

a r t i c l e i n f o

Article history:
Received 29 May 2009
Accepted 18 October 2009
Available online 29 October 2009
Responsible Editor: Y.C. Hu

Keywords:
Traffic classifier
p2p Traffic detection
Peer-to-peer networks
Self-learning system

a b s t r a c t

The popularity of a new generation of smart peer-to-peer applications has resulted in sev-
eral new challenges for accurately classifying network traffic. In this paper, we propose a
novel two-stage p2p traffic classifier, called Self-Learning Traffic Classifier (SLTC), that can
accurately identify p2p traffic in high speed networks. The first stage classifies p2p traffic
from the rest of the network traffic, and the second stage automatically extracts application
payload signatures to accurately identify the p2p application that generated the p2p flow.
For the first stage, we propose a fast, light-weight algorithm called Time Correlation Metric
(TCM), that exploits the temporal correlation of flows to clearly separate peer-to-peer
(p2p) traffic from the rest of the traffic. Using real network traces from tier-1 ISPs that
are located in different continents, we show that the detection rate of TCM is consistently
above 95% while always keeping the false positives at 0%. For the second stage, we use the
LASER signature extraction algorithm [20] to accurately identify signatures of several
known and unknown p2p protocols with very small false positive rate (<1%). Using our pro-
totype on tier-1 ISP traces, we demonstrate that SLTC automatically learns signatures for
more than 95% of both known and unknown traffic within 3 min.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

Managing large networks involves several critical as-
pects like traffic engineering, network planning and provi-
sioning, security, billing, and fault management. The ability
of a network operator to accurately classify traffic into dif-
ferent applications (both known and unknown) directly
determines the success of many of the above network
management tasks. For example, identifying non-profit-
able peer-to-peer (p2p) traffic could help an Internet Ser-
vice Provider (ISP) in providing better quality of service
to other revenue-generating delay/loss sensitive applica-
tions. Hence it is imperative to develop traffic classification
techniques that are fast, accurate, robust, and scalable in
order to meet current and future needs of ISPs.

Over the past few years, peer-to-peer (p2p) networks
have become extremely popular for many different appli-
cations like file (audio, video, and data) sharing, live video
streaming, IP-TV, and VoIP services, among several others.
As a direct consequence of this, traffic from p2p networks
constitute the majority of today’s Internet traffic. In fact,
many studies (like [5,11]) show that over 60% of the Inter-
net traffic today comprises of p2p traffic. Hence, accurately
identifying p2p flows is an important task for network
operators.

Traditionally, ISPs have used port numbers to effectively
identify and classify network traffic. For example, TCP port
80 is HTTP traffic, TCP port 1214 is Kazaa p2p traffic, TCP
port 6346 is Gnutella p2p traffic, and so on. This approach
is extremely easy to implement and introduces very little
overhead on the traffic classifier. However, in order to cir-
cumvent detection, p2p networks have started using non-
standard ports for communication [11,15,21,19]. In other

1389-1286/$ - see front matter � 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.comnet.2009.10.009

* Corresponding author. Tel.: +1 530 219 9674; fax: +1 408 215 4301.
E-mail address: rkeralapura@narus.com (R. Keralapura).

Computer Networks 54 (2010) 1055–1068

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier .com/ locate/comnet

Author's personal copy

words, p2p networks can choose random ports or standard
ports used by other applications (like TCP port 80) to send
their traffic. These strategies at the application-level have
made port number based traffic classification inaccurate
and hence ineffective [11,19].

To address the above problems, techniques that rely on
application payload signatures were developed [13,21,19].
This approach directly compares the stored signatures to
the packets from applications to accurately classify them.
Although this approach is fast, accurate, robust, and reus-
able in different contexts (firewalls, routers, NATs, etc.), it
faces the problem of scalability: (i) Keeping up with the
number of applications that come up everyday is impracti-
cal. For example, several new p2p protocols are introduced
every year. (ii) Reverse engineering these applications to
find accurate signatures is not trivial, and hence keeping
an up-to-date list of signatures becomes an herculean task
for engineers.

Given the shortcomings of port- and signature-based
approaches for detecting p2p traffic, the research commu-
nity started developing techniques that are less dependent
on individual applications, but focused on capturing and
extracting commonalities in the behavior of p2p applica-
tions based on layer-3/layer-4 information. We refer to
these as pattern classification techniques. Some approaches
like [24,25,18,23,13] examine the connection patterns, and
classify traffic into different p2p applications using ma-
chine learning and/or clustering algorithms; others like
[16] look at specific attributes of flows to group them into
different applications. Although pattern classification tech-
niques seem to be very promising (and thus deserves a
strong attention from the research community), we believe
that there are several open questions about their applica-
bility in the real world. First, due to their dependence on
statistical techniques that need multiple flows and multi-
ple packets from each flow, the time required to detect
and report the discovery of an application, is much longer
when compared to application payload signature matching
techniques. Second, most of these techniques are incapable
of differentiating individual applications behaving in a
similar fashion at the macroscopic level. For instance,
many of these techniques detect p2p traffic but cannot
identify individual protocols like eDonkey, BitTorrent, or
Gnutella. Third, these techniques are not as accurate and
reliable as signature-based techniques since they are heav-
ily dependent on the point of observation and network
conditions (e.g., traffic asymmetry). Fourth, even though
pattern classification appears to be less resource consum-
ing compared to the signature matching approaches (since
it requires to monitor only layer-3/layer-4 data), it is in fact
not true. Pattern classification requires maintaining con-
siderably larger number of states in memory for process-
ing, and thus severely limits their effectiveness in
operating at very high speeds.

In this work, we address the problem of identifying traf-
fic originating from known and unknown p2p networks. In
particular, we focus on: (i) real-time identification of p2p
traffic in large networks (for example, tier-1 and tier-2
ISPs) by monitoring the traffic at the network edge, and
(ii) p2p networks that use superpeer technology (edonkey,
gnutella, etc.). In this paper, we propose a novel two-stage

p2p traffic classifier called Self-Learning Traffic Classifier
(SLTC) that brings together the benefits of signature
matching (speed, accuracy, and reusability) and pattern
classification (scalability) techniques. In the first stage,
SLTC separates p2p traffic from the rest of the traffic by
exploiting the general behavior of p2p protocols, and in
the second stage, it automatically extracts payload signa-
tures to identify specific p2p protocols. Note the second
stage is required to separate p2p protocols (like edonkey,
gnutella, kazaa, etc.) from each other. SLTC populates the
extracted signatures into a signature database that will
be used to classify all future flows. Thus all flows for which
SLTC has a signature in the database bypass the expensive
pattern classification step. SLTC can automatically learn
(i.e., classify and extract signatures) both known and un-
known p2p applications in a matter of minutes.

To the best of our knowledge, this is the first work to
propose a multi-stage, self-learning, real-time p2p traffic
classification system that can be used in high speed net-
works with minimum manual intervention. Our main con-
tributions are:

� We propose a two-stage SLTC system that can quickly
learn known and unknown p2p applications and classify
them in real-time. For the first stage, we propose a new
pattern classification algorithm, called Time Correlation
Metric (TCM) that explores the temporal correlation of
incoming and outgoing p2p flows. TCM first identifies
p2p nodes, and subsequently classifies flows to/from
these nodes as p2p flows. We show how this new con-
cept clearly outperforms previous metrics in (i) discov-
ering p2p nodes with an accuracy well above 95% with
0% false positive, and (ii) distinguishing p2p nodes as
either peers or superpeers (Section 5).

