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Traffic sampled from the network backbone using uniform packet sampling is commonly
utilized to detect heavy hitters, estimate flow level statistics, as well as identify anomalies
like DDoS attacks and worm scans. Previous work has shown however that this technique
introduces flow bias and truncation which yields inaccurate flow statistics and ‘‘drowns
out” information from small flows, leading to large false positives in anomaly detection.

In this paper, we present a new sampling design: Fast Filtered Sampling (FFS), which is
comprised of an independent low-complexity filter, concatenated with any sampling
scheme at choice. FFS ensures the integrity of small flows for anomaly detection, while still
providing acceptable identification of heavy hitters. This is achieved through a filter design
which suppresses packets from flows as a function of their size, ‘‘boosting” small flows rel-
ative to medium and large flows. FFS design requires only one update operation per packet,
has two simple control parameters and can work in conjunction with existing sampling
mechanisms without any additional changes. Therefore, it accomplishes a lightweight
online implementation of the ‘‘flow-size dependent” sampling method. Through extensive
evaluation on traffic traces, we show the efficacy of FFS for applications such as portscan
detection and traffic estimation.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

Traffic measurement is an essential task performed by
large network operators for fault monitoring, traffic engi-
neering, billing, as well as anomaly detection. Given the
extremely high-speed of backbone links e.g., 40 Gb/s, pack-
et processing at a line card and the subsequent updating of
flow records requires a large amount of resources from
CPU and high-speed memory, both of which are at a pre-
mium. To ameliorate this situation, sampling is commonly
performed to reduce the memory and time complexity of
packet processing.

Random packet sampling is the de facto method de-
ployed in high-speed backbone routers on the Internet
. All rights reserved.
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for this purpose. The main reason for its prevalence is its
simplicity and efficiency. In its simplest form, every packet
is sampled with a probability p, i.e., flow record updates are
performed only for a fraction p of all the packets. Commer-
cial deployments use a variant called periodic sampling
that samples every Nth packet ðN ¼ 1=pÞ. Even though
packet sampling is known to have several drawbacks,
which we shall discuss soon, its dominance in current rou-
ters clearly illustrates the influence of the complexity con-
straint on actual deployment.

By the very definition of random packet sampling, the
likelihood of sampling a flow is proportional to its size
(in packets), also termed flow bias. This means that at
low sampling rates, the majority of flows in the sampled
traffic are more likely to be medium or large flows.
Although suitable for estimating ‘‘heavy hitters” or aggre-
gating traffic billing that are dominated by large flows,
flow bias makes random packet sampling perform very
poorly in tracking small flows. Detection and analysis of
omput. Netw. (2010), doi:10.1016/j.comnet.2010.01.015
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network anomalies such as distributed denial-of-service
(DDoS) attacks and portscans typically involve small flows
and are fast becoming important applications of traffic
measurements.

Previous studies [1,2] have shown that anomaly detec-
tion algorithms, when applied to traffic collected through
random packet sampling result in high false positives, ren-
dering the results less meaningful. The main reason for this
is the significant flow bias introduced by sampling, which
leads to sampled data containing a large number of med-
ium-sized flows compared to small flows. In other words,
the relative ratio of medium-sized flows to small sized
flows in sampled traffic is severely distorted from its origi-
nal value. This, coupled with the fact that medium-sized
flows in the original traffic also undergo ‘‘flow-thinning”
due to sampling, making them hard to distinguish from
small flows, introduces significant noise in the anomaly
detection process, causing false positives. Techniques such
as ‘‘smart sampling” [3] and ‘‘sample-and-hold” [4] that
were designed to accurately estimate heavy hitters also
performed poorly because of the same reason.

Our goal in this paper is to design a solution to this
problem while ensuring minimal complexity or change to
the existing traffic collection mechanisms. Intuitively, a
simple yet elegant solution to this problem would be to
lower the sampling rate of medium-sized and large flows
relative to small flows. This reduces the ‘‘noise” component
in the sampled traffic and can potentially allow an increase
in the average sampling probability of other flows of inter-
est, hence further increasing tracking accuracy of those
flows. Note, however, that an arbitrary reduction in sam-
pling rate for medium and large flows is not desirable be-
cause one would expect any new sampling scheme to still
satisfy the traditional applications such as traffic engineer-
ing and billing, which require accurate estimation of large
flows. Furthermore, implementation of such a ‘‘size-depen-
dent sampling” scheme also requires online knowledge of
flow size.

We propose Fast Filtered Sampling (FFS), a lightweight
implementation for allowing ‘‘controllable” flow-size-
dependent sampling that meets all of the above con-
straints. Fast Filtered Sampling is a two-stage mechanism
comprising a streaming filter followed by a regular packet
sampling module. The filter, which essentially consists of a
single array of counters, pre-processes packets from a flow,
hashes them to a counter, and then either admits or dis-
cards the packet based on the counter value. The filter re-
quires very simple operations per packet: hashing of the
flow ID, a counter increment or reset, and decision to drop
or pass the packet based on the counter value, thus achiev-
ing minimal complexity. Packets from the truncated flow
that make it through the filter are sent to the sampling
module, which samples the flow further exactly as in cur-
rent routers, thereby allowing for the possibility of just
adding in our filter without changing the existing sampling
mechanism.

Our contributions can be summarized as follows.

� First, we propose FFS – a light weight implementation of
‘‘size-dependent sampling”, a concept first explored by
Sketch-Guided Sampling (SGS) [5]. FFS involves installing
Please cite this article in press as: J. Mai et al., Fast Filtered Sampling, C
a counter array in conjunction with existing packet sam-
pling module to approximately estimate flow sizes, and
filter packets based on the counter value. It supports both
anomaly detection and traditional traffic engineering
applications, while maintaining low-complexity, which
is critical for implementation and deployment in practice.

� Second, we illustrate how the ‘‘sampling curve” yielded
by FFS as a function of flow size can be tuned through
proper filter parameterization. We also propose a simple
design methodology to optimize them, which makes FFS
easily configurable for a variety of monitoring
applications.

� By extensive evaluations on traffic traces collected from
a tier-1 backbone network, we show the effectiveness of
FFS as compared to regular random packet sampling
(RPS) in terms of reducing false positives for portscans
while yielding comparable performance in terms of tra-
ditional goals like ‘‘heavy hitter” detection and traffic
estimation.

� We also provide detailed comparison of FFS against the
ideal size-dependent sampling, SGS, with respect to dif-
ferent monitoring applications: heavy hitter identifica-
tion, and portscan detection. SGS achieves ‘‘size-
dependent” sampling through online estimation of flow
size to lower sampling rates for larger flows. However,
the lack of specific implementation details in [5] moti-
vates us to design FFS markedly different to achieve
the same objective, but with different trade-offs
between complexity and accuracy. we illustrate how
FFS can be used in conjunction with adaptive sampling
to achieve target measurement cost and accuracy. Note
that since the filter actually reduces traffic arriving at
the sampling module, the latter can run at a sampling
rate p0 > p, where p is the maximum achievable sam-
pling rate in traditional systems. We leverage this fea-
ture and study the increment in p0 as well as the
resultant benefits.

� Finally, we extend FFS by incorporating two specialized
multiple-hashing schemes to improve the accuracy of
traffic accounting and the capability to capture unique
flows, while further reducing memory consumption.
First, a circular counting Bloom Filter (cCBF) is intro-
duced to improve flow size estimation of heavy hitters
using counters that are at most one byte each. Second,
we propose a header-based hierarchical Bloom Filter
(hHBF), which is capable of capturing almost 100% of
all the unique flows on a Tier-1 ISP backbone link
appearing in the 5-min measurement epoch with only
2 MB fast memory.

