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ABSTRACT
With over half a billion users, Online Social Networks (OSNs) are
the major new applications on the Internet. Little information is
available on the network impact of OSNs, although there is every
expectation that the volume and diversity of trafc due to OSNs is
set to explode. In this paper, we examine the specic role played by
a key component of OSNs: the extremely popular and widespread
set of third-party applications on some of the most popular OSNs.
With over 81,000 third-party applications on Facebook alone, their
impact is hard to predict and even harder to study.

We have developed and launched a number of Facebook appli-
cations, all of which are among the most popular applications on
Facebook in active use by several million users monthly. Through
our applications, we are able to gather, analyze, correlate, and re-
port their workload characteristics and performance from the per-
spective of the application servers. Coupled with PlanetLab exper-
iments, where active probes are sent through Facebook to access a
set of diverse applications, we are able to study how Facebook for-
warding/processing of requests/responses impacts the overall de-
lay performance perceived by end-users. These insights help pro-
vide guidelines for OSNs and application developers. We have also
made the data studied here publicly available to the research com-
munity. This is the rst and only known study of popular third-
party applications on OSNs at this depth.

Categories and Subject Descriptors
C.2.0 [Computer - Communication Networks]: General; H.4.3 [In-
formation Systems Applications]: Communications Applications

General Terms
Measurement

Keywords
Online Social Networks, Social Games, Facebook, Applications,
Platform, Delays
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1. INTRODUCTION
Online social networking sites command over half a billion users.

Sites such as Facebook, LinkedIn, MySpace, Flickr, and Twitter al-
low users to seek out friends and interact with them in different
ways. Besides providing basic communication capabilities (email,
instant messaging, and bulletin board writing), some sites also pro-
vide other genre of applications such as sharing documents, send-
ing virtual gifts, or gaming. The type and number of applications
became unbounded, as popular sites such as Facebook and MyS-
pace opened up their Developer Platforms, allowing external devel-
opers to create and launch their own applications. Facebook alone
has over 81,000 third-party applications [14].

The open-API model on OSN sites, and the increasing popular-
ity of these third-party applications, can have a profound impact
on the Internet. OSNs act as distribution platforms that re-direct
trafc between their users and third-party application servers. Each
application generates additional trafc between existing users and
increases workload owing through the associated OSNs. This
may be compounded by potential upsurge in the number of new
users, contributing to a spiral growth. Facebook�’s site trafc in-
creased by 30% in the week following the launch of its developer
platform [10], while Twitter observed trafc increase by a factor
of twenty after opening up its API [7]. Although OSN trafc vol-
ume in bytes is still relatively small compared to P2P networks,
new OSN applications that allow uploading of videos would eas-
ily change the Internet trafc landscape again. These factors pose
new challenges in managing trafc growth from a network infras-
tructure perspective, especially considering server costs are a major
source of headache for large social sites such as Facebook1. A bet-
ter understanding of OSN applications as a new workload is thus
critical and overdue.

Last year, we studied application-level user behavior on third-
party applications and their users on Facebook [8]. This paper
focuses exclusively on the network-level effects of popular third-
party applications on Facebook, which has over 150 million monthly
active users (MAU)2, and is thus an ideal candidate for just such a
study. We perform a comprehensive measurement study from the
perspective of third-party applications�—an unstudied, interesting,
rapidly growing, and diverse part of the OSN landscape. We shed
light on the components of interactions between OSN users and
third-party applications through the OSN platform, which is treated
as a black box due to the lack of access to proprietary information
about their internal design details. The key performance metric is
end-to-end delay perceived by users, which depends on three main

1http://gigaom.com/2008/05/11/the-rising-cost-of-facebook-
infrastructure/
2http://www.insidefacebook.com/2009/01/23



components: (a) the geographical distribution of users and their ac-
cess speeds, (b) processing speed and overhead of OSNs, and (c)
bandwidth and processing speed of application servers. One open
question we seek to answer is whether the overheads incurred by
Facebook and application developers constitute a significant por-
tion of the end-to-end delays. The answer is needed by both Face-
book and application developers for design decisions (e.g., provi-
sioning strategies), given that their main revenue source is adver-
tisements, which are added into the pages rendered to users, intro-
ducing further overheads.

We use an integrated measurement methodology, which com-
bines active tracing from client side with passive measurements at
application servers, to infer interactions through Facebook and esti-
mate various network-level as well as data processing and queuing
delays in user-application interactions. Designing such a measure-
ment study is a challenging task: unlike the typical run-of-the-mill
client-server interaction study on the Web, this involves correlating
observations at multiple intermediary components. To better ap-
preciate the complexity and challenges involved, consider the OSN
framework shown in Figure 1. There are three main players: the
client, the OSN, and the third-party application server. The client
can be an OSN user anywhere on the globe, with varying access
speed and browser rendering capabilities. The OSN may serve the
client�’s requests from a server farm or CDNs. The third-party ap-
plication servers are also geographically distributed with different
server capabilities. No single entity controls how users running
an OSN application are served. This makes predictions of perfor-
mance impact very difcult.

Our rst contribution is a detailed and thorough measurement
methodology that encompasses all angles, by collecting data at the
application server, and by sending probes through an OSN from
numerous vantage points (synthetic clients). We exploit the Face-
book open developer platform by becoming one of the players and
launching a set of third-party applications. We managed to amass
a considerable user-base for all of the applications we launched, of
which three applications have achieved more than 1 million MAU
at the time of this study, which the other three achieved between 10
thousand to 500 thousand MAU. To provide a reference point, we
characterize how our applications are similar to or different from
the 200 most used Facebook applications. We analyze network
traces, as well as application server logs, which are then correlated
to perform self-validations of phenomena observed at application
servers. We also conduct a large number of experiments using Plan-
etLab nodes to model the popular usage cases (as observed in our
traces), as well as hypothetical scenarios, where users request con-
tent with varying properties. Our comprehensive data allows us
to make inferences on the dynamic interactions between users and
Facebook through the third-party applications.