� We comprehensively explore the feasibility of SLTC with
many tier-1 ISP packet traces. Our experiments show
that SLTC can learn over 95% of all p2p traffic in less than
3 min. Once SLTC learns about an application, future
flows that belong to the application are directly classi-
fied using application payload signatures and hence do
not go through the two stages in SLTC. Furthermore,
the 90-percentile detection lag (i.e., the total time from
detecting the first packet of a p2p flow to extracting a
signature for the application corresponding to the flow)
is less than 60 s (Section 7).

A preliminary version of this work appeared in [17].
However, our current work improves and extends that
work with several additional materials: (i) We explain in
detail the deployment scenario of our classifier and the
high-level architecture of SLTC. (ii) We describe the archi-
tecture of each component of SLTC in detail, and describe
all the modules in every component. (iii) We provide more
details about the signature extraction module and present
some new results.

2. Data description

We collect and analyze four packet traces captured
from two tier-1 ISP networks (say ISP-A and ISP-B) that

1056 R. Keralapura et al. / Computer Networks 54 (2010) 1055–1068

Author's personal copy

are located in different continents (Table 1). For both the
ISPs, we captured all packets (with no sampling) between
the ISP and one of its customers (a tier-2 ISP).

Validating our classification algorithm needs ground
truth. In other words, we should be able to classify the traf-
fic in these traces using an alternative method (other than
the algorithms in SLTC), so that we can compare the results
from SLTC algorithms. To accomplish this, we built a L7
protocol analyzer (L7PA) based on the application payload
signatures publicy available at L7-Filter [7] and used this
to verify the accuracy of SLTC algorithms. L7PA has signa-
tures for 25 different applications that include both p2p
(BitTorrent, Gnutella, EDonkey, Skype, and KaZaa) and
non-p2p (HTTP, SMTP, POP3, DNS, etc.) protocols. Table 1
also shows the number of flows for different p2p protocols
identified by L7PA in each of the four traces. We use these
flows as the ground truth in the rest of this paper.

3. Related work and challenges

3.1. Peer-to-peer traffic classification

Given the shortcomings of the basic approaches (i.e.,
port-based and signature-based traffic classifications),
there has been a lot of effort in developing p2p traffic clas-
sification techniques that rely just on the layer-3 and
layer-4 information. Some approaches (like
[24,25,18,23,13]) examine the connection patterns at
layer-3 and classify traffic into different applications using
machine learning techniques and/or clustering algorithms,
while others (like [15,16]) look at specific attributes of
flows to group them into different applications. For exam-
ple, the authors in [15] propose many flow-based heuris-
tics to identify p2p nodes: (i) p2p nodes use both TCP
and UDP protocols as their transport layer protocol, (ii)
p2p node are characterized by both incoming and outgoing
connections, and (iii) the ratio of the source IP to source
port ratio for all incoming flows into a p2p node ap-
proaches 1. However, as we show later in this section,
these heuristics lead to false positives1 and false negatives.

Although the above approaches result in high detection
rates, their main limitation is that they are not feasible for
real-time classification in high speed ISP networks for three
reasons. First, most of the above techniques rely on time
consuming algorithms (like statistical clustering, machine
learning, etc.) that have to be applied to every flow seen
by the classifier; thus keeping up with the traffic rate be-
comes extremely difficult. Second, most of the above tech-
niques are designed to identify high-level application
classes, but cannot identify individual applications, an
important requirement for network operators to prioritize
traffic. Third, none of the above techniques can effectively
identify new (i.e., currently unknown) applications that
come up in the future.

Our approach in this work addresses the above issues
and is geared towards real-time identification of both
known and unknown p2p applications in high speed ISP
networks where asymmetric routing is commonly used.
Our p2p traffic detection algorithm is simple, fast, accurate,
and resistant to data obscured by asymmetric routing.

3.2. Peer-to-peer networks

In this work, p2p traffic refers to the traffic originating
from: (i) unstructured p2p networks where different peers
join and leave the network as and when they please, (ii)
dynamic p2p networks that are used to exchange files, mu-
sic, video, and other forms of information, and (iii) p2p net-
works that use superpeer technology to manage their
network. Examples of such p2p networks include eDonkey
[2], Gnutella [4], KaZaa [6], BitTorrent [1], Skype [9], etc.

Unstructured p2p networks are inherently distributed
in nature providing an infrastructure to all users to ex-
change files, music, video, and other information with each
other without relying on any centralized servers. Many
popular p2p networks have several million users at any-
time, and hence a completely distributed approach to find-
ing and exchanging information leads to network
meltdown. Most of the successful p2p networks that exist
today adopt the strategy of constructing hybrid networks,
where the p2p network elects a few nodes as leaders for
a group of nodes based on the nodes’ computing/network
resources. These leaders are usually referred to as superp-
eers or ultrapeers.

Superpeers are typically connected to several other
superpeers and the main objective is to ensure that these
superpeers (and hence the peers connected to them) are
connected to the rest of the network. We can think of this
architecture of p2p networks as a two-level hierarchy. The
first level contains all the superpeers connected to several
other superpeers in the same level. The second level con-
tains peers connected to one or more superpeers in the
first level. Note that these peers at the second level may
or may not be connected to other peers in the same level.
This architecture ensures that when peers join or leave a
network, the impact on the network (in terms of connec-
tivity of other peers) is minimal. However the impact is
higher when superpeers leave the network. Hence nodes
that have significantly higher uptimes are chosen to be
superpeers.

Table 1
Details of the four data traces used in this work (E-Edonkey; G-Gnutella; B-
BitTorrent; S-Skype; K-Kazaa).

Name Network Duration Flows E/G/B/S/K Flows

ð�103Þ

Trace-1 ISP-A 591.209 s 7:26� 106 84.2/31.4/26.4/
7.5/0.6

Trace-2 ISP-B 1067.927 s 10:21� 106 6.3/1.3/70.6/
2.2/0.3

Trace-3 ISP-B 1083.837 s 11:61� 106 5.6/1.9/68.5/
3.1/0.4

Trace-4 ISP-B 1183.637 s 11:35� 106 6.1/1.4/75.4/
1.7/0.3

1 The authors in [15] acknowledge that the heuristics can lead to false-
positives and provide refinements to the basic heuristics to minimize false-
positives. However, we find that in the case of ISP networks there could also
be a lot of false negatives which the authors do not account for. Please see
[8] for more details.

R. Keralapura et al. / Computer Networks 54 (2010) 1055–1068 1057

Author's personal copy

Although the actual functionality of a superpeer varies
depending on the particular p2p application, in general, a
superpeer acts as a gateway to the rest of the network
for the group of peers that are connected to it.

3.3. Challenges to p2p traffic detection

Although p2p networks are application layer networks
built on top of the IP layer, traffic from these networks be-
have very similar to the rest of the Internet traffic and is
virtually indistinguishable. Hence, most strategies pro-
posed in the past for classifying p2p traffic based on only
layer-3/layer-4 information rely on first detecting nodes
that are running p2p applications, and then identifying
p2p traffic based on the these p2p nodes. In this subsec-
tion, we present the most obvious metrics (that are feasible
to be used for p2p traffic classification)2 for identifying p2p
nodes, and show why these metrics fail to accomplish their
objective in the context of our problem definition (i.e., real-
time superpeer-based p2p traffic classification at network
edges).