The remainder of the paper is structured as follows:
Section 2 outlines the literature on sampling and stream-
ing that is relevant to our work. Section 3 presents the Fast
Filtered Sampling scheme, the intuition behind the design,
and its properties. It also details a comparison against SGS.
Empirical evaluation of FFS with respect to a variety of
metrics is carried out in Section 4 over real traffic traces
and its performance compared with regular packet sam-
pling, SGS, and in some cases, flow sampling. The two
extensions cCBF and hHBF are discussed in Section 5. Sec-
tion 6 concludes the paper.
omput. Netw. (2010), doi:10.1016/j.comnet.2010.01.015
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2. Related work

Traffic measurement is key to various network manage-
ment tasks such as traffic engineering (TE), accounting and
billing, capacity planning, and anomaly detection. Most
traffic measurement tools, such as Cisco’s NetFlow [6],
FlowScan [7], and sFlow [8], typically monitor a link and
count the number of packets (or bytes) that satisfies some
selection criteria. Flow statistics are then derived from the
selected packets. Keeping such per-flow traffic profiles in
today’s high-speed routers can be challenging to both the
processor and the memory. Therefore, deterministic or
random packet sampling is commonly employed. The IETF
Packet Sampling (PSAMP) working group attempts to de-
fine a set of standard capabilities for network elements
to sample packets [9–11]. On the other hand, the Flow
Information Export (IPFIX) working group is chartered to
define the notion of a ‘‘standard IP flow” and IP flow infor-
mation export based upon packet sampling [12–14].
2.1. Inaccuracy due to sampling

While packet sampling is simple to implement, exten-
sive research has shown that it leads to inaccurate infer-
ence of flow statistics such as the flow size distribution
[3,15]. Adaptive schemes that dynamically adjust the pack-
et sampling rate and other operational parameters to re-
duce the number of flow records while maintaining
accuracy have been proposed in [16,17]. On the other hand,
Hohn and Veitch [15] discuss the inaccuracy of estimating
flow distribution from sampled traffic, when sampling is
performed at the packet level, and show that sampling at
the flow level leads to more accurate estimations. How-
ever, flow sampling incurs higher memory and CPU con-
sumption. Duffield et al. propose mechanisms for
sampling flow records under hard resource constraints
[18], and for consistent sampling across multiple network
elements [19]. Other variants such as sample-and-hold [4]
and smart sampling [3] focus on obtaining accurate estima-
tion of heavy hitters at the expense of lower accuracy in
tracking small flows.

Recently, sampled data has been used as input for
anomaly detection, e.g., detecting denial-of-service (DoS)
attacks or worm scans. Anomaly detection often operates
on a different region of information than those required
for TE and accounting purposes. For example, information
such as per source behavior and small flows is important
for portscan detection. Recent work [2,1] has shown that
random packet sampling and flow sampling with emphasis
on heavy hitters are not suitable for detecting portscans.
2.2. Combined streaming and sampling

Data streaming implemented with counter arrays in fast
memory has been proposed to obtain accurate flow size
information on high-speed links [20]. Unlike sampling,
streaming itself does not record the identity of flows. There-
fore, streaming combined with sampling has been pro-
posed to obtain traffic features such as detection of super
sources or destinations [21]. Kumar et al. [22] combine
Please cite this article in press as: J. Mai et al., Fast Filtered Sampling, C
packet sampling and streaming to statistically estimate
flow size distribution for any arbitrary subpopulation
including anomalous flows. Venkataraman et al. [23] design
new streaming algorithms for fast detection of super-
spreaders such as worm scanners, which connect to a large
number of distinct destinations. In this algorithm, a tradi-
tional hash-based flow sampling scheme followed by an-
other hash table is used to count the fan-out values for
each sampled source. Another family of approach is to use
sketches as high-speed counting devices, and select packets
with dominant counts in such sketches for sampling or fur-
ther processing. Examples include an automated worm fin-
gerprinting mechanism that classifies content segments
that are seen coming from multiple sources and going to
multiple destinations as possible worm signatures [24].

Our FFS scheme is related to size-dependent flow sam-
pling, of which both offline and online variants have been
proposed. Offline approaches assume flow records have
been collected in advance and the exact flow size informa-
tion is known. The proposed techniques then select certain
flow records according to pre-defined constraints [3,18] to
keep or to export. The offline approaches are difficult to
implement because of the memory/CPU requirement to ob-
tain a full flow table in advance. The online approaches de-
cide the sampling rate of a flow on-the-fly and examples are
sample-and-hold [4] and sketch guided sampling (SGS) [5].
As mentioned, sample-and-hold focuses on flows of large
sizes only. SGS, on the other hand, allows a designer to tai-
lor the sampling rate as a function of flow size, while pro-
viding flexibility in the allocation of resources.

SGS is the closest related sampling scheme compared to
FFS. Its main idea is to make the probability with which an
incoming packet is sampled a decreasing sampling func-
tion of the size of the flow the packet belongs to. This
way SGS is able to significantly increase the packet sam-
pling rate of the small and medium flows at the expense
of the large flows to improve the accuracy of flow size esti-
mation especially for small and medium flows. Both SGS
and FFS utilize sketches or counter arrays to keep the flow
size information and computes sampling probabilities f ðiÞ
for each packet as a function of its flow size i. It is shown
in SGS that in order to achieve linear growth of the estima-
tion error � as flow size ia increases, where 1=2 6 a 6 1 is a
tunable constant, the sampling function f ðiÞ needs to be
1=ð1þ �2ið2a�1ÞÞ, with i being the actual flow size. When
a ¼ 1=2, the sampling probability f ðiÞ ¼ 1=ð1þ �2Þ is a con-
stant which corresponds to uniform sampling. If a ¼ 1, the
sampling function becomes f ðiÞ ¼ 1=ð1þ �2iÞ, which
proves to have a constant relative error in flow size estima-
tion. SGS adopts this sampling function to ensure that later
packets from large flows get sampled less and less to re-
duce resources. Another parameter b can be introduced
to further lower the sampling probability to match other
sampling methods. In our evaluation, we choose f ðiÞ ¼
b=ð1þ �2ið2a�1ÞÞ, where 0 < b 6 1.

Similar to SGS, the goal of FFS is to increase the effective
sampling rate of small flows, which is essential for detect-
ing anomalies such as portscans. We however differ from
SGS in that our design is much simpler and decoupled from
the sampling mechanism, allowing for incremental
upgrades without affecting existing sampling modules in
omput. Netw. (2010), doi:10.1016/j.comnet.2010.01.015
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a router. Section 3.3 provides a more in-depth comparison
of FFS and SGS. Quantitative performance comparison be-
tween FFS and SGS in the context of supporting portscan
detection and other applications is presented in Section 4.3.