The second contribution of the paper is the characterization of
various delays involved in user and Facebook third-party applica-
tion interactions�—the rst-of-its-kind large-scale study. We demon-
strate how the proposed methodology allows us to test our hypoth-
esis about various provisioning strategies at Facebook and applica-
tion servers. In particular, we address the following questions:

∙ Do external developers of popular and viral applications need
exorbitantly high resources to serve content to users? While on-
server processing requirements may vary for different applications,
we report our ndings with regards to other constituents of delays
at application servers. For example, request queuing delays are
small and stable, response sizes do not vary across time-of-day, etc.
For our applications, even non-exorbitant resources are sufcient to
support viral application growth.

∙ How much do Facebook request forwarding and response pro-

cessing delays affect user experience? How is this overhead af-
fected by the type and size of user content? We found that Face-
book processing contributes a signicant portion of the overall de-
lay experienced by a typical user accessing third-party applications,
ranging from 44.4% of 1.7s total delay in case of a less-popular ap-
plication to 68.8% of 2.21s total delay for the most popular one
that we study. We measured how this overhead varies with dif-
ferent type and amount of content that needs to be rendered using
PlanetLab experiments. For example, the presence of Javascript in
application responses adds substantial delay as Facebook performs
additional checks to lter malicious content.

∙ What are the possible provisioning strategies at OSNs like
Facebook? Does Facebook segregate user data according to user
characteristics such as country, network or number of friends? Does
it provision resources differently for third-party applications, or
differentiate user requests based on properties such as geographi-
cal locations? Given the vast amount of resources at Facebook, and
especially due to the extensive use of caching, our results showed
that Facebook serves user requests generally without preferential
treatment (even by locality of request origin).

Based on our study, we conclude that Facebook is well provi-
sioned, even for viral applications. However, signicant impact ex-
ists on user experiences due to geographical location, which can be
resolved by either locating the data center and application servers
closer to users, and/or avoiding frequent setup and tear down of
HTTP connections that incurs multiple long RTTs. The technical
accuracy of this paper has been veried through high-ranking mem-
bers of the Facebook Platform team through private conversations,
and recent actions by the same team serve as a public acknowl-
edgement of the issues highlighted in this paper3. We also provide
insights aimed to improve resource utilization for application de-
velopers, and have made the data studied here publicly available to
the research community4.

The rest of the paper is structured as follows. Section 2 out-
lines related work, and Section 3 describes the Facebook developer
platform architecture and a typical session invoking third-party ap-
plications. The proposed measurement methodology is described
in Section 4. In Section 5, we present the characteristics of the
workload from the perspective of the application server and analyze
how load impacts the queuing/processing delays. In Section 6, we
analyze delay perceived by Facebook clients based on PlanetLab
experiments and infer the Facebook forwarding/processing delays.
Section 7 discusses lessons learnt from our measurement study and
implications of our ndings on third-party application design and
for Facebook. Section 8 concludes the paper.

2. RELATED WORK
Online social networks have become increasingly popular over

the last few years. Accordingly, there has also been an increase in
research on analysis of OSNs [6]. While some researchers have fo-
cused on graph theoretic properties of social networks [4,8,9], oth-
ers have analyzed the usage patterns of individual networks [1, 3].
Another recent work [9] focused on the graph theoretic properties
of large OSNs such as YouTube, Flickr, and Orkut. Some works
have also focused on privacy and security in OSNs [5].

Retention of users and virality are crucial to growth and survival
of large online social networks, and consequently there has been
great momentum towards social third-party applications. Facebook
pioneered this space by opening its Platform to third-party develop-
ers for on-site applications, and has most recently expanded itself
3http://developers.facebook.com/news.php?blog=1&story=222
4http://www.ece.ucdavis.edu/rubinet/data.html
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Figure 1: An OSN framework illustrating interactions between users, OSN, and external as well as third-party applications.

to mobile platforms such as the iPhone through Facebook Connect.
It was imperative, then, that several recent studies focused on one
particular OSN, namely Facebook.

A newly published study on characterization of Facebook appli-
cations [2] uses prole crawling to explore the high-level character-
istics of application users on Facebook, as well as growth patterns
of applications using publicly available usage statistics from Ado-
nomics. Another important study [3] on messaging activity inside
Facebook highlights Facebook-specic characteristics such as reg-
ularities in daily and weekly trafc, and its relation to the use of
Facebook by a select demographic (college students).

We previously studied a number of user behavior-related mea-
surements on three of our highly popular gaming and non-gaming
Facebook third-party applications [10]. In particular, we empha-
sized the distinction between user behavior on gaming versus non-
gaming applications.

Note that all known previous works that analyze OSN-based ap-
plications (especially [10]) have mainly focused on studying user
behavior and trafc patterns. We go one step beyond these existing
studies by analyzing activity data from several third-party applica-
tions on Facebook that we have access to. Given the increasing
popularity of OSN applications, it is crucial to understand their im-
pact on the current Internet. We believe that this work is a rst at-
tempt to measure and characterize this new Internet workload, and
the components of interactions between users and these third-party
applications. We focus on investigating factors that impact end-
user experience, thus providing insights to third-party application
developers and OSNs.