A common strategy adopted by most p2p networks to
get around the connectivity problem introduced by fire-
walls is to use both TCP and UDP protocols on any of the
open ports. Furthermore, to optimize their performance,
p2p nodes typically use both TCP and UDP protocols for
control, signaling, and/or data flows. For example, a Skype
peer connects to its superpeer usig both TCP and UDP [10].
Another characteristic that distinguishes a p2p node from a
node that does not run any p2p applications is the p2p
node’s ability to act as both a client and a server. Several
heuristics have been proposed to take advantage of these
properties of p2p nodes [15].

However, there are several problems while using the
above heuristics to detect p2p nodes: (i) False positives:
Several other protocols in the Internet, like DNS, gaming,
streaming, IRC, etc., also exhibit these properties. In other
words, these non-p2p applications also use both TCP and
UDP protocols to communicate between node pairs. As
an example consider Fig. 1, where several nodes running
DNS protocol in Trace-1 also have both TCP and UDP con-
nections. Also, nodes running these non-p2p applications
can both accept and open connections to other nodes.
Fig. 2 once again uses DNS nodes as an example to show
that nodes running non-p2p applications can have both
incoming and outgoing connections. Note that we saw
similar results for a number of other protocols like SMTP,
gaming, etc. Hence the above heuristics could lead to a
lot of false positives [15,12]. (ii) False negatives: All p2p
nodes (or p2p node pairs) do not always satisfy the above
heuristics. For example, not all p2p node pairs use both TCP
and UDP protocols to talk to each other. Several p2p proto-
cols use TCP port 80 (a port most likely to be open in al-
most every firewall) as a way to bypass firewalls and
hence may not use both TCP and UDP protocols. Also, sev-
eral p2p nodes may not be observed (from the perspective

2 Several other techniques have been proposed (like [24,25,18,23,13,16])
in the literature. However we believe that these techniques are infeasible
for real-time p2p traffic classification in high speed networks.

0 50 100 150 200
6000

4000

2000

0

2000

4000

6000

U
D

P

Node ID

TCP and UDP DNS Connections in Trace 1

T
C

P

Fig. 1. False positives: Nodes in Trace-1 (with at least 100 connections)
running DNS use both TCP and UDP to communicate with other nodes.

0 50 100 150 200
2

1.5

1

0.5

0

0.5

1

1.5

2
x 104

In
co

m
in

g

 O

ut
go

in
g

Node ID

DNS Connections in Trace 1

Fig. 2. False positives: Number of incoming and outgoing connections in
nodes (with at least 100 connections) running DNS in Trace-1.

0 100 200 300 400 500
1500

1000

500

0

500

1000

1500

In
co

m
in

g

 O
ut

go
in

g

Node ID

P2P Connections in Trace 1

Fig. 3. Number of incoming and outgoing connections in nodes (with at
least 100 connections) running p2p applications in Trace-1.

1058 R. Keralapura et al. / Computer Networks 54 (2010) 1055–1068

Author's personal copy

of the monitoring point) to act as both server and client3

(see Fig. 3). Thus there could be a lot of false negatives while
using these heuristics as well.

We propose a novel light-weight approach to easily de-
tect p2p nodes for the problem defined in Section 1. We
present the intuition and algorithm for our approach in
Section 5.

4. Self-learning traffic classifier: architecture and
deployment

In this section, we first describe a typical network
deployment scenario and then provide a high-level archi-
tectural overview of the Self-Learning Traffic Classifier
(SLTC).

SLTC is a 2-tiered system comprised of a distributed col-
lection tier and a centralized processing tier as shown in
Fig. 4. Data is collected directly off-the-wire using high
speed passive listeners, called High Speed Monitors (HSM).
These monitors passively observe network traffic on differ-
ent links, and try to classify traffic using application pay-
load signatures. If a monitor can successfully identify a
transiting flow using known signatures, then the flow is
marked as ‘‘known”, and no further analysis is necessary
to classify it. However, if a flow cannot be successfully clas-
sified, then HSM forwards layer-3/layer-4 information of
the flow to the centralized server, called Logic Server (LS).
Since the logic server has a network-wide view of the traf-
fic activity, it is in a better position to carry out a more reli-

able processing of such information. Using this
architecture problems like asymmetry in routing, very
common in large ISPs, are easily overcome.

A detailed description of the SLTC architecture is shown
in Fig. 5. For easy of illustration we show only one HSM
connected to the central LS, although we envision that in
a real network deployment many HSMs are required to
collect information from major network aggregation
points.

Each HSM is comprised of the following functional
blocks: (i) L7 monitor and signature database: Traffic tra-
versing links monitored by HSMs passes through this sig-
nature matching component where a fast pattern
matching algorithm tries to classify traffic. Any traffic that
is successfully classified is marked as ‘‘known” and sent
out of the monitor; other flows are marked as ‘‘unknown”
and sent to other components for further analysis. (ii) L4
monitor: This component extracts and subsequently for-
wards packet- and flow- header information to the logic
server for further analysis. (iii) Full Packet Capture (FPC)
and policy database: As soon as the pattern classifier in LS
classifies a flow as belonging to a particular application, a
policy (explained later in this section) is generated and
stored in the policy database. Based on these policies FPC
forwards raw packet information to the signature extrac-
tion component in LS.

The logic server receives input from several HSMs, and
performs the following: (i) Aggregates and correlates in-
puts from different passive monitors (Aggregator), (ii) clas-
sifies traffic into application classes like multimedia, p2p,
etc. (Pattern Classifier or PC), (iii) generates and enforces
collection policies in the HSMs (Policy Generator), and (iv)
extracts signatures of unclassified applications and popu-
lates the signature database (Signature Extractor or SE).

The pattern classifier (PC) is one of the most important
components that classifies traffic into application classes

ISP-AISP-A

ISP-BISP-B
ISP-CISP-C

ISP-DISP-D

High Speed
Monitor – 1

High Speed
Monitor – 2

High Speed
Monitor – 3

Logic Server
(Aggregation, correlation, “class”

generation, policy generation,
and signature extraction)

Pre-processed
flow/packet details

Pre-processed
flow/packet details

Pre-processed
flow/packet details

Fig. 4. Self-Learning Traffic Classifier (SLTC) system: typical network deployment.

3 Even if all p2p nodes act as both clients and servers, observing all these
connections depends on the location/s of the monitoring equipment. In
several cases, the location of the monitoring equipment could force us to
believe that p2p nodes are acting only as servers or only as clients. Hence
we believe it is reasonable to assume that not all the connections can be
observed to make accurate conclusions here.

R. Keralapura et al. / Computer Networks 54 (2010) 1055–1068 1059

Author's personal copy

using only layer-3/layer-4 information. An application
class represents a group of applications exhibiting the
same generic properties that can be used to distinguish
them from applications in another class. For example, all
real-time voice traffic can be grouped into the same
high-level class since all of them exhibit similar delay
and/or loss properties. PC comprises of several disparate
modules (Fig. 5), each of them focusing on identifying a
specific application class. These configurable modules pro-
vide the flexibility to define new classes that are combina-
tions of existing high-level classes. These modules can
either be connected to each other in a serial fashion or par-
allel fashion. For example, connecting the p2p module and
Voice Multimedia module in a serial fashion will result in a
new high-level class where all the traffic identified are p2p
flows that carry voice traffic. We will elaborate more about
the p2p pattern classifier in Section 5.