2.3. Sampling with Bloom Filters

Estan and Varghese [25] applied Bloom Filters to net-
work measurement problem of detecting heavy hitters in
traffic. Each packet entering a router is hashed k times into
a counting Bloom Filter. The counters are incremented by
the number of bytes in the packet. In order to reduce the
false positives significantly, a conservative update is per-
formed. More recently, Kumar et al. [26] propose a novel
technique called space-code Bloom Filter, for approximate
measurement of all flows instead of just heavy hitters. Lu
et al. [27] designed a novel data structure ‘‘counter braids”
which is inspired by Bloom Filter and sparse random graph
codes. It is shown that counter braids measures all flow
sizes error-free with only 5 bits per flow. Another recent
work FlexSample [28] dynamically extracts traffic from
subpopulations that operators define using conditions on
packet header fields. FlexSample uses a fast, flexible count-
ing Bloom Filter to provide rough estimates of packets’
membership in respective subpopulations.

The latest work on traffic measurement [29,30] provides
more flexible sampling of traffic programmable set of flows
tailored to application requirements and/or traffic condi-
tions. The programmable flow set partition language [29]
and the generic language for application-specific flow sam-
pling [30] both assume a priori knowledge of flow set com-
position such as elephant flows, small flows, or certain
subpopulations. FFS and its extensions, however, is designed
as generic sampling methods that single out small, medium,
and large flows, which servers as a first step towards zoom-
ing-in on specific group of flows or subpopulations.
p
......

packets

Filtering Module
Sampling Module

(s, l)

Fig. 1. The two-stage architecture using a high-speed streaming filter
ahead of sampling module.
3. Fast Filtered Sampling

The broad motivation behind FFS is to design a low-
complexity mechanism that can provide some degree of
control over the sampling rate perceived by a flow as a
function of its size. More specifically, as alluded to previ-
ously, we wish to lower the sampling rate as the flow size
increases. While similar in objective to SGS [5], our motiva-
tion and design is different. From the perspective of anom-
aly detection, it is beneficial to reduce the likelihood of
sampling mid-sized flows (relative to small flows) since
they have been shown to act as a source of noise as far
as anomalies are concerned [1]. At the same time, we
would like to detect large flows since they are useful for
billing and traffic engineering purposes, and do not unduly
affect anomaly detection and IP source addresses with
large fan-out/fan-in values that are usually candidates for
potential anomalies.

3.1. The design

We now discuss the motivation for our design princi-
ples and how they are in line with our dual objectives.
Please cite this article in press as: J. Mai et al., Fast Filtered Sampling, C
The Fast Filtered Sampling (FFS) architecture shown in
Fig. 1 consists of two modules. The sampling module per-
forms random or uniform packet sampling with some
probability p as is common in current routers. The intelli-
gence of the scheme lies in the first phase, the filter module
which comprises of an array of N counters of m bits each.
The counting array filters out packets based on two a priori
specified parameters ðs; lÞ in the following fashion. Every
incoming packet is hashed based upon its flow id to one
of the N counters and the value of that counter incre-
mented modulo l. If the value of the updated counter is less
than s, the packet is passed onto the sampling module
where it may be selected with probability p or discarded
otherwise. Note that by virtue of the modulo l operation,
if the counter value exceeds l, it is reset to zero.

To see how this scheme influences the actual packet
sampling rate, consider a flow that initially hashes to an
‘‘empty” counter. If the flow size i 6 s, it passes through
the filter undisturbed (barring hash collisions from other
flows) and each packet will be sampled with probability
p by the sampling module. If s < i 6 l, the flow will get
truncated to s packets by the filter, which reduces their
chance of getting sampled comparing to the case where
no filter is presented. Finally, flows of size i > l will get
‘‘thinned” by a constant factor l

s

� �
before arriving at the

sampling module, since the counter resets to zero when
more than l packets hash to the counter due to the modulo
l operation.

Therefore, the ‘‘sampling” curve of the filter sampling
mechanism as a function of the flow size can be succinctly
captured with following equations:

Pr
A packet sampled
from flow of size i

� �
¼

p if 1 6 i < s;

ps=i if s 6 i < l;

ps=l otherwise:

8><
>: ð1Þ

The intuition behind our filter design is based on the
Zipfian nature of network traffic, which has been validated
by previous works through extensive measurements. Spe-
cifically, small flows are numerous, but contribute a small
percentage to the total traffic; while large flows, though
few, account for a major fraction of the actual traffic.
Anomalies usually manifest as small flows with large fan-
outs, e.g., portscans, or have large fan-ins e.g., DDoS attacks.
By setting s to an appropriately small value, this type of
traffic should pass through the filter undisturbed since
they would very likely hash to different locations in the
counter array and have size smaller than s. They still get
omput. Netw. (2010), doi:10.1016/j.comnet.2010.01.015
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Table 1
Optimal filter parameters ðs�; l�Þu for uniform flow distribution, and ðs�; l�Þz
for Zipfian flow distribution ð� ¼ 0:01Þ.

S L p ðs�; l�Þu ðs�; l�Þz
1 1000 0.01 (1,2) (1,2)
5 1000 0.01 (4,8) (4,8)
10 1000 0.01 (8,16) (8,16)
1 10,000 0.01 (1,16) (1,16)
5 10,000 0.01 (3,64) (1,16)
10 10,000 0.01 (3,64) (1,16)
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sampled with probability p by the sampling module
though. Moderately sized flows that are part of regular
behavior would typically get truncated to s packets, reduc-
ing their sampling likelihood. Since they are fewer in num-
ber, the presence of the filter has the potential to
dramatically reduce their presence after sampling. Finally,
even though the large flows experience the lowest sam-
pling rate of p s

l

� �
, they are still measurable for traffic engi-

neering purposes due to their proportionately large size.

3.2. Setting filter parameters

Generally, the sampling probability p is decided by a
router’s CPU, memory, and peak traffic load. However, in
practice, determining the optimal sampling rate is difficult
because it would require a priori information about the
traffic mix and dynamics. Consequently, we assume that
p is a fixed input to FFS. Note that our filter actually reduces
the traffic offered to the sampling module. Hence, one
could potentially increase the sampling rate to boost per-
formance. We also envision an adaptive sampling scheme
[16] that varies the sampling rate as a function of memory
usage, which undoubtedly allows an increase in sampling
rate. We do indeed identify the associated benefits through
empirical evaluation in Section 4.

Assuming the filter has a sufficiently large number of
counters available at its disposal [31] so as to minimize
hash collisions, the performance of the filter is controlled
by the filter module parameters ðs; lÞ and the sampling
probability p. We present here a simple methodology that
guides the selection of the filter parameters. Let flows with
size in the range ½S;L� be defined as medium-sized flows,
where S and L are inputs to the design process provided
by the network operator/designer. Our goals of the filter
design are as follows:

1) Minimize the likelihood that we sample a flow of
size i 2 ½S;L� to improve anomaly detection,

2) Ensure that we sample large flows (i.e., i > L) for
useful traffic accounting with confidence 1� �,
where � is a small value satisfying 0 6 � < 1.

The probability of detecting a flow of size i P s is given
by

Di ¼ 1� ð1� pÞs
i
ld e: ð2Þ

We treat detection of a medium-sized flow as distortion,
therefore we wish to minimize Di for i 2 ½S;L�. Equiva-
lently, we can maximize

lnð1� DiÞ ¼ s
i
l

� �
lnð1� pÞ ¼ s

i
l

� �
q; ð3Þ

where q ¼ lnð1� pÞ. If f ðiÞ is the likelihood that a flow is of
size i, a suitable cost function to maximize is:

PL
i¼Sf ðiÞs i

l

� �
q.