3. OSN APPLICATION FRAMEWORK
The OSN application framework is depicted in Figure 1, show-

ing the three different types of applications, i.e., internal, external,
and third-party applications. Third-party applications are charac-
terized by the presence of the OSN server as an intermediary for
all communication (shown by the solid lines in Figure 1) between
the client and the application server. A client forwards a request to
the OSN server, which forwards it to the application server. The
application server then sends the response back to the OSN server,
which then relays to the client. The focus of our paper is to investi-
gate network level effects of such third-party applications.
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Figure 2: Sequence of interactions between Client-OSN-
Application, along with delays incurred at each step.

The sequence of interactions in a typical user session is shown in
Figure 2. In addition to the network transmission and propagation
delays, there are two major categories of delays: a) those seen at
the application server, and b) those seen at the OSN server.

The application server delays consist of two components:

1. App. Server Request Queuing Delay (!! = "5 − "4): !! is
the amount of time a request is queued at the network layer
before being passed to the application layer for processing.

2. App. Server Request Processing Delay (!" = "6 − "5): !" is
the amount of time the application server takes to generate
a response for a request. Typically, a major constituent of
!" is delay incurred in executing database queries to gener-
ate dynamic HTML content. Also, note that while !! may
decrease with an increase in number of web servers, !" will
remain unaffected.

The OSN server delays include the following:

1. OSN Server Request Forwarding Delay (!# = "3 − "2): !#
is the amount of time the OSN server takes to pre-process
the request received from the user and convert it to be for-



warded to the application server. The OSN server will typi-
cally process a request to add user-related information to it.
For instance, Facebook includes a list of IDs for the user�’s
friends in the forwarded request. The OSN server may also
perform certain bookkeeping tasks and security checks. We,
however, are not privy to all the tasks undertaken before a
request is forwarded by an OSN.

2. OSN Server Response Processing Delay (!$ = "8 − "7): !$
is the amount of time the OSN server takes to post-process
a response sent by the application server and convert it to a
response that can be forwarded to the user. A response for-
warded by the application server typically has placeholders
for content that the OSN server populates by retrieving in-
formation from the OSN database. As for !# , !$ is likely to
include time taken for additional bookkeeping and security
tasks that we are not privy to.

The delay components "2 − "1, "4 − "3, "7 − "6, and "9 − "8 rep-
resent connection setup overheads, and network transmission and
propagation delays for interactions between the user, OSN server,
and the application server.

4. MEASUREMENT METHODOLOGY
Section 1 discussed the need for data from multiple vantage points

to study them, while Section 3 discussed the different intermediate
stages of interaction between a client and a third-party OSN ap-
plication. We developed and launched a set of third party appli-
cations on Facebook (Section 4.1), and carried out extensive pas-
sive and active measurements using these applications. Section 4.2
describes the information extracted from the network traces and
application-layer logs collected at the application servers. We also
designed and implemented several PlanetLab experiments to col-
lect data from the clients�’ perspective (Section 4.3).

4.1 Selected Third Party Applications
We launched six Facebook applications5 that achieved varying

popularity and maturity (i.e., duration of deployment and user base).
These include Hugged, iSmile, and My Angels that allow friends
to exchange virtual hugs, smiles, or angels, respectively; as well
as Holiday Cheers (users can send virtual seasonal greetings to
friends), Pound Puppies (lets users adopt virtual pets), and The
Streets (similar to Fighters�’ Club [10], where users pick ghts with
other users).

Table 1 reports the average number of daily active users (DAU),
monthly active users (MAU), and the rank of the six applications
among Facebook third-party applications [11]. All six applica-
tions are in the top 5% of Facebook applications (ranked by DAU),
with Hugged, iSmile, and Holiday Cheers placed in the top 100
(out of over 57,000 applications). Hugged is both the most popu-
lar and the longest deployed, followed by iSmile. Holiday Cheers
was launched half a month before Thanksgiving, and was tailored
specically towards the upcoming holiday season to achieve �‘viral�’
growth. It attracted more than 1.4 million users in less than two
months. The Streets and Pound Puppies grew much slower as can
be seen by their metrics.

To gauge the extent our applications are representative of other
widely used third-party applications, we installed and manually ex-
plored workows involved in interaction with the 200 most used
Facebook applications over a period of two weeks from Jan 10 to

5All were developed using Ruby on Rails.

Jan 24, 2009. Our ndings regarding how our six applications com-
pare to the 200 most used Facebook applications along several di-
mensions are:
Application semantics: The decision to limit an application�’s users�’
interactions to their friends or non-friends impacts its virality as
well as user engagement. We refer to the type of interactions al-
lowed on an application as its semantics. In this regard, Hugged,
iSmile, My Angels, and Holiday Cheers are similar to 61% of the
top 200 applications in that they only allow users to interact with
their Facebook friends, while The Streets and Pound Puppies (like
the remaining 39%) do not impose such a restriction.
Delay requirements: Lower delays in rendering responses are cru-
cial to enhanced user experience on social (web) applications. How-
ever, lower delays might mean higher required processing power
for popular applications. We nd that a majority (70%) of the top
200 applications utilize the Facebook canvas design (as do these
six). The canvas design requires application responses to be ren-
dered by the Facebook server, and mandates that application servers
respond to a forwarded request within 8 seconds. The rest of the
applications are delay insensitive.
Engagement ratio: The last column of Table 1 (ratio of DAU
to MAU) shows the engagement ratio�—an indicator of how many
users are returning users. The engagement ratio represents an ap-
plication�’s overall �‘demand�’ by its users. A higher value implies
more application visits per user. This ratio is high for The Streets
and Pound Puppies as these are point-based games that require mul-
tiple visits for users to increase their scores. By clustering the top
200 applications according to their engagement ratio, we found that
Hugged, Holiday Cheers, and iSmile are similar to 31.6%, The
Streets and Pound Puppies are similar to 19.2%, and My Angels is
similar to 13.5%, of all applications.