The policy generator generates policies based on the
output of the PC and distributes them to all the HSMs.
Now the question is ‘‘what is a policy?”. We define a pol-
icy as a logical rule that is used by the FPC component to
filter specific data streams of interest from all traffic tra-
versing the link being monitored. A policy is specified as
a vector with several fields, e.g., the vector {dst ip, dst
port, num of packets in a flow, num of bytes in each
packet} could be a policy generated for all flows that be-
long to the p2p application class. Note that each policy or
set of policies are specific to a particular application
class. Finally, the policy generation process in SLTC is
iterative, i.e., if a particular policy generated by the policy
generator does not lead to a successful signature extrac-
tion then the SE component and the policy generator
communicate with each other until a signature is suc-
cessfully identified or the maximum allowed number of
iterations is reached.

The signature extractor (SE) extracts signatures for differ-
ent applications that belong to a particular application class.
We will explain this component in detail in Section 6. In the
rest of this work, we will focus mainly on two of the most
important components of SLTC, Pattern Classifier (PC) for
the p2p application class and the Signature Extractor (SE).

5. Peer-to-peer pattern classifier

5.1. p2p Traffic classification: intuition and approach

Our approach to identifying p2p traffic class relies on
the following observations in hybrid p2p networks (i.e.,
p2p networks that use superpeer technology). When a peer
(or host) joins a p2p network, it typically connects to one
or more servers and/or superpeers. If the peer connects
to a server (as in the case of a few hybrid p2p networks)
at the start, then the server provides the peer with the
superpeer contact information. The peer will eventually
contact the superpeer to let the superpeer know of its arri-
val. Fig. 6 depicts the above process. When a new peer,
Peer A, joins the p2p network, it talks to a superpeer,
Superpeer S, in its host cache (i.e., a table containing all
the neighboring peers). The information about the super-
peer could already be in Peer A’s host cache due to the past
activity of the peer in the network, or it could be obtained
from a centralized database by first connecting to a central
server. Either ways, Peer A ultimately connects to Super-
peer S, and sends the information that can be used by
other peers to contact Peer A. As soon as Superpeer S re-
ceives this information, it forwards the information to
other peers (like Peer B), and superpeers that are con-
nected to it. This process of disseminating the peer contact
information is critical in p2p networks for two reasons: (i)

Pattern Classifier

p2
p

M
ul

ti-
m

ed
ia

G
am

in
g

…

A
gg

re
ga

to
r Policy

Generator

HIGH SPEED MONITOR

Signature
Extractor

L4 Monitor
(flow level)

L7
Monitor

(application
level)

Full Packet
Capture (FPC)

Signature
database

Policy
database

Traffic
classification

Traffic
from link known

unknow
n

S
E
R
V
E
R

L
O
G
I
C

Circular Buffer

Fig. 5. Self-Learning Traffic Classifier (SLTC) system: design and architecture.

1060 R. Keralapura et al. / Computer Networks 54 (2010) 1055–1068

Author's personal copy

Fault tolerance: A typical p2p network experiences a lot of
churn (i.e., peers joining and leaving the network). In Fig. 6,
if Superpeer S decides to leave the network, then Peer A
loses connectivity to the rest of the network. If other
superpeers know about Peer A, then they can take over
the responsibility from Superpeer S, thus providing all
the required services to Peer A. (ii) File download/upload:
Peers in the network need Peer A’s contact information to
upload/download files.

Based on the above observations, when a new node
arrives into the p2p network, a superpeer accepts a con-
nection from the node, and subsequently opens a con-
nection to one or more other nodes in the network.
From the perspective of a superpeer, an incoming connec-
tion is closely followed in time by one or more outgoing
connections. Hence our hypothesis is that by observing
connections coming into and leaving a node in close suc-
cession we can accurately identify superpeers in p2p net-
works. We call this as the time correlation metric (TCM),
i.e., a metric that captures the temporal correlation be-
tween the incoming and outgoing connections in p2p
protocols.

There are several reasons why we believe that TCM is
ideal in the context of our problem (i.e., for identifying
superpeer-based p2p traffic in high speed networks in
real-time by monitoring peering links):

� Churn in p2p networks. p2p Networks experience a lot
of churn [22] and support constant searches. Since TCM
aims to exploit the p2p network behavior during these
commonly occurring events, we believe that TCM can
be very successful.

� Location of HSM. HSM monitors all bidirectional traffic
on a peering link. Given that peers in p2p networks typ-
ically connect to random superpeers, there is a very high
probability that several incoming and outgoing connec-
tions from the same superpeer crosses a peering link

multiple times. Notice that, unlike other approaches, in
TCM, we do not need to observe all the flows, but only
require to monitor a few flows for every superpeer. Once
again, this results in an advantage for TCM.

Another important point that we wish to draw the read-
er’s attention to is that monitoring network traffic on peer-
ing links also eliminates false positives to a large extent. For
instance, DNS nodes could also exhibit the TCM property as
described earlier. Consider a hierarchical DNS system
where higher level DNS servers are located outside a net-
work. A recursive DNS query to a DNS server in this system
could result in the server opening new connections to
other DNS servers. However, the natural association of net-
work borders and the DNS servers in a hierarchial system,
ensures that the HSM (sitting on a peering link at the net-
work edge) either captures the incoming or the outgoing con-
nections but not both. The same is true for other
applications like smtp, pop3, etc.

The TCM algorithm based on the above approach is
shown in Fig. 7. The algorithm is characterized by three
parameters:

� TCM time threshold ðTthÞ. This parameter represents
the maximum time difference between incoming and
outgoing connections in superpeers. A large value for
this parameter means that we will group together unre-
lated incoming and outgoing flows. A very small value
implies that we do not group together even the flows
that are correlated. Hence choosing an optimal value
of this metric is critical to the effectiveness of TCM.

� TCM pattern threshold ðPthÞ. As we explained earlier (in
Fig. 6), every incoming connection to the superpeer from
a new peer (or a search query from the existing peer)
results in several outgoing connections from the super-
peer. Pth represents the number of outgoing connections
that should be temporally correlated with an incoming

Peer A
Peer A,
Port x

Peer A

Peer A,
Port x

Peer A,
Port x

Superpeer S

Peer A,
Port x

Peer B

Peer B

Superpeer

Superpeer

Superpeer

SuperpeerSuperpeer S

Fig. 6. A peer joining (or searching for information) a p2p network.

R. Keralapura et al. / Computer Networks 54 (2010) 1055–1068 1061

Author's personal copy

connection to assume that a TCM pattern has occurred.
A very high value of this parameter could lead to a lot
of false negatives (i.e., p2p superpeers not identified as
superpeers), where as a small value could lead to false
positives (non-p2p nodes identified as superpeers).

� TCM repetition threshold ðRthÞ. If a superpeer is
observed for a long period of time, then the TCM pattern
(i.e., one incoming connection resulting in several out-
going connections) should occur several times. We use
Rth as a parameter to specify the number of times that
we should see the TCM pattern before declaring a node
to be a superpeer in a p2p network. Note that a very
small value could imply that non-p2p nodes could be
included in the superpeer set by pure coincidence. How-
ever, a large value could once again lead to false
negatives.

5.2. Reducing false negatives

An assumption that we make in the TCM heuristic is
that when a new peer establishes a connection with the
superpeer, the superpeer opens new connections to other
existing superpeers and/or peers to convey the information
about the new peer. However, in reality this might not al-
ways be true. That is, the superpeer may convey the infor-
mation about the new peer using existing connections to
other superpeers/peers.