In practice, however, f ðiÞ cannot be predetermined. There
are a few choices, for example, we could minimize the
cumulative relative distortion

PL
i¼Ss i

l

� �
q instead, which

essentially simulates an uniform distribution. An alterna-
tive is to assume a Zipfian distribution to optimize the
parameters.
Please cite this article in press as: J. Mai et al., Fast Filtered Sampling, C
Our second objective states that we wish to ensure a
large flow sampled with certain confidence:

DLþ1 ¼ 1� ð1� pÞs
Lþ1

ld e P 1� �: ð4Þ

Similarly we could simplify it as:

s
L þ 1

l

� �
P

ln �
q
: ð5Þ

Putting it all together, we wish to solve the following
optimization problem for the uniform distribution:

A1 : max
s;l2fZþg

XL
i¼S

s
i
l

� �
q ð6Þ

subject to s
Lþ 1

l

� �
P

ln �
q
; ð7Þ

1 6 s 6 S 6 l: ð8Þ

The constraint s 6 S 6 l ensures that flows in the range
½S;L� experience sampling governed by filter constraints.
Observe in the above cost function Eq. (6), that for a feasible
value of l, we should choose as small an s as possible in or-
der to maximize the cost since q is negative. This allows us
to efficiently search the solution space. Specifically we vary

l from S to L, and for each l we set s ¼ ln �
q = Lþ1

l

� �l m
and com-

pute the cost function. The ðs; lÞ combination that yields
the largest cost is then chosen. Table 1 shows optimal val-
ues of ðs�; l�Þ for some example values of S and L. Note we
choose l to be power of 2 to align with counter boundaries.

3.3. Effect of filtering

To demonstrate how FFS filter with parameters ðs; lÞ af-
fects the traffic sampled, we list packet and flow counts
from a real traffic trace by FFS compared against RPS and
SGS in Table 2. To ensure fair comparison, we fix the packet
sampling rate to 1/100 for both RPS and the second stage of
FFS. The parameters for SGS used in the evaluation were
a ¼ 1; � ¼ 0:5, thus the sampling function is set to be
1=ð1þ 0:52iÞ, where i is the flow size. We then re-sample
the output trace from SGS with a rate of 1/80, so that effec-
tively the first packet in each flow gets picked at a proba-
bility of 1/100, which is exactly the same for both FFS
and RPS. Note that the effective packet sampling rate of
FFS is hence much lower than 1/100 as a result of the
first-stage filter, leading to much lower resource consump-
tion. For example, FFS with parameters ðs; lÞ ¼ ð4;8Þ sam-
ples only 0.54% packets, an equivalent to 1/200 RPS.
When ðs; lÞ ¼ ð3;64Þ, FFS captures 0.21% of the total pack-
omput. Netw. (2010), doi:10.1016/j.comnet.2010.01.015
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Table 2
Number (percentage) of packets and flows captured by RPS, FFS, and SGS
from Trace BB-West.

Sampling No. of packets (%) No. of flows (%)

Original 61,998,113 8,083,202
RPS 619,983 (1.00%) 351,928 (4.35%)
FFS (4,8) 332,633 (0.54%) 239,250 (2.95%)
SGS 174,606 (0.28%) 171,295 (2.12%)
FFS (3,64) 132,624 (0.21%) 129,084 (1.60%)
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ets, which is approximately 1/400 in RPS. The design of the
FFS indeed guarantees that the flow table in routers do not
see more traffic than with existing sampling techniques
regardless of the values of ðs; lÞ.

We found that the flow counts for different flow sizes
observed by FFS is different from RPS. Since our filter is de-
signed to suppress the relative sampling rate of medium-
sized flows while maintaining reasonable estimates of
large-sized flows, it is not surprising that flow sampling ra-
tio for mid-sized flows is much lower for FFS compared to
RPS. We shall see the benefits of this suppression in Section
4.3 when we use the sampled traffic to detect portscans.
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4. Performance evaluation

Our evaluation of FFS was carried out on packet traces
collected on two OC-48 links in a Tier-1 ISP’s backbone net-
work. These traces were collected by a passive monitoring
system that captures the first 48 bytes of the IP header of
every IP packet traversing the monitored link. Details of
the traces are presented in Table 3. Our evaluation was car-
ried out by applying different sampling techniques to the
traces and then analyzing metrics related to different
applications/traffic features on these sampled traces.

The performance of FFS on capturing traffic features as
well as detecting scanners are compared against two other
sampling schemes: (a) random packet sampling (RPS),
which emulates the behavior of the Cisco NetFlow sam-
pling process [6], and (b) sketch guided sampling (SGS),
the closest related work to FFS. For portscan detection,
we also consider random flow sampling (RFS) as another
benchmark for comparison, since RFS has been shown to
provide more accurate estimation of flow distribution
[15] although it is prohibitively expensive to implement.

Our study focuses on quantifying how accurate FFS is in
preserving traffic features despite the much lower overall
sampling rate. Design features compared with SGS are
studied in Section 4.1. Section 4.2 investigates the applica-
tion of FFS to identifying large flows. Section 4.3 compares
portscan detection performance among all sampling
schemes. In Section 4.4, we explore how the accuracy of
FFS can be improved by adapting the second-stage packet
Table 3
Trace data statistics.

Trace Date Average rate Duration

BB-West 03-08-2003 55 Mbps 1 h
BB-East1 04-07-2003 208 Mbps 18 h
BB-East2 04-07-2003 269 Mbps 18 h

Please cite this article in press as: J. Mai et al., Fast Filtered Sampling, C
sampling rate to meet the same resource budgets (e.g.,
number of packets processed) as RPS.

4.1. FFS design features

The core guiding principle in the FFS design is to ensure
low per packet processing complexity, which is critical on
high-speed links. For example, on an OC-762 (40 Gbps)
link, forwarding and monitoring functions for each packet
must be completed in roughly 25 ns assuming 1000 bit
packets. This requires that the operations per packet are
both simple and low in number. Indeed, such a severely re-
source constrained environment is the primary reason why
present day routers deploy periodic sampling rather than
random sampling since the latter involves expensive com-
putation. FFS adheres to such requirements by requiring
only three additional updates to packet processing in order
to achieve flow-size-dependent sampling compared to ran-
dom packet sampling: computation of the hash function,
incrementing the counter array, and decision to drop or
pass the packet. All three operations can be implemented
in binary arithmetic which significantly speeds up process-
ing. FFS also has low memory requirements since the width
of each counter need only be log2l. Since typically l 6 128, a
one byte counter is sufficient.

It is worthwhile to compare the FFS design against its
closest counterpart SGS [5] at this stage. SGS aims to re-
duce the sampling rate with increasing flow size. It utilizes
a ‘‘smooth curve” function of the estimated flow size i, to
determine the packet sampling probability pi for each

packet belonging to the flow, e.g., pi ¼ b
1þ�2 f 2a�1

i
, where

a; b, and � are constants. In fact, one could view the sam-
pling rate curve generated by FFS in Eq. (1) as a piecewise
approximation of the SGS curve. To illustrate this, we have
plotted both sampling curves in Fig. 2. Note that we used a
value of b ¼ 0:0125 so that the sampling rates for the first
packet are equal from both SGS and FFS. a ¼ 1 and � ¼ 0:5
were chosen based on parameters used in [5].

The filter module used in our experiment for FFS and
SGS has an array of N ¼ 8M counters, which handles the
traces with minimum collisions. In our evaluations the
maximum value of l ¼ 128 and hence FFS requires only a
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Fig. 2. The packet sampling probability vs. flow size for FFS and SGS.
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7-bit counter. The design principle of SGS presented in [5]
naturally leads us to pick a 32-bit wide counter to accom-
modate large flow sizes and prevent counter overflow.
While one could potentially envision small counter sizes
for SGS, in which case, the sampling probability would be
’frozen’ when the counter fills-up, these aspects were not
discussed in [5] and hence we remain true to the original
design proposal.