Hence, our six applications represent a diverse mix that is fairly
representative of top Facebook applications.

4.2 Passive Measurements
The application servers receive user requests forwarded by the

OSN and generate corresponding responses, thereby providing good
vantage points for passive measurements. In our case, there are
three categories of requests that are forwarded by the Facebook
server: (1) Page View requests (PV)�—regular requests from clients
that have installed the application, (2) Not Installed requests (NI)�—
requests from clients that have not yet installed the application
(these are redirected to an installation page for the application), and
(3) Inline requests (IR)�—AJAX-based queries for rendering con-
tent within the HTML pages.

We have access to both network and application-layer traces gath-
ered at the application server. Results presented here are based on
traces for the period from Nov 18, 2008 to Jan 05, 2009 for Hugged,
Holiday Cheers, and The Streets. The network layer traces log all
request and response packets using tcpdump. The payload informa-
tion contains elds specifying the ID of the request, the ID of the
client from which the request originated, and the type (PV/NI/IR)
of the request. The tcpdump logs have a time stamp ("4 in Fig-
ure 2) for each request that records when a request is completely
received at the network layer. Less than 2.2% of all requests in our
network layer traces for Hugged, Holiday Cheers, and The Streets,
are IR requests. The fraction of NI requests depends upon how fast
an application grows. NI requests form 7.9% of all Hugged re-
quests, and 28.1% of the rapidly growing Holiday Cheers requests.
An NI request is re-directed to a Facebook application installation
page, and does not involve database access or signicant process-
ing at application servers. Thus, in order to minimize processing
overhead, the application servers record information only for PV



Application Launch Date Avg. DAU Avg. MAU Rank DAU/MAU
Hugged Feb 2008 131,292 2.3M 50 0.057
iSmile Aug 2008 120,361 2.4M 65 0.05

Holiday Cheers Nov 2008 75,283 1.1M 97 0.068
My Angels Aug 2008 14,016 370K 339 0.038

Pound Puppies Jun 2008 1,545 14K 1,368 0.11
The Streets Nov 2008 1,232 12.5K 1,520 0.099

Table 1: Application Usage Statistics. The average DAU and MAU statistics were calculated from Dec 20 to Jan 24. Application
ranks show how popular the six applications are among 81,000+ Facebook third-party applications.
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Network- and application-layer logs conform.

requests, which constitute most of the workload. The application
layer traces record time stamps when the server starts to process a
user request, and when the response is written to the TCP socket.
These serve as estimates of "5 and "6 in Figure 2, respectively.

For validation, we analyze the request arrival patterns observed
at both network and application layers. Figure 3 shows the total
number of requests seen at the network layer, and the number of PV
request arrivals at both network and application layers, for Hugged.
More than 89% of the total request arrivals are of type PV. Ideally,
the number of PV requests seen at both layers should be identi-
cal. However, we see slight discrepancy due to (1) tcpdump failing
to log a fraction (around 8.3%)6 of arriving requests during high
load periods (conrmed by PV requests seen at application-layer
but not in tcpdump logs), and (2) a fraction of requests (around
2.6%) are dropped before being processed by the application layer,
which also coincides with high load periods. We, therefore, focus
on the application-layer PV request arrivals, which give a more ac-
curate representation of the application server workload.

In addition to the PV requests initiated by clients, the application
server can make certain API calls to the OSN server (see Figure 1,
3b*). Even though these API calls are not tightly synchronized with
client requests, they do impact the overall user-OSN experience.
An example of such an API call is a request to update a client�’s
newsfeed based upon recent activity. Our application-layer traces
log the total duration between making an API call and receiving a
response, the sizes of the API call request, and the call response.

4.3 Active Tracing using PlanetLab
In order to collect data from multiple vantage points, we conduct

a large number of experiments using PlanetLab (PL) nodes spread
across the globe. We use these nodes to send active probes (in the
6This is due to tcpdump�’s sampling of logged packets, and does not
indicate dropped packets.

form of synthetic requests), via the OSN, to various application
servers. We model various characteristics of user PV requests to
understand how they affect OSN request forwarding and response
processing delays.

To diversify user locations in our experiments, we selected two
PL nodes across 32 different countries, each in a different insti-
tution when possible. We launched a set of experiments on every
node, twice a day (10AM and 10PM), from Dec 27, 2008 to Jan 27,
2009. We used 3 different Facebook user accounts, User X,User Y,
and User Z, having 39, 4, and 208 Facebook friends, respectively.
Based on sampled friend-list sizes of users accessing our six ap-
plications, we estimate that the average number of friends per user
on Facebook is around 35, with a standard deviation of 65. Hence,
User X represents the average Facebook user, while users $ and %
represent users with very low and signicantly above average num-
ber of friends, respectively. From these accounts, we accessed all
the six Facebook applications described in Section 4.1.