Fig. 8 shows the total data rate of p2p connections that
lasted for more than 10 min in Trace-4.4 We can see that
there are several connections whose overall data rate is
very small, i.e., just 1–2 bytes per second. These connec-
tions last more than 10 min, but only exchange 1000–
2000 bytes of data. This suggests that these are long lasting
control connections that carry small control data. Thus,
ignoring communications on long lasting connections re-

sults in several false negatives in TCM. Hence, in our TCM
algorithm, instead of always looking for new outgoing con-
nections, in addition, we also look at existing connections
carrying small control packets. Furthermore, we consider
small outgoing control packets on existing connections
only if: (i) the connection lasts for a long time, and (ii)
the average packet size of the connection is also small
(<150 bytes). This heuristic eliminates the possibility of
considering small packets from non-control flows. In all
our experiments, we incorporate these changes to the algo-
rithm in Fig. 7.

6. Signature extractor (SE)

The signature extraction component resides in the logic
server (LS) and the goal of this component is to automati-
cally extract signatures for different p2p applications. Note
that this component is critical for self-learning mode of
SLTC for two reasons: (i) It helps in differentiating p2p
applications from each other, and (ii) it helps to bypass
the expensive pattern classification step for known flows.
The input to the SE component is a set of packets from
the flows belonging to p2p superpeers as identified by

TCM(curTime, newFlow(sIP, dIP, sPort, dPort, L4Prot))

1: OutgoingF lows(sIP↪ sPort).add(curT ime, newF low)

2: IncomingF lows(dIP↪dPort).add(curT ime, newF low)

3: for all (F such that F ∈ IncomingF lows(sIP↪sPort)) do

4: if ((consideredDstIP does not contain dIP) and (curT ime − F�time) < Tth) then

5: consideredDstIP .add(dIP)

6: pattern(sIP↪ sPort) ← pattern(sIP↪ sPort) + 1

7: if (pattern(sIP↪ sPort) > Pth) then

8: repetition(sIP↪ sPort) ← repetition(sIP↪ sPort) + 1

9: if (repetition(sIP↪ sPort) > Rth) then

10: P2PNodePortPair.add(sIP , sPort)

Fig. 7. TCM algorithm.

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Data Rate (Total bytes/Total time a connection lasts)
 in bytes/sec

C
D

F

Fig. 8. Overall data rate of p2p flows in Trace-4 that last more than
10 min.

4 The graph was generated using the ground truth from L7PA and zooms
in on a particular range of values on the x-axis to show the region of
interest.

1062 R. Keralapura et al. / Computer Networks 54 (2010) 1055–1068

Author's personal copy

the TCM algorithm. In other words, the TCM algorithm
identifies certain nodes as p2p superpeers and conveys this
information to the high speed monitors (HSMs). As soon as
the HSMs receive this information, they forward some/all
packets (including the packet payloads) from/to the super-
peer. Using this information the SE component extracts a
signature for the p2p application that the superpeer is
running.

6.1. Challenges to signature extraction

Today’s p2p applications try to disguise themselves
using complex polymorphic flow behavior (i.e., signatures
appear in different packets in every flow and different po-
sition in each packet). In other words, applications change
their behavior by using floating signatures that appear in
different places in different flows, thus making it very hard
to extract their signature and identify them. Also, the num-
ber of p2p applications in the Internet has increased expo-
nentially making it impractical to extract signatures
manually.

In the context of SLTC, another challenging issue is that
we do not know the application to which each flow belongs
to. For instance, using TCM we can only determine whether
a node is running a p2p application or not, but not the par-
ticular p2p application that it is running. This makes it
harder to extract a unique signature for each application.
To address this, in this work, we assume that all flows des-
tined to a particular node on a particular port, and using a
given layer-4 protocol as running the same p2p
application.

6.2. Algorithm for signature extraction

We use the LASER algorithm to extract signatures from
packet payloads [20]. LASER uses the least common subse-
quence (LCS) algorithm that is popularly used in DNA se-
quence matching. The authors in [20] have shown that
LASER is very efficient and accurate in extracting signa-
tures for unknown applications. Note that the LASER algo-
rithm resides in the central logic server.

As soon as TCM identifies a node as a superpeer, all
HSMs start forwarding packets for flows to/from the node
(on the specific port identified by TCM) to the SE algorithm.
For each node identified as a superpeer, HSM forwards
flows from at least C distinct peers that communicate with
the superpeer. This ensures that the input to the SE algo-
rithm is statistically not biased, thus resulting in a more
generic signature. A large value of C outputs a more accu-
rate signature but results in a large delay. However, a small
value of C results in inaccurate signatures. Using packet
payloads from these flows as input, the LASER algorithm
extracts and refines the signature for the application until
a stable signature is obtained.5 Once a signature is ob-
tained, it is sent to all the HSMs. The HSMs store this signa-

ture in their database (unless the signature already exists)
and use it to instantly classify any future flow (without
sending the flow through the TCM and SE components).

7. System evaluation

To evaluate the proposed SLTC architecture, we built a
prototype of SLTC (both HSM and LS components). We
replayed all the four traces (described in Section 2) and
used them as input to the system. In Section 7.1, we
show how we select the various TCM parameters. In Sec-
tions 7.2 and 7.3, we use the ground truth generated by
the L7 protocol analyzer (L7PA) to evaluate the accuracy
of TCM and SE algorithms. In Section 7.4, we evaluate
the performance of the end-to-end SLTC system by
exploring all (known and unknown) flows in the four
traces.

7.1. TCM parameter tuning

As mentioned earlier in Section 5, the TCM algorithm
depends on three different parameters – Tth, Pth, and Rth.
The choice of values for these parameters directly influ-
ence the accuracy and efficiency of TCM. In this section,
we tune the values of these parameters using our L7PA
such that the output of TCM results in high detection rate
and low false positive rate.

We use Trace-1 for all the parameter tuning experi-
ments, however, the results from the other three traces
were very similar. To eliminate the dependence of our
parameter values on the length of the trace (i.e., the trace
time interval), we first split the trace into multiple seg-
ments each of which is 180 s long. We compute the
detection and false positive rates for each of these seg-
ments. The results in Figs. 9–11 show the average detec-
tion and false positive rates for all the 180-s segments in
Trace-1.

Fig. 9 shows the detection and false positive rates as a
function of the time threshold (Tth) for different values of
Pth and Rth ¼ 2. We can see that large values of Tth results
in higher detection rates, but also results in higher false po-
sitive rates. Also, the maximum detection rate decreases as
the value of Pth increases. In other words, for Pth values be-
tween 2 and 4, the maximum detection rate reaches 100%.
However, for Pth ¼ 5, the maximum detection rate falls be-
low 100%, showing that we will be unable to detect all the
superpeers using TCM if we set a large value for Pth. Finally,
from Fig. 9, we can clearly see that there is no region in the
graph where the detection rate is 100% and the false posi-
tive rate is 0%. In other words, we cannot find any param-
eter values that result in optimal detection and false
positive rates.

Figs. 10 and 11 are similar to Fig. 9, but for Rth ¼ 3 and
Rth ¼ 4 respectively. From Fig. 11, we can see that for
Rth ¼ 4, the maximum detection rate is always less than
100% irrespective of the values of Tth and Pth. Hence
increasing the value of Rth beyond 3 will not result in opti-
mal detection rate. Finally, from Fig. 10, we can see that the
optimal detection and false positive rates can be obtained
when Tth 2 ð2;3�; Pth ¼ 4, and Rth ¼ 3. Hence, in the

5 In our SE component, we set C ¼ 5. However, we continue forwarding
flows to the SE component from more peers until a stable signature is
obtained. For more details about the LASER algorithm, please refer to [20].