The benefit of sampling with a flexible ‘‘smooth curve”
in SGS comes at the price of increased complexity. Not only
does it demand an overall change in the existing sampling
mechanism, SGS also requires more processing capability.
For each packet to be sampled, SGS requires either on-
the-fly arithmetic computation of the sampling probability
or a look-up table that a priori stores all sampling probabil-
ities. The former incurs processing penalty and the latter
memory resources. Moreover, changing the sampling prob-
ability function when reconfiguring the router will intro-
duce heavy overhead on packet processing. FFS, on the
other hand, embodies the decoupling of filtering and sam-
pling. It brings an important benefit by allowing insertion
of the filter without disturbing the existing sampling
mechanism (be it random or systematic packet sampling),
or requiring any additional operations from the existing
sampling module.

Next we will compare the actual performance between
FFS and other sampling schemes including SGS, and shows
that in spite of its simplicity FFS yields similar or better
results.
4.2. Catching heavy hitters

In this section, we investigate if a simple scheme like
FFS, which focuses on tracking small flows, can provide
reasonably good estimates of heavy hitters. We design
the streaming filter to detect flows of size larger than L
with probability close to 1. This guarantees at least one
packet will be sampled from those flows. To infer the origi-
nal flow size from the sampled size with certain accuracy,
however, requires more than just one sampled packet. We
know that for a large flow of size n, the average size after
uniform sampling is k ¼ pn, which follows a binomial dis-
tribution. Hence the estimator n̂ ¼ k=p is an unbiased esti-

mator of n with variance [32]: Var k
p

� 	
¼ 1

p2 � npð1� pÞ ¼
nð1�pÞ

p . Note that n̂ ¼ k=p is the estimator for RPS. In case

of FFS, the filter scaling needs to be considered, i.e.,
n̂ ¼ dkl=ðpsÞe.

From the original packet trace, we can easily identify a
list of heavy hitters (i.e., flows with more than L packets) as
the ground truth. We then compute the estimated flow
Table 4
Heavy hitters detection results with RPS p ¼ 1=100, FFS ðs; lÞ ¼ ð3;64Þ; p ¼ 1=100
(total: 606), and Trace BB-East2 (total: 1717) for 1 h.

Sampling BB-East1

RPS 1=100 FFS ð3;64Þ rSGS

Success ðNsÞ 464 (76.6%) 202 (33.3%) 253 (4
False positive ðNfþÞ 65 (10.7%) 125 (20.6%) 383 (8
False negative ðNf�Þ 142 (23.4%) 404 (66.7%) 353 (5

Please cite this article in press as: J. Mai et al., Fast Filtered Sampling, C
sizes using the sampled data from RPS, FFS, and SGS and
classify flows with estimated flow size greater than L as
heavy hitters. Table 4 shows the number of successfully
detected heavy hitters ðNsÞ, false positives ðNfþÞ, and false
negatives ðNf�Þ for RPS, FFS, and SGS as compared to the
ground-truth. In this test, we set L ¼ 1000 packets and
estimate the number of the large flows with size greater
than L.

With a sampling rate of p ¼ 1=100, RPS detects over
75% of the heavy hitters in Trace BB-East 1 and 60% of
the heavy hitters in Trace BB-East 2. Note that FFS man-
ages to catch half of the heavy hitters detected by RPS be-
cause it samples much less packets as indicated in Table
2. SGS, on the other hand, detects slightly more heavy
hitters observed by FFS, but with almost tripled false
positives. This is because re-sampling must be done to
ensure that packet rates of all sampling schemes are com-
parable and this causes performance deterioration for
SGS. However, it is important that one should not hold
this against SGS since reducing measurement cost is not
the primary design goal of SGS. It is our purpose to illus-
trate that it is not practical to deploy SGS in conjunction
with a second-stage random packet sampling with the
hope of reducing measurement resources, because it
may introduces huge inaccuracy. Without re-sampling,
SGS provides much better accuracy in flow size estima-
tion. However, in order to achieve that, SGS would end
up sampling about 25% of the packets, a rate impractical
due to heavy processing overload.

Figs. 3 and 4 compare the estimated flow size distribu-
tion against the original flow sizes for the BB-East1 and BB-
East2 Traces, respectively. Compared to RPS, the inverted
flow size by FFS and rSGS is not as accurate as RPS. This ex-
plains why FFS ð3;64Þwith p = 1/100 fails to detect some of
the heavy hitters observed by RPS. Note that with this
parameter setting, the effective packet sampling rate of
FFS is 1/169, which is approximately half of RPS. FFS with
parameter (3,64) is also comparable with SGS in terms of
packets/flows captured as indicated from both Table 2
and the sampling curves in Fig. 2. Given that FFS can lever-
age the much lower resource consumption to raise the sec-
ond-stage sampling probability (as shown in Section 4.4),
flow size estimation can be expected to be more accurate
than RPS with equivalent sampling rate.

4.3. Portscan detection

One of the common classes of anomalies that are visible
to ISPs is portscan, which is usually associated with worm
or virus propagation. TAPS [33] was previously proposed as
an effective portscan detection mechanism for backbone
and re-sampled SGS (rSGS) a ¼ 1; � ¼ 0:5; p ¼ 1=80 from Trace BB-East1

BB-East2

RPS 1=100 FFS ð3;64Þ rSGS

1.7%) 1093 (63.7%) 517 (30.1%) 654 (38.1%)
3.8%) 119 (6.93%) 358 (20.9%) 837 (48.7%)
8.3%) 624 (36.3%) 1200 (69.9%) 1063 (61.9%)

omput. Netw. (2010), doi:10.1016/j.comnet.2010.01.015
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environment. TAPS utilizes the access pattern to separate
scanners from benign hosts. This is based on the observa-
tion that a scanner often initiates connections to a larger
spread of destination IP addresses, or port numbers. TAPS
combines a rate limiting scheme for event generation with
the sequential hypotheses test to achieve fast detection as
well as low false positive rate.

TAPS forms two hypothesis, H0 that a source is a
‘‘benign” host and H1 that a source is a ‘‘scanner”, charac-
terized by the likelihood of the success or failure of a con-
nection. The rationale for this definition is based on the
observation that a scanner often initiates connections to
a larger spread of destination IP addresses (horizontal
scan), or port numbers (vertical scan). In other words, the
ratio c between distinct destination IP addresses and port
numbers (or its reciprocal, whichever is bigger) for a scan-
ner is far larger than a non-scanner. The algorithm works
as follows. In each time bin (say i seconds), for each source,
the ratio c is computed and compared to a pre-defined
threshold k. The event variable in the hypothesis testing
associated with that time bin is then set to 0 or 1 depend-
ing on whether c exceeds or lies below the threshold. The
likelihood ratio of the hypothesis testing is then updated
based on the value of the set event variable. Decision
regarding which hypothesis applies to the source is made
based on whether the likelihood ratio crosses a scanner
threshold or a benign host threshold. It is clear from the
above discussion that the threshold k affects the accuracy
of detection, while time bin size controls the promptness
of decision making.
Please cite this article in press as: J. Mai et al., Fast Filtered Sampling, C
In this section, we evaluate the performance of TAPS
under FFS compared to RPS and SGS. Similar to previous
study in the literature [1], we consider the following met-
rics: the success ratio Rs that indicates the effectiveness of
the detection algorithm, and the false positive ratio Rfþ
that measures the relative error of mistakenly tagging a be-
nign flow as port scanner. The metrics were normalized by
the ground-truth so as to be comparable across different
sampling schemes. Note when comparing performance of
different detectors, ROC curves are often cited. However,
our focus in the paper is to compare the relative perfor-
mance of TAPS using data collected by different sampling
methods. Hence we set k ¼ 3 and vary the time bin value
to plot the above defined success ratio and false positive
ratio instead.