We launched our experiments with the intention to answer ques-
tions listed in Section 1. For each of these concerns, we conducted
a set of experiments (coded in Java), which can be described on a
high level as follows:
1: A client sends an HTTP GET request to the OSN for a given

application, with a parameter specifying an experiment ID. The
client logs the time stamp of request departure (&%&") from the PL
node and request size (''()&*+−,&!).
2: The given application�’s server receives the user request (for-

warded by the OSN) and logs the arrival time stamp.
3: The application server responds with content specic to the

experiment ID, along with the response size ('-""−,&."), the re-
quest arrival, and departure time stamps.
4: The client receives the response (forwarded by the OSN), and

notes the time stamp of request arrival (&-,,) at the PL node, as
well as the response size ('/.*−,&.").

A client is one of the PL nodes logged into the OSN as one of
our users, and the application is one of our six applications. As
shown in Figure 2, any interaction between a user and a third-party
application is subject to a certain OSN Request Forwarding Delay
(!# ) and a Response Processing Delay (!$). We expected these
delays to vary with ''()&*+−,&! , '-""−,&.", and response content.
Our goal was to quantify these delays for the different experiments.

To measure the effect of !# , we vary ''()&*+−,&! from 0 Kb
to 50 Kb in our experiments. We achieve this by appending ran-
dom characters into a single junk parameter with the HTTP GET
request. The application response to this experiment is simply a
blank page (i.e., '-""−,&." = 0 Kb7).

Our experiments for measuring !$ keep ''()&*+−,&! = 0 Kb
(i.e., excluding the experiment�’s ID, which is appended to the re-
quested URL), while '-""−,&." and the application response con-

7Excluding the value for (-""−,&.", which is reported back to the
client for calculation of !# and !$ .



tent vary. The response content and size will determine !$ . The
response content for different experiments may be:

∙ Non-User-Related: The response content either has random
HTML content or Javascript. Content may also be OSN-specic
tags or placeholders that target non-user OSN entities, such as Face-
book networks. For example, a Facebook network tag targeting a
certain network ID, is replaced with the target ID�’s Facebook net-
work name during Response Processing at the OSN.

∙User-Related: The response content will contain different types
of OSN-specic tags targeting OSN users. For our experiments,
these tags may be of the following types: (1) FBML name tags that
fetch target users�’ real names, (2) FBML prole picture tags that
fetch target users�’ prole picture URLs, (3) FBML user status tags
that display target users�’ Facebook status messages.

We diversify the User-Related content experiments by targeting
users with differing characteristics, such as different number of
OSN friends (popularity), network memberships, and geographi-
cal locations. Furthermore, since many large Web sites cache re-
sponses, our experiments randomly select target OSN entities from
pools of thousands of IDs, gathered at the application servers. We
also repeat our experiments (with exactly the same application re-
sponses) to gauge the effect of caching more accurately.

Since PL nodes run on virtual machines, updating of hardware
clocks for synchronization with NTP was not possible. This meant
!# and !$ could not be decoupled cleanly through one-way com-
munication delays; we had to rely on round-trip delays. Calculating
!# and !$ requires elimination of the various network (propagation
and transmission) delays associated with each user-to-third-party-
application interaction. Propagation delays between two hosts are
measured using ping8. Transmission delays are estimated using
the CapProbe utility [13] that approximates bandwidth by employ-
ing ping to send/receive specic-sized packets (1,000 packets of
1,450 bytes each) to/from the target host. Note that CPU load on
PL nodes vary considerably, impairing CapProbe�’s accuracy. How-
ever, we veried CapProbe�’s results to be within 5-10kbps of actual
average data transfer rates observed on the nodes. We use these ap-
proximations to calculate !# and !$ . Note, also, that PL nodes are
not representative of all OSN clients, since end-users may have a
variety of connection speeds and a richer diversity of geographic
locations than PL nodes. However, PL nodes provide the best esti-
mate available to us at this time.

The following two sections report our results and ndings from
measurements at the application servers (Section 5) and PL nodes
(Section 6).

5. OBSERVATIONS AND INFERENCES AT
APPLICATION SERVERS

As outlined in Section 3, the client-OSN interaction process faces
two types of delays at third-party application servers: request queu-
ing delay (!!) and request processing delay (!"). Hence, we ex-
pect resource provisioning at application servers to have an impact
on the overall experience of an OSN user. From the application
developer�’s perspective, one important question is: Are exorbi-
tantly high resources needed to ensure satisfactory user experi-
ence (e.g., low latency) in case of popular and viral applications?

To answer this question, we need to understand the workload
characteristics (such as request arrival patterns and response sizes),
as seen by the application servers, and how they impact !! and !".
Furthermore, we need to analyze the delays involved when applica-
tion servers interact with OSN servers through API calls (described
8Most countries only have two PL nodes. This limits our ability to
estimate propagation delays for different geographical locations.
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Figure 4: Per hour application-layer request arrivals for
Hugged, Holiday Cheers and The Streets. All three applica-
tions show a diurnal pattern.

in Section 4.2). In this section, we summarize the key observa-
tions and the corresponding analysis of our data. We present results
based on our two most popular applications: Hugged and Holiday
Cheers, and the least popular application, The Streets. As we estab-
lished in Section 4.1, these applications are fairly representative of
top Facebook applications, and our ndings from these applications
are therefore relevant to third-party applications on Facebook.
(1) The server loads, measured in terms of number of user re-
quests, follow a diurnal pattern, and show different growth pat-
terns depending on the popularity and seasonal nature of the ap-
plications. Already popular applications attract more new users
— exhibiting preferential attachment phenomena. Figure 4 shows
hourly request arrivals for three applications: Hugged, Holiday
Cheers, and The Streets. We observed a diurnal pattern in the ar-
rival process for all three. However, the request arrival rate, and
its evolution over time, was vastly different due to the different
popularity levels. The Hugged application provides an insight into
the request arrival pattern for an extremely popular application that
has a relatively mature subscription base. Even though Holiday
Cheers and The Streets are examples of recently launched applica-
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Figure 5: Installation requests vs. Requests from authorized
application users for Hugged (top) and Holiday Cheers (bot-
tom). A high correlation coefficient between these two signals
some kind of preferential attachment process at work for ap-
plication growth.