R. Keralapura et al. / Computer Networks 54 (2010) 1055–1068 1063

Author's personal copy

experiments in the rest of this paper we use
Tth ¼ 2:5 s; Pth ¼ 4, and Rth ¼ 3.6

7.2. Peer-to-peer traffic classifier

Although our L7PA has signatures for several p2p and
non-p2p protocols, the list is surely not exhaustive. Hence
the output of L7PA contains several flows that are just
marked as ‘‘unclassified” TCP/UDP traffic. We represent
the set of nodes identified by L7PA that belong to p2p

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

0.2

0.4

0.6

0.8

1

Time Threshold (s)

D
et

ec
ti

o
n

 R
at

e
o

r
F

al
se

 P
o

si
ti

ve
 R

at
e

Detection Rate (P
th

 = 2; R
th

 = 2)

False Positive Rate (P
th

 = 2; R
th

 = 2)

Detection Rate (P
th

 = 3; R
th

 = 2)

False Positive Rate (P
th

 = 3; R
th

 = 2)

Detection Rate (P
th

 = 4; R
th

 = 2)

False Positive Rate (P
th

 = 4; R
th

 = 2)

Detection Rate (P
th

 = 5; R
th

 = 2)

False Positive Rate (P
th

 = 5; R
th

 = 2)

Fig. 9. Detection rates and false positive rates for Rth ¼ 2.

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

0.2

0.4

0.6

0.8

1

Time Threshold (s)

D
et

ec
ti

o
n

 R
at

e
o

r
F

al
se

 P
o

si
ti

ve
 R

at
e

Detection Rate (P
th

 = 2; R
th

 = 4)

False Positive Rate (P
th

 = 2; R
th

 = 4)

Detection Rate (P
th

 = 3; R
th

 = 4)

False Positive Rate (P
th

 = 3; R
th

 = 4)

Detection Rate (P
th

 = 4; R
th

 = 4)

False Positive Rate (P
th

 = 4; R
th

 = 4)

Detection Rate (P
th

 = 5; R
th

 = 4)

False Positive Rate (P
th

 = 5; R
th

 = 4)

Fig. 11. Detection rates and false positive rates for Rth ¼ 4.

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

0.2

0.4

0.6

0.8

1

Time Threshold (s)

D
et

ec
ti

o
n

 R
at

e
o

r
F

al
se

 P
o

si
ti

ve
 R

at
e

Detection Rate (P
th

 = 2; R
th

 = 3)

False Positive Rate (P
th

 = 2; R
th

 = 3)

Detection Rate (P
th

 = 3; R
th

 = 3)

False Positive Rate (P
th

 = 3; R
th

 = 3)

Detection Rate (P
th

 = 4; R
th

 = 3)

False Positive Rate (P
th

 = 4; R
th

 = 3)

Detection Rate (P
th

 = 5; R
th

 = 3)

False Positive Rate (P
th

 = 5; R
th

 = 3)

Fig. 10. Detection rates and false positive rates for Rth ¼ 3.

6 The ideal parameter values vary with the deployment scenario. In our
case, we are monitoring peering links between a tier-1 and tier-2 ISP. The
ideal parameter values will change with the location of the monitoring
point.

1064 R. Keralapura et al. / Computer Networks 54 (2010) 1055–1068

Author's personal copy

networks (i.e., Gnutella, eDonkey, BitTorrent, Skype, and
Kazaa) by P, the set of nodes belonging to non-p2p applica-
tions (like HTTP, DNS, SMTP, IMAP, POP3, etc.) by N, and
the unclassified nodes by O. In order to eliminate ambigu-
ity of a node belonging to multiple sets, we ensure that if a
node belongs to P then it does not belong to the other two
sets. Similarly, if a node belongs to O, then it is not included
in N. Hence all the three sets are mutually exclusive of each
other.

Let T represent the total time of a data trace. We repre-
sent T as a sum of several time intervals of fixed length z.
We represent the total number of such intervals in any
trace file by n. Now, let Pi denote the set of p2p nodes iden-
tified by L7PA in the ith time interval where, i 2 1 . . . n. Sim-
ilarly, Ni and Oi represent the set of nodes in the non-p2p
and unclassified set identified in the ith interval. Note that
the sets Pi; Ni, and Oi constitute the ground truth in the ith

interval. Similarly, let Di represent the set of p2p nodes de-
tected by our TCM algorithm in the ith interval.

We use three metrics to evaluate the accuracy of TCM:
detection rate (DR), false positive rate (FP), and false negative
rate (FN). We define the detection rate in any interval, DRi,
and overall detection rate until (and including) the interval
i; DRfull

i , as:

DRi ¼
Di
T

Pij j
jPij

; DRfull
i ¼

S
k¼1::i

Dk

� �T S
k¼1::i

Pk

� �����
����

S
k¼1::i

Pk

����
����

: ð1Þ

Similarly, we define false positive and false negative rates
as:

FPi ¼
Di
T

Nij j
jNij

; FPfull
i ¼

S
k¼1::i

Dk

� �T S
k¼1::i

Nk

� �����
����

S
k¼1::i

Nk

����
����

; ð2Þ

FNi ¼
jPi � Dij
jPij

; FNfull
i ¼

S
k¼1::i

Pk

� �
�

S
k¼1::i

Dk

� �����
����

S
k¼1::i

Pk

����
����

: ð3Þ

We evaluate the accuracy of our TCM algorithm by di-
rectly replaying all flows in the four traces into the TCM
component in the LS. Once the TCM algorithm identifies
the <superpeer, port> pairs in the trace, we flag all the other
nodes that connect to <superpeer, port> pairs as a p2p node.
We use this information in Eqs. (1)–(3).

The top graph in Fig. 12 shows the overall detection rate

DRfull
i

� �
as a function of time for all the four traces. The

detection rate is computed every 5 s (i.e., time interval,
z ¼ 5). In other words, we accumulate all our findings in
every 5-s interval and use them to update the detection
rate at the end of the interval. We can see that the overall
detection rate is between 40% and 60% after the first time
interval, but it increases beyond 90% within 3 min in all
of the traces. The overall detection rate reaches close to
100% in most of the traces within 10 min.

The bottom graph in Fig. 12 is similar to the top graph,
but shows the detection rate ðDRiÞ in every interval. We
can once again notice that the detection rate in any interval

reaches 95% within 3 min and remains close to 100% after
7 min. The main take-away point here is that after the first
few minutes, the detection rate in any interval remains
very close to 100%, showing that TCM can identify all
p2p nodes in the network very effectively.

Fig. 13 shows the overall detection rate of five popular
p2p applications in the Internet for which we have the
ground truth in our L7PA. We can see that the overall
detection rate of most of the applications in all the four
traces is over 95%. Note that Fig. 13 shows the overall
detection rate after full trace replay. However, the detec-
tion rate in every interval for all the applications is much
higher (over 99%) after the first few intervals.

Based on our four traces, we find that some of the appli-
cations (like Kazaa) are not very popular. We found only a
few Kazaa flows in all our traces (see Table 1). Given that
the TCM parameters are tuned to capture superpeers that
are significantly active, we miss a few nodes in these appli-
cations that are not popular; hence the detection rates are
smaller compared to the other applications. However, from
Fig. 12, we can clearly see that the p2p detection rate is still
very high.