It turns out that comparing to RPS, FFS maintains a sim-
ilar success ratio, while producing a lower false positive ra-
tio. Fig. 5 shows the success and false positive ratios for FFS
with ðs; lÞ ¼ ð4;8Þ and ðs; lÞ ¼ ð3;64Þ versus random packet
sampling (RPS) at rate 1=100 and random flow sampling
(RFS) with probability 0:01, and SGS using the same
parameters as in Fig. 2. All four approaches have similar
performance in terms of success ratio with SGS being
slightly better than the rest. Both SGS and FFS perform bet-
ter than RPS in terms of false positives. Particularly, FFS
with parameter ðs; lÞ ¼ ð3;64Þ introduces much lower false
positive ratio compared to rSGS. Previous work [2,1] has
shown that false positives are mainly caused by flow-thin-
ning, wherein a multi-packet flow is shortened to a single
packet flow by packet sampling. FFS suppresses the frac-
omput. Netw. (2010), doi:10.1016/j.comnet.2010.01.015
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Fig. 5. Portscan detection results under FFS compared to RPS, RFS, and SGS.
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tion of medium flows being sampled by design, hence
resulting in lower false positive ratios.
4.4. Adaptive sampling rate

Often in practice the sampling probability p is already
known based on memory, CPU, and peak load require-
ments. Consequently, we assume that p is a fixed input to
our process. Note that the filter actually reduces the traffic
offered to the sampling module. Hence, one could poten-
tially increase the sampling rate compared to a system
without the filter, and in the more general case also treat
p as a variable that needs to be optimized. While this
would definitely boost performance, it is problematic to a
priori estimate p since it would require information about
the traffic mix and dynamics to quantify the reduction by
the filter, which is hard to obtain.

Alternatively, one could envision an adaptive sampling
scheme (e.g., [16]) that varies the sampling rate as a func-
tion of memory usage. This would also undoubtedly allow
an increase in sampling rate because of lower traffic arriv-
ing to the sampling module and we do indeed identify the
associated benefits through empirical evaluation in Sec-
tions 4.2 and 4.3. However, even in this case, there is a no-
tion of average sampling probability that must be honored.

Obviously from Eq. (1), the effective packet sampling
rate for FFS is at most p, under the condition that almost
all flows are with size i 6 s. Typical scenarios where this
happens include flooding attacks and worm breakouts. In
these extreme cases, the filter in FFS becomes an all-pass
filter, with no filtering effects. We have to lower the sam-
pling probability p in the second stage of FFS to alleviate
the load on router’s CPU and memory and network band-
width. In most cases, filtering often reduces the number
of packets passed to the sampling stage. Therefore, under
Table 5
Number and percentage of packets and flows captured by FFS and RPS with ad
8,083,202 flows).

Sampling schemes No. of packets

RPS (No filter), p = 1/100 619,983
FFS s ¼ 1; l ¼ 16; p ¼ 1=10 1,025,582
FFS s ¼ 4; l ¼ 8; p ¼ 1=60 608,146
FFS s ¼ 4; l ¼ 128; p ¼ 1=30 561,464

Please cite this article in press as: J. Mai et al., Fast Filtered Sampling, C
normal traffic load conditions, we could increase the sam-
pling rate to whatever resource constraints allow us.

Adaptive sampling has previously been proposed in the
literature. Choi et al. [17] suggested that sampling rate
should be adapted based on packet size distribution and
total packet count within given time blocks to achieve tar-
get load measurement accuracy. Estan et al. [16] recom-
mended adaptive sampling to overcome major
shortcomings of NetFlow, which include router memory
and network bandwidth overflow during flooding attacks,
and static-rate sampling is not suitable for all applications.
We propose to adapt the sampling rate in the second stage
of FFS so that the composite filtering and sampling fraction
meets the rate of RPS. As we show next, the advantages of
the rate increase include improvement in flow size estima-
tion of heavy hitters and better detection of portscans.

Table 5 lists the number and percentage of packets and
flows captured through FFS if we were to adapt the sam-
pling rate to match the effective packet sampling rate of
RPS. For instance, FFS with ðs; lÞ ¼ ð1;16Þ allows us to in-
crease the random sampling rate to p ¼ 1=10 so that the
equivalent packet sampling rate is around 1=60. The bene-
fit of raising p is shown in Fig. 6, where the success detec-
tion ratio using TAPS is improved for FFS, while the false
positive ratio remains at the same level as RPS with similar
sampling rate of 1/50.
5. Filtered sampling with memory constraints

Fast Filter Sampling (FFS) comprises two stages – an
independent counting array to estimate flow size and filter
packets based on the estimated size, and a sampler at
choice to further sample packets. FFS amends the integrity
of small flows for anomaly detection, while still providing
acceptable identification of heavy hitters. Yet there are
aptive sampling rate for the BB-West Trace (total 61,998,113 packets and

% of packets No. of flows % of flows

1.0% 351,928 4.35%
1.65% 872,489 10.8%
0.98% 392,059 4.85%
0.91% 530,024 6.56%

omput. Netw. (2010), doi:10.1016/j.comnet.2010.01.015
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Fig. 6. Performance of TAPS under FFS with increased packet sampling rate compared to RPS and RFS.

Table 6
False positive rate of bloom filters with different parameters ðk 6 m=nÞ.

m=n 4 6 8 10 12

k ¼ 6 – 6.38% 2.16% 0.844% 0.371%
k ¼ 3 14.7% 6.09% 3.06% 1.74% 1.08%
k ¼ 1 22.1% 15.4% 11.8% 9.52% 8.00%

......
h2(f)

h3(f)

h1(f)

cCBF

c <= S?
packet flow ID f Table

Flow

drop

(S,L)

pass

Fig. 7. The architecture of cCBF using a lightweight circular Bloom Filter
for sampling.
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quite a few avenues to improve in FFS design and perfor-
mance. While we try to ameliorate hash collisions in
updating counters in the filter by using sophisticated hash-
ing functions such as MD5, the collision ratio drops only
insignificantly, but per packet processing time increases
well above the budget of online processing time. In addi-
tion, the amount of fast SRAM memory needed for the filter
and flow table is much higher than practically possible.
Strict memory constraints are required to design the data
structure and sampling schemes.

In this section, we present two enhancements that can
improve the performance of FFS while minimizing memory
consumptions. First, we propose a circular counting Bloom
Filter (cCBF) for monitoring the flow sizes of heavy hitters
to improve the accuracy of traffic accounting. Second, we
present an IP packet header-based hierarchical Bloom Fil-
ter (hHBF) design that is capable of capturing all or most
of the unique flows in a measurement epoch to improve
the performance of per-flow measurement. Both cCBF
and hHBF exploit a multi-hashing scheme called Bloom
Filter.