tions, they have widely different growth patterns. Holiday Cheers,
being a seasonal application, showed viral growth during the holi-
day season (Thanksgiving, Christmas, and New Year). The Streets
is essentially a gaming application and did not attain the same level
of popularity as Holiday Cheers. This shows how targeting applica-
tion content to time of the year can play a crucial role in the growth
of an application.

To further understand what contributes to the busy period (high
load) at the application servers, we divided the request arrivals
into two categories: requests from users that have already installed
the application, and new installation requests. Figure 5 shows a
positive correlation between new installation requests and requests
from authorized application users. This suggests that increased us-
age of social network applications begets more users, indicating
some kind of preferential attachment model at work. This con-
tributes to the increased load during busy periods, as there is not
only a higher number of requests from regular users, but also a
larger number of new application installation requests. Another in-
dication of load that we analyzed was the request inter-arrival time
at the application servers. We consider all incoming requests (irre-
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Figure 6: Distribution of application server processing delay.
Hugged, being a more popular application, had a larger !".

spective of their type, or which client they belong to) to get an idea
of the global request inter-arrival pattern seen by the application
server. We found that for Hugged, the inter-arrival time follows an
exponential distribution, with a mean of 0.4 seconds.
(2) Queuing delay is negligible, while processing delays correlate
positively with loads and are affected by resource provisioning.
We found that !! at the application servers was less than 20ms on
average, and had approximately the same distribution across appli-
cations. Figure 6 shows the distribution of !" for various applica-
tions: Hugged had a larger !" than the other two. Since Hugged is
more mature, with a larger user base, we expect that higher server
load may be the reason behind the larger processing delay.

Next, we correlated the observed load with the application server
delays. While !! was negligible, we did observe a small number of
dropped requests on the application servers. The drop rate peaked
during periods of high load (∼ 2.6%). Figures 7 and 8 show how
the load on the servers impacts !". For Hugged, !" showed a pos-
itive correlation with load and shows a diurnal pattern. While the
current provisioning at the application server for Hugged seems to
be adequate, an increase in the popularity of the application may
mandate more resources. For Holiday Cheers, we saw an initial in-
crease in !", with increasing user base, during the rst week after
the application was launched (11/15 ∼ 11/22). On Nov 23rd, ap-
plication servers were upgraded: from sharing 4GB memory with
two other applications, Hugged now shared 8GB with one other ap-
plication, while Holiday Cheers had dedicated 4GB memory. The
impact of this is clearly visible in Figure 8 for Holiday Cheers: sub-
sequent to the upgrade, !" no longer increased with load or across
time, despite the viral growth of the application.
(3) Request response sizes remain stable across time, indepen-
dent of load. For each application, we extract the response size
associated with each individual request from the OSN server to
the application server as follows. Using the tcpdump logs, we ob-
tain the time stamp for the request arrival and the source IP/port
from which the request was sent. We then look at the packets that
were sent back to this IP/port from the application server follow-
ing the request. These packets constitute the response, and contain
the client data. For example, for Hugged, this data would con-
tain previous hugs that the client has sent and received. The re-
sponse sizes should be larger for more mature applications because
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Figure 7: Variation of !" with load for Hugged. The !" showed
a positive correlation with the load on the application server.
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Figure 8: Variation of !" with load for Holiday Cheers. After
the server upgrade (Nov. 23), resources seemed sufficient to
handle the viral growth of this application.

(a) they have a larger user base, and (b) individual users may have
more application-related data (such as activity history). Our results
show that the average response size remains stable for the entire
measurement period. The average response size for The Streets
(least popular application) is the smallest (1.5�–3 KB), and Hugged
(most popular application) has the biggest average response size
(4�–5 KB). Furthermore, we expected average response sizes to de-
crease during periods with high request arrival rates (period during
which more new application installation requests arrive), since new
users have less (or no) activity data. Our measurement results indi-
cate that no such relationship exists for the applications considered,
showing that high request arrival periods are not dominated by new
application installation requests.
(4) The type of interactions (i.e., API calls) from third-party ap-
plication servers to OSNs affect application server delays, impact-
ing the overall user experience. We studied the delay associated
with making API calls from application servers to OSN servers
(termed as the API call duration). Figure 9 shows the distribution
of API call durations for various applications. The call duration
for The Streets was observed to be fairly small, followed by Holi-
day Cheers, while Hugged observed the largest API call duration.
To understand the role of API calls, we analyzed how the API call
duration is affected by server load for two popular applications:
Hugged and Holiday Cheers. While average API call duration for
Holiday Cheers remains fairly stable across time (Figure 11), call
duration for Hugged shows a remarkable increase during peak ac-
tivity periods (shown by �‘All API calls�’ in Figure 10).
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Figure 9: Distribution of API call duration. Hugged had higher
call durations than the other two applications.