Although our detection rates are very high, the accuracy
of our TCM algorithm depends on the false positive and
false negative rates as well. The false positive rates in
all our above experiments were consistently zero for
all the four traces. In other words, using TCM algorithm,
we did not identify any nodes that belonged to the non-
p2p set as a p2p node. The false negative rate, by definition
in Eq. (3), is the complement of the detection rate, i.e.,

0 200 400 600 800 1000 1200
0.4

0.6

0.8

1

Time (s)

D
et

ec
tio

n
R

at
e

Overall P2P Node Detection Rate

0 200 400 600 800 1000 1200
0.4

0.6

0.8

1

Time (s)

D
et

ec
tio

n
R

at
e

 In
 E

ve
ry

 In
te

rv
al P2P Node Detection Rate In Every Interval

Trace 1
Trace 2
Trace 3
Trace 4

Fig. 12. Overall and per-interval detection rates of TCM vs. time.

1 2 3 4
0

0.5

1

Trace Number

D
et

ec
tio

n
R

at
e Gnutella

Edonkey
BitTorrent
Skype
Kazaa

Fig. 13. Overall TCM detection rate for different p2p applications.

R. Keralapura et al. / Computer Networks 54 (2010) 1055–1068 1065

Author's personal copy

DRi ¼ 1� FNi and DRfull
i ¼ 1� FNfull

i . Hence, we do not
explicitly plot the results for the false negative rate.

7.3. Signature extractor

To evaluate the accuracy of the SE algorithm, we first
identified different p2p applications in the traces using
L7PA, and then passed the flows corresponding to these
applications to the SE component running the LASER algo-
rithm. The signatures extracted by the LASER algorithm
were identical to the signatures used in L7PA for all p2p
applications.

We evaluate the accuracy of our signature extraction
algorithm using three metrics: (i) Fraction of flows that
are accurately identified by the extracted signature, and
(ii) false positive rate. The top graph in Fig. 14 shows the
fraction of flows identified for the three p2p protocols in
Trace-1. We can clearly see that for all the three protocols
that we tested, as time progresses the detection rate is well
beyond 99%. The main take away point is that the signa-
tures that we extract using our simple algorithm in Section
6 is very accurate. Also, the detection rate for most of the
applications is lower at the beginning of the trace when
the SE algorithm is still learning the signature for the appli-
cation. The bottom graph of Fig. 14 shows the false positive
(i.e., identifying a different application as a particular p2p
application) rate of the SE algorithm. We can clearly see
that for both BitTorrent and Gnutella, the false positive rate
is very small (<0.001). However, for eDonkey the false po-
sitive rate was higher ð� 0:02Þ. The main reason for this is
that the signature for eDonkey is very small compared to
the other protocols and hence few other flows can be mis-
taken to be eDonkey flows.

We evaluate the robustness of these signatures using
flow recall rate, i.e., the fraction of flows in Trace-x that
are accurately identified using signatures from Trace-y. A
high value of flow recall rate implies that the signatures
extracted are generic, stable, and reusable. Fig. 15 shows
detection rate when using the signatures extracted from
Trace-1 in Trace-4. Note that Trace-1 and Trace-4 are col-
lected from two ISPs in different continents. We can clearly

see that the detection rate is still very high (>0.995), show-
ing that the signatures that we extract are robust across
different networks.

7.4. SLTC system

There are two main objectives for SLTC as a system: (i)
Learn signatures for all known and unknown p2p applica-
tions seen by the HSM, and use these signatures to accu-
rately classify future incoming flows, and (ii) learn these
signatures as quickly as possible so that the number of
‘‘unclassified” flows can be minimized. For experiments
in this subsection we replay all flows in the trace files into
the HSM, and any flow that cannot be directly classified in
the HSM is sent to the TCM component in the LS. The out-
put (i.e., <ip, port> pairs of superpeers) from the TCM is
used by the HSM to send packets to the SE component.
The SE algorithm finds the signatures of p2p applications
and populates the signature database in the HSMs.

We demonstrate how well SLTC meets both its objec-
tives using two metrics: (i) Fraction of flows that are
‘‘unclassified” in every interval. This represents the fraction
of p2p flows that SLTC has not learnt about, i.e., the p2p
flows sent to LS for classification and signature extraction,
and (ii) time lag, i.e., the total time taken to extract a signa-
ture and populate the database after seeing the first packet
of a flow.

The top graph in Fig. 16 shows the fraction of ‘‘unclassi-
fied” flows in SLTC, i.e., the p2p flows that are sent to LS for

0 100 200 300 400 500 600
0.85

0.9

0.95

1

Time (s)

F
ra

ct
io

n
of

 fl

ow
s

id
en

tif
ie

d

BitTorrent
Edonkey
Gnutella

0 100 200 300 400 500 600
0

0.02

0.04

Time (s)

O
ve

ra
ll

F
al

se

 P
os

iti
ve

 R
at

e

Fig. 14. Top graph shows the fraction of flows identified and the bottom
graph shows the false positive rate of the SE algorithm in Trace-1.

0 200 400 600 800 1000 1200
0.95

0.96

0.97

0.98

0.99

Time (s)

F
ra

ct
io

n
of

 fl
ow

s

re

ca
lle

d

BitTorrent
Edonkey
Gnutella

Fig. 15. Recall rate when using signatures extracted from Trace-1 in
Trace-4.

0 200 400 600 800 1000 1200
0

0.2

0.4

F
ra

ct
io

n
se

nt
 to

 L
S

 in

 e
ve

ry
 in

te
rv

al Trace 1
Trace 2
Trace 3
Trace 4

0 200 400 600 800 1000 1200
0

0.5

1

Time (s)

F
ra

ct
io

n
of

 k
no

w
n

 p
2p

 a
pp

lic
at

io
ns

a

b

Fig. 16. (a) Classified flows and (b) known applications in classified flows.

1066 R. Keralapura et al. / Computer Networks 54 (2010) 1055–1068

Author's personal copy

classification, as a function of time. Note that at time 0 we
do not have any signatures in the database and hence all
flows are sent to the logic server. However, as time goes
by, the logic server extracts more and more signatures,
thus ensuring that most of the traffic is classified by the
HSM. In fact, more than 90% of the p2p traffic is classified
within the first minute. We can clearly see that the fraction
of traffic entering the logic server decreases over time.
Note that the fraction of traffic sent to the logic server
steadies at about 5% in all the four traces. This means that
our SE component is not able to extract signatures for
these flows even after repeated attempts. These flows
could be either encrypted or simply do not have a signa-
ture. We defer further exploration of this issue as a part
of our future work.

The bottom graph in Fig. 16 shows the fraction of the
‘‘classified” flows that are ‘‘known”. In other words, among
all the classified flows (i.e., p2p flows for which SLTC learns
a signature) from the top graph in Fig. 16, there are some
flows that belong to ‘‘known” applications and others be-
long to ‘‘unknown” or ‘‘new” p2p applications. We use five
applications – BitTorrent, Gnutella, eDonkey, Skype, and
Kazaa – as known p2p applications and classify the rest
as unknown. From the bottom graph in Fig. 16, we can
see that more than 40% of the classified p2p applications
are unknown for Trace-1 whereas the percentage increases
to about 60% for the other traces. Learning unknown or
new p2p applications is one of the key features of SLTC
and from the bottom graph of Fig. 16 we can clearly see
that SLTC has learnt several new p2p applications. In fact,
we manually explored the signature of an unknown appli-
cation and found that it belongs to Gigaget p2p network
(Table 2) [3].