5.1. Circular counting Bloom Filter

The design principles behind circular counting Bloom
Filter (cCBF) is to improve heavy hitter estimations with
minimum memory consumption. Before we present the
details of cCBF, we first provide a brief overview of Bloom
Filter.

A Bloom Filter [34] represents a set S ¼ fx1; x2; . . . ; xng of
n elements with an array of m bits, initially all set to 0. A
group of k independent hash functions h1; . . . ;hk map each
item in the universe to a random number uniformly over
the range f1; . . . ;mg. To add an element xi 2 S, the bits
hjðxiÞ are set to 1 for 1 6 j 6 k. To query if an item x is in
S, we check whether all hjðxÞ are set to 1. If not, x is clearly
not a member of S. Otherwise, either x is in S, or it is a false
positive (with a small probability).

Unfortunately, Bloom Filter cannot perform a deletion
by reversing the process. To solve the problem, Fan et al.
[35] introduced the idea of a counting Bloom Filter (CBF).
CBF extends each entry in the classic Bloom Filter from a
single bit to a small counter. Now insertion increments
the corresponding counters and the deletion obviously in-
volves decrementing the corresponding counters.

It is shown that the false positive rate of Bloom Filters
can be estimated by [36]:
Please cite this article in press as: J. Mai et al., Fast Filtered Sampling, C
fþ ¼ 1� 1� 1
m


 �kn
 !k

� ð1� e�kn=mÞk: ð9Þ

Bloom Filter risks false positives due to hash collisions. Ta-
ble 6 lists the false positive ratios for a few common com-
binations of m=n and k in Eq. (9). Obviously, the probability
of false positives increases as n, the size of the set S in-
creases, and decreases as m, the number of counters in-
creases. For given m and n, the optimal number of hash
functions k ¼ ðm=nÞ � ln 2, which gives the minimum false
positive rate at 0:5k � 0:6185m=n.

The cCBF architecture is shown in Fig. 7. The counting
Bloom Filter hashes flow IDs of an incoming packets to up-
date the corresponding counters, and packets get sampled
depending on current counter values and filtering rules.
For example in Fig. 7, the flow ID f of the packet is hashed
to three buckets h1ðf Þ; h2ðf Þ, and h3ðf Þ in the counter array.
The sampling rule compares the minimum counter value c
against the pre-defined threshold S: if c 6 S, the packet
passes; otherwise, it is dropped.

To avoid counter overflow, we usually need sufficiently
large counters. However, since the counters in cCBF incre-
ments in a modulo L fashion similarly to the updating pro-
cess of FFS, we can reduce the counter width significantly.
Generally, cCBF samples packets based on two a priori
omput. Netw. (2010), doi:10.1016/j.comnet.2010.01.015
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specified parameters ðS; LÞ in the following fashion. Every
incoming packet is hashed multiple times based upon its
flow id, and corresponding counters are updated. If the
minimum value of the updated counter is no larger than
S, the packet is passed onto the sampling module, other-
wise it is discarded. Note that by virtue of the modulo L
operation, if the counter value exceeds L, it is reset to zero.

5.1.1. Catching heavy hitters
Estan and Varghese [25] applied the Bloom Filter to net-

work measurement problem of detecting heavy hitters in
traffic. Each packet entering a router is hashed k times into
a counting Bloom Filter. The counters are incremented by
the number of bytes in the packet. If all counters hashed
by the packet exceed a certain threshold, the correspond-
ing flow is placed in a table of heavy hitters. Large flows
can thereby be detected with a small amount of space
and a small number of operations per packet. However,
the small number of counters in this situation causes false
positives where either small flows happen to map into the
same locations of large flows, or several small flows sum
up to pass the filter. In order to reduce the false positives
significantly, no counter is incremented by more than the
size of the minimum among all k counters plus the current
packet size. This conservative update reflects the most pos-
sible flow size, and reduces the possibility of small flows
raising the counter values over the threshold.

Although the number of counters used in this scheme
can be bounded due to the small number of heavy flows
in a relatively short measuring interval, the width of the
counters has to be wide enough to accommodate the large
flow size in bytes. Furthermore, every subsequent packet
from those identified heavy flows has to be processed so
that counters be incremented and flows table updated.

We can further reduce the resources needed to catch
heavy hitters by the aid of circular counter design. Using
1 byte wide counter, we configure the most significant
bit as a flag bit, and the rest 7 bits as counter bits. The flag
bit is set once the counter value reaches L. The cCBF coun-
ter updating process is illustrated in Fig. 8. In the example,
we let S ¼ 0 and L ¼ 100, which means a packet is sampled
if and only if after all the counters corresponding to the
flow ID f saturate. The process works as follows.

When the packet arrives, the three corresponding coun-
ters contain values of 37, 99, and 2, respectively. The top
and bottom flags are set (i.e., 1), the middle flag is unset
(i.e., 0). Obviously the middle counter contains the mini-
mum value among all counters. In the first step to update
counters, we increment all the three counters by 1. Since
1 2

0 99

1 37

L=100

1 38

1 0

1 3

L=100

1 2 3

0 38

0 0

0 3

L=100

f
Table
Flow

f.size += L

Fig. 8. An exemplary cCBF updating process: flow size is incremented by
L after all counters saturate.
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the middle counter value reaches L, which is 100 in this
case, we reset the counter to 0 and set the flag bit to 1.
These operations marks the point where all the counters
have saturated because the last unset flag is just set to 1.
Therefore, we reset all three flag bits to 0 in step 2, and
increment the flow size by L ¼ 100 in setup 3. When a flow
is terminated, which is not shown in the figure, we check
the all the corresponding counters for the smallest residual
counter value, and add it on top of the flow size in the flow
table.

Following this counter updating process, we are able to
catch large flows with size L and above. The circular coun-
ter and its module operation ensure a static sampling rate
of 1=L for each heavy hitters, and only 1=L operations on
Flow Table look-up and update compared to Estan’s design
[25]. Note the overall effective packet sampling rate for the
whole traffic is much less than 1=L due to the fact that
large flows only contribute to a small percentage in the
flow size distribution. We could also adapt cCBF to count
flow size in bytes with a wider counter and larger L value.

Fig. 9 shows the top 50 heavy hitter flows caught by
cCBF. In the evaluation, we apply cCBF on the BB-West
trace for an interval of 5 min. This measurement epoch
sees more than 6 million packets in about 65 K flows.
The parameters for cCBF are set at ðS; LÞ ¼ ð0;100Þ to catch
flows of 100 packets and above. We achieve very accurate
flow size estimations with little errors for the top heavy
hitters using cCBF of a mere 128 KB in size, which is less
than 2% of the counter size used in FFS evaluation. Reset-
ting counters at the beginning of each measurement inter-
val is not necessary for cCBF, however, it helps maintaining
strong performance. Since the cCBF design is an enhance-
ment to FFS for efficient flow size estimation, it is also fea-
sible to add a second stage sampling module to further
reduce processing load.

5.2. Header-based hierarchical Bloom Filter

As shown above, cCBF catches heavy hitters with small
memory fingerprint due to the Zipf’s law nature of the flow
size distribution. On the other hand, it is desirable to re-
duce the likelihood of sampling mid-sized to large flows
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Fig. 9. Catching heavy hitters by cCBF: flow size estimation with little
errors for the top 50 largest flow.
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since they have been shown to act as a source of noise as
far as anomalies are concerned [1]. Hence, we would like
to detect as many unique small flows as possible for anom-
aly detection. One plausible usage of such a data set, for
example, is to mining for potential malicious host or net-
work addresses with large fan-out/fan-in values. However,
it is impractical and unnecessary to keep per-flow counters
for all the flows, since most of them are just small ones
with no more than a dozen of packets. Our design goal in
this section is to sample exact one packet from each flow,
thus generate a flow set of all the unique flows in a mea-
surement epoch for user query and anomaly detection
purposes.