To explain this difference, we compared the specic type of API
calls made by these two applications. We found that Hugged and
Holiday Cheers make several similar API calls9, except for a couple
of additional API calls made only by Hugged10. We subsequently
analyzed the average API call duration for Hugged, separately for
the additional API calls (Type A) and the common API calls (Type
B) in Figure 10. We observed that Type A calls were responsible
for the surge in the average API delays during high load. However,
even Type B calls show greater variation with load for Hugged as
compared to Holiday Cheers. We suspect this is because of per-
application or per-API-call resource budgets at the OSN, that are
fully consumed by the relatively higher load for Hugged (or third-
party applications in general) during peak trafc periods.
Concluding Remarks: Based on our observations, we conclude
that one does not need exorbitant resources to launch and main-
tain an extremely popular OSN application, despite its viral growth
and/or large uctuations in seasonal usage. We do acknowledge
that processing requirements may differ on a per-application basis.
Yet, in our case study, a server with Dual Core Xeon 2.0ghz, 4-8GB
Memory, and 100 Mbps connection speed is sufcient to serve ex-
tremely popular applications like Hugged or Holiday Cheers that
attract 100-200K DAU.

6. GAUGING FACEBOOK INTERNALS
After examining results from the perspective of the application

servers, we now turn to characterizing delay components from the
perspective of end-users. This is motivated by the question: Do
OSNs such as Facebook introduce significant delay overhead to
impact user experience while interacting with third-party appli-
cations? If so, what factors influence these delays?

We rst discuss how OSN delays are estimated by sending ac-
tive probes (synthetic requests) through Facebook from PL nodes,
followed by discussions of the results.

6.1 Extracting OSN Delays
9prole.setFBML, feed.publishUserAction, notications.send and
users.getInfo. We term these as Type B calls.

10notications.sendEmail and users.hasAppPermission. We term
these as Type A calls.
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Figure 10: Variation in API call duration with load for Hugged.
The Type A calls cause the overall call duration for Hugged to
be extremely sensitive to load.
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Figure 11: Variation in API call duration with load for Holiday
Cheers. The call duration seemed to be fairly stable despite the
viral growth of the application.

Section 3 outlines the two types of delays that are involved when
a client interacts with an OSN to access third-party applications:
the OSN request forwarding delay (!# ) and the OSN response pro-
cessing delay (!$). As explained in Section 4.3, our experiments
involve a diverse set of PL nodes that represent the clients. Our
data shows that the client requests generated in our PL experiments
were forwarded by Facebook to the application servers, from 27
distinct IP addresses, all of which are located in California11. We
analyzed the round-trip delays from nodes in different countries to
these Facebook servers. The average RTT was around 170ms, with
nodes farther away geographically having higher round-trip delays.
Experiments from nodes in different countries showed similar !#
and !$ values (with differences of less than 10ms on average for
the same experiment). However, the outliers among these nodes
(most notably in Armenia, India and China) registered larger OSN
delays consistently. This is mainly due to the differences in the
CPU power and loads on these nodes at the time of the experiment.
Since per-country results are diluted by differences in CPU load
and CPU power, we do not present results based on geographical
location. The variables in our experimental results include the dif-
ferent user accounts used, number of Facebook friends the target
user has, the applications being queried, the time of day and week
the experiments were performed, and the Facebook network of the
targeted users. We attempt to minimize the effect of these variables;
our choices of variables are explained along with the results.

Our active measurements using PL nodes provide "9 − "1 (see
11Determined using geo-location services such as �‘hostip.info�’
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Figure 12: OSN forwarding delays (!# ) with varied request
sizes (observed from Dec 27, 2008 to Jan 3, 2009). The verti-
cal bars denote minima and maxima for the averaged measure-
ments.

Figure 2). By subtracting the Application Processing Delay (!")
and the estimated transmission and propagation delays, we get the
the sum of !# and !$ . Lacking synchronized clocks in PL, we rely
on round-trip times per request rather than one-way delays, for cal-
culating !# and !$ . As a work-around, for requests of size 0Kb
(that require 0Kb responses, except time stamp information nec-
essary for calculating !# and !$), we simply remove all (known)
network and application layer delays from the total time taken for
a request to return (to the client), and estimate 50% of that time as
!# . We use this !# to calculate subsequent !$ values for response
sizes greater than 0Kb.

6.2 OSN Request Forwarding Delays
Facebook, being the intermediary, must ensure that users�’ re-

quests are forwarded to the application servers in a timely man-
ner. We rst address key questions concerning the forwarding delay
(!# ) and summarize our observations:
(1) OSN request forwarding delays are around 130ms for user
requests of size 0–1Kb (typical for the six chosen Facebook appli-
cations). We gauge !# (as explained previously) by varying user
request sizes (from 0Kb to 50Kb) to application servers. Figure 12
shows how !# for Facebook applications varies with request size.
The minimum !# (i.e., for a 0Kb request size) was about 130ms,
while requests of size 50Kb took 550�–650ms to leave Facebook.
Since all user requests are 0Kb to 1Kb in size, for the considered
applications, we conclude that !# constitutes negligible overhead.
(2) Per-application OSN request forwarding delays increase lin-
early with request size. Figure 12 shows that for each application,
!# increases steadily as request sizes increase. Note that for every
user request to a third-party application, Facebook appends a list of
user specic parameters to the URL request. Facebook then calcu-
lates a hash of the appended parameters and forwards the modied
request to the application server. We are not privy to any additional
tasks performed on incoming user requests, and expect that the con-
sistent increase in !# is due to transmission delays internal to the
Facebook network. Note also in Figure 12 that plots for individual
applications never overlap or cross. Even though the differences
are of a few milliseconds for small request sizes, these differences
amplify towards larger request sizes. The differences in delays,
however, are not correlated with application popularity.