Fig. 17 shows the CDF of the total time lag. Total time
lag is the sum of the times taken TCM and SE algorithms,
and both these times depend on the parameters set in
those components. For example, the time delay in TCM is

characterized by three parameters Tth; Pth, and Rth. Chang-
ing the values of these parameters could result in a tradeoff
between accuracy and time lag. Using the default parame-
ter values for TCM and the SE algorithm, in Fig. 17, we can
see that classification and signature extraction of over 90%
of the flows in all the traces takes less than 1 min, making
it feasible to use this architecture in real-time with strict
time constraints.

8. Discussion and conclusions

In this paper, we presented a novel self-learning p2p
traffic classifier that can learn known and unknown appli-
cations with minimum manual intervention. We showed
that SLTC can learn over 95% of p2p applications in a few
minutes. Although our focus in this paper was on classify-
ing p2p applications, we strongly believe that the SLTC
framework can be used for classifying other classes of
Internet traffic as well.

We presented a simple, light-weight, and effective
algorithm, called TCM, for superpeer-based p2p traffic
identification using temporal correlation of flows. We
showed that the detection rate is very high with no false
positives. One of the main reasons for having no false
positives is the fact that the monitoring points are at
the network edge. Unlike p2p-protocols, most of the
non-p2p protocols in the Internet (like smtp, ftp, pop3,
imap, http, etc.) are typically configured such that they
are aware of network borders.

Also, in this work, we have used packet traces with no
sampling. However, we envision the TCM algorithm to
work even if the packets/flows in the traces were sampled.
We plan to explore this further as a part of our future work.

References

[1] Bittorrent. <http://www.bittorrent.com/>.
[2] Emule project. <http://www.emule-project.net/>.
[3] Gigaget. <http://www.gigaget.com/>.
[4] Gnutella. <http://www.gnutella.com>.
[5] Ipoque survey. <http://www.ipoque.com/>.
[6] Kazaa. <http://www.kazaa.com/>.
[7] L7 filter. <http://l7-filter.sourceforge.net/>.
[8] Narus technical report. <http://www.narus.com/research/SLTC.pdf>.
[9] Skype. <http://www.skype.com/>.

[10] S. Baset, H. Schulzrinne, An analysis of the skype peer-to-peer
internet telephony protocol, in: Technical Report, CS Dept., Columbia
University, 2004.

[11] CacheLogic, The True Picture of Filesharing. <http://
www.cachelogic.com/home/pages/research/p2p2004.php>.

[12] F. Constantinou, P. Mavrommatis, Identifying known and unknown
peer-to-peer traffic, in: IEEE International Symposium on Network
Computing and Applications, 2006.

[13] J. Erman, M. Arlitt, A. Mahanti, Traffic classification using clustering
algorithms, in: ACM SIGCOMM Workshop on Mining Network Data,
2006.

[13] P. Haffner, S. Sen, O. Spatscheck, D. Wang, ACAS: automated
construction of application signatures, in: ACM SIGCOMM
Workshop on Mining Network Data, August 2005.

[15] T. Karagiannis, A. Broido, M. Faloutsos, K. Claffy, Transport layer
identification of p2p traffic, in: Proceedings of ACM SIGCOMM
Internet Measurement Conference, 2004.

[16] T. Karagiannis, K. Papagiannaki, M. Faloutsos, BLINC: multilevel
traffic classification in the dark, in Proceedings of ACM SIGCOMM,
August 2005.

[17] R. Keralapura, A. Nucci, C.-N. Chuah, Self-learning peer-to-peer
traffic classifier, in: ICCCN, 2009.

Table 2
New p2p application signature – Gigaget.

Protocol/set Index String

Gigaget/set-1 0 0 � 29000000
10 0 � 00000007000000434f4e4e454354

Gigaget/set-2 0 0 � 29000000
10 0 � 0000000
14 0 � 000000
17 0 � 474554

0 20 40 60 80 100 120
0

0.5

1

Time delay for automated SE (s)

C
D

F

Trace 1
Trace 2
Trace 3
Trace 4

Fig. 17. CDF of the total time lag.

R. Keralapura et al. / Computer Networks 54 (2010) 1055–1068 1067

Author's personal copy

[18] A. McGregor, M. Hall, P. Lorier, J. Brunskill, Flow clustering using
machine learning techniques, in: PAM, April 2004.

[19] A. Moore, K. Papagiannaki, Toward the accurate identification of
network applications, in: PAM, March 2005.

[20] B.-C. Park, Y.J. Won, M.-S. Kim, J.W. Hong, Towards automated
application signature generation for traffic identification, in: IEEE/
IFIP NOMS, 2008.

[21] S. Sen, O. Spatscheck, D. Wang, Accurate, scalable in-network
identification of p2p traffic using application signatures, in:
WWW2004, May 2004.

[22] D. Stutzbach, R. Rejaie, Understanding churn in peer-to-peer
networks, in: IMC, 2006.

[23] N. Williams, S. Zander, G. Armitrage, A preliminary performance
comparison of five machine learning algorithms for practical IP
traffic flow classification, in: CCR, October 2006.

[24] S. Zander, T. Nguyen, G. Armitage, Automated traffic classification
and application identification using machine learning, in: LCN’05,
November 2005.

[25] S. Zander, T. Nguyen, G. Armitage, Self-learning IP traffic
classification based on statistical flow characteristics, in: PAM, 2005.

Dr. Ram Keralapura is currently a Senior
Member of Technical Staff at Narus, Inc. He
received his BE in Electrical Engineering from
Bangalore University, India in 1998 and MS in
Computer Science from the University of
Alabama in Huntsville in 2000. He received
his Ph.D. from the Electrical and Computer
Engineering Department at UC, Davis in 2006.
His current interests are in overalay/p2p net-
works, managing distributed networks,
Internet routing, traffic engineering, security,
and cellular networks.

Dr. Antonio Nucci received the Dr.Ing Degree
in Electronics Engineering in 1998 and the Ph.D.
degree in telecommunications engineering in
2002, both from the Politecnico di Torino,
Turin, Italy. In September 2001 he joined the
Sprint Advanced Technology Laboratories,
Burlingame, CA, where he has been a principal
member of technical staff in the IP research
group until February 2005. He currently holds a
CTO position at Narus Inc. His research inter-
ests include traffic measurement, character-
ization and analysis, performance evaluation,

traffic engineering, security and network design. He is a IEEE senior
member.

Prof. Chen-Nee Chuah is currently an Asso-
ciate Professor in the Electrical and Computer
Engineering Department at the University of
California, Davis. She received her B.S. in
Electrical Engineering from Rutgers Univer-
sity, and her M.S. and Ph.D. in Electrical
Engineering and Computer Sciences from the
University of California, Berkeley. Her
research interests lie in the area of computer
networks and wireless/mobile computing,
with emphasis on Internet measurements,
network anomaly detection, network man-

agement, multimedia, online social networks, and vehicular ad hoc net-
works. She received the NSF CAREER Award in 2003, and the Outstanding
Junior Faculty Award from the UC Davis College of Engineering in 2004. In
2008, she was selected as a Chancellor’s Fellow of UC Davis. She has
served on the executive/technical program committee of several ACM and
IEEE conferences and is currently an Associate Editor for IEEE/ACM
Transactions on Networking.

1068 R. Keralapura et al. / Computer Networks 54 (2010) 1055–1068