When sampling packets or flows with a Bloom Filter or
a counting Bloom Filter, the false positives of the Bloom Fil-
ter affects the performance of the sampling schemes nega-
tively. For example, in order to sample unique flows, the
false positives translate into missing packets or flows, be-
cause the membership testing indicates the packets or
flows being sampled already. With limited fast memory
in routers and large number of packets and flows to sam-
ple, that is, capped m=n value, the only way to reduce the
false positive ratio of the Bloom Filter is by increasing k
in Eq. (9) (assuming k 6 ðm=nÞ � ln 2). However, larger k
exaggerates the processing load and may not lower the
false positive rate by much. Table 6 shows if m=n P 8, even
when we double k from 3 to 6, the false positive ratio is
only reduced by less than a percent.

Hierarchical Bloom Filter (HBF) [37] was proposed for a
payload attribution system that attributes reasonably long
excerpts of payloads to their source and/or destination
hosts. An HBF creates compact digests of payloads and pro-
vides probabilistic answers to membership queries on the
excerpts of payloads, and performs superior to a basic
block Bloom Filter. We design a similar data structure
called header-based hierarchical Bloom Filter (hHBF) for
the purpose of sampling unique flows, based on non-muta-
ble header fields: source IP (srcIP), source port (srcPt), des-
tination IP (dstIP), destination port (dstPt), and protocol
(prot). Fig. 10 illustrates a simple example of such a hierar-
chy. In this example, fields ‘‘srcIP”, ‘‘srcPt”, ‘‘dstIP”, and
‘‘dstPt” are blocked into the bottom level of the hierarchy.
Then ‘‘srcIP srcPt” and ‘‘dstIP dstPt” are inserted at middle
level, and ‘‘srcIP srcPt dstIP dstPt prot” at the top level.
Fig. 10. The hierarchy of non-mutable header fields srcIP, srcPt, dstIP,
dstPt, prot in hHBF.
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Thus, if a field has occurred in the packet header, going
one level up in the hierarchy allows us to verify whether
the fields occurred together.
5.2.1. Capturing unique flows
Aggregating hashing results from multiple queries

within a particular level and from multiple levels in the
hierarchy, we can improve the confidence of the result
and reduce the impact of collisions in hHBF. We compare
the performance of hHBF against a basic Bloom Filter on
the five tuples with no hierarchy for the same measure-
ment interval tested in Section 5.1.1. Fig. 11 demonstrates
the performance enhancement. For this 5 min epoch, the
percentage of unique flows sampled by hHBF of 1MB is
above 95% of all the original flows, which is 20% higher
than a basic Bloom Filter. Since FFS uses a single hash func-
tion, it is not surprising that the performance of FFS (even
without sampling, i.e.,, p ¼ 1) in terms of capturing unique
flows is below that of the basic Bloom Filter. As a result,
hHBF achieves much better performance when counter
size is limited to around 512 K � 1 M.

It is obvious that the hierarchical nature of the hHBF re-
solves collisions automatically. In addition, hHBF map-
pings can also be saved for convenient query and limited
pattern matching. Suppose we would like to verify if we
have actually seen a subset of flows with ID ‘‘srcIP srcPt *

dstPt”. As in a basic Bloom Filter, the flow ID needs to be
constructed by trying all possible ‘‘dstIP”s and ‘‘prot”s.
However, in hHBF we can simply break the flow ID into
two parts ‘‘srcIP srcPt” in block 1 and ‘‘dstPt” in block 6
in Fig. 10, and perform two individual queries in the mid-
dle and the bottom levels. Another advantage of hHBF is
the unique flow set generated, which can be used for on-
line or offline data mining and anomaly detection.
6. Conclusions

In this paper, we presented a low-complexity sampling
technique, Fast Filtered Sampling (FFS), to achieve ‘‘flow-
size-dependent sampling”. This type of sampling was
shown previously to improve flow distribution statistics
omput. Netw. (2010), doi:10.1016/j.comnet.2010.01.015
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through ‘‘appropriate” adjustment of sampling rates that
are inversely proportional to the flow size. In this work,
we demonstrated that it also allows for accurate anomaly
detection while still providing reasonable estimation of
heavy hitters and traffic usage. Specifically, previous work
had shown that information about small flows, which is
critical for detection of anomalies, can be corrupted due
to preferential sampling of medium-sized flows (flow bias).
Consequently, relatively higher suppression of medium-
sized flows over small flows is desirable from this perspec-
tive, which is one of the motivations leading to the design
of FFS.

The main contribution of this work is the design of an
extremely low complexity filter that can act in conjunction
with existing random packet sampling mechanisms to
achieve better estimation accuracy of both small and large
flows with low resource consumption. Our filter requires
only one update per packet and its decoupled design al-
lows it to work independently of sampling modules in
existing routers. In fact, it typically lowers the load seen
by the sampling module, while retaining more relevant
information, thus allowing for the possibility of increasing
the sampling rate to achieve higher accuracy. We also pro-
vide a simple design methodology for the choice of s and l,
which are the two control parameters of the filter. Through
extensive evaluations using traffic traces collected from a
tier-1 provider, we showed that FFS is very effective in
eliminating false positives for portscan detection while
performing comparably to random packet sampling for
traditional applications like identifying heavy hitters with
less error.

The broad motivation behind FFS is to design a low-
complexity mechanism that can provide some degree of
control over the sampling rate perceived by a flow as a
function of its size. On one hand, we would like to detect
large flows since they are useful for billing and traffic engi-
neering purposes. From the perspective of anomaly detec-
tion, it is beneficial to have the complete flow IDs to detect
those IP addresses with large fan-out/fan-in values that are
usually candidates for potential anomalies. Therefore we
extend FFS to two more specialized filtered sampling de-
signs with various Bloom Filters suitable for different pur-
poses with better accuracy and performance. A circular
counting Bloom Filter (cCBF) monitoring the flow sizes of
heavy hitters is introduced. cCBF consists of a counting
Bloom Filter and a sampler. The counters increments in a
modulo fashion, which reduces the size significantly. With
counters a byte wide at most, cCBF accurately captures all
the heavy hitters that are important for accounting and
traffic engineering purposes. Next, we propose a header-
based hierarchical Bloom Filter (hHBF) to sample one pack-
et from each unique flows to form a flow set for user que-
ries and anomaly detection. hHBF hashes five tuples in a
hierarchy to reduce the impact of collisions. Evaluation
shows hHBF can capture almost all the unique flows in a
moderate measurement interval with a relatively small
memory fingerprint.

We are currently exploring even more extensions as
well as variations of our filter designs. For example, while
the focus of this work was on detection of small and very
large flows, one could envision applications that focus on
Please cite this article in press as: J. Mai et al., Fast Filtered Sampling, C
only ‘‘medium-sized flows”. In such a scenario, our filter
could easily be converted into a ‘‘bandpass” filter to allow
finer resolution of such flows. Identification of such vari-
ants as well as appropriate ‘‘inversion” techniques for our
scheme will be part of our future work.
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