(3) Per-application OSN request forwarding delays do not vary
with load (request arrival rate). We also analyzed the time varia-
tion in !# , from Dec 27th 2008 to Jan 23rd 2009, for the various
request sizes. We were unable to observe a relationship with third-
party application usage and !# . Even though !# uctuated between
times of day and across days, the difference was not appreciable
(per-request size) nor consistent (across weeks). However, we can-
not relate the absence of a pattern in !# to overall Facebook Plat-
form usage through our measurements, as they account for only a
fraction of overall trafc on Facebook.
Concluding Remarks: Forwarding delays are fairly small when
request sizes are between 0�–1Kb. They also do not vary consis-
tently with application usage (load) and increase only linearly with
increasing request sizes. These delays hence do not have an appre-
ciable effect on users�’ interactions with third-party applications.

6.3 OSN Response Processing Delays
Being the intermediary, Facebook parses responses from third-

party application servers before forwarding them to the users, which
incurs additional processing delays (!$). The extent of this delay
may be affected by content type, content size, and characteristics
of target entity.

A key feature of the Facebook Developer Platform is its Face-
book Markup Language (FBML). It facilitates application develop-
ers through quick information rendering for application responses
(through FBML tags), and it disallows use of most traditional Java-
script features and other HTML content considered insecure for
end-users. We study the impact of requesting (allowed) HTML,
Javascript, and other FBML content on !$ through a number of ex-
periments. In the following, we summarize key observations with
corresponding details of our ndings.
(1) Processing HTML content takes significantly less time than
processing Javascript. We compared !$ for HTML and Javascript
contents by using 200Kb of random HTML and 26Kb of Javascript
content in application responses. Our results show that !$ for HTML
content was signicantly smaller (0.01ms/byte) compared to 0.04
ms/byte for Javascript. These stark differences in !$ exist since
Facebook must ensure legitimacy of every portion of the Javascript
content before forwarding it to the client, Javascript being a more
sophisticated language to verify than HTML. Note that we use mil-
liseconds per byte to make a fair comparison without the bias of
content size.
(2) OSN response processing delay for FBML content targeting
non-user entities is unaffected by the target’s popularity. It also
remains consistent with time. We consider !$ for FBML tags tar-
geting Facebook networks (non-user entities). In our experiments
with FBML network tags, we compared !$ values by targeting
Facebook networks with high and low popularity. We used the
applications�’ user base to estimate the popularity of the 15,015 to-
tal Facebook networks. We compare !$ values for processing 250
FBML network tags targeting randomly chosen networks out of
3,000 most popular and 3,000 least popular Facebook networks.
We found that !$ values for 250 FBML network tags were around
310ms, regardless of networks�’ popularity. Furthermore, this pro-
cessing delay did not vary with time in measurements from Dec
27, 2008 to Jan 20, 2009. We had expected FBML network tag
processing delays to be small, due to the small number (15,015)
of total Facebook networks. However, we expected this delay to
vary with overall Facebook Platform usage (i.e., with time of day).
The lack of the latter result is plausible in the presence of a caching
mechanism for FBML tags. We later conrmed this caching be-
havior for FBML network tags by running experiments targeting
the same networks in quick succession.

New York, NY London, UK South Africa Greece200

400

600

800

1000

1200

1400

1600

1800

2000

Facebook Network

O
SN

 R
en

de
rin

g 
D

el
ay

(m
ill

ise
co

nd
s)

 

 
fb:user status
fb:user status cached
fb:profle pic
fb:profile pic cached
fb:name
fb:name cached

Figure 13: OSN processing delays (!$) for 250 FBML user tags
targeting users in various Facebook networks. Measurements
taken from Jan 23-25, 2009 evening periods, through User Z on
Hugged. Results were similar for other user accounts and ap-
plications as well. The vertical bars denote minima and max-
ima for the averaged measurements.

A vital set of FBML tags target various content (i.e., name, pro-
le picture, user status) for Facebook users. Given the sheer size
of data Facebook must store for its users, one may expect some
form of data segregation to speed up processing delays at the OSN.
We expected this segregation to occur mainly along three lines:
(1) by user geography, represented by a Facebook network, (2) by
user popularity, represented by total mutual Facebook friendships,
and (3) by type of content for the user (name, prole picture, user
status). The following results compared !$ values for these user-
related FBML tags along these lines of possible data segregation.
(3) FBML user tag processing delays do not vary with target
users’ popularity and network membership. If data on Facebook
is segregated by user geography, membership in a regional Face-
book network should translate into different !$ values for users in
more popular networks and for users in less popular networks. We
performed experiments with 250 FBML user tags using ve, vari-
ably sized Facebook regional networks, both inside and outside the
U.S.12 Our measurements for !$ (from Jan 18 �– 25, 2009) did not
show any appreciable variation for !$ across these networks. We
repeated experiments for FBML user tags targeting Facebook users
with different numbers of Facebook friends�—measurements (from
the six applications we study) show that the average user has 35
friends, with a standard deviation of 65. To capture different ranges
of popularity of users, we target users with 15 to 50, 400 to 600, and
1,000 to 5,000 friends. Contrary to our expectations, !$ was similar
(average difference of less than 15ms) across the different ranges
of Facebook friends for the various FBML user tags.
(4) FBML user tag processing times vary with type of FBML tag.
FBML profile picture tags take the longest, whereas FBML user
status tags take the shortest times. We compared !$ values for
FBML name, prole picture, and user status tags. The results seg-
regated by target user geography (Facebook network), are shown
in Figure 13. The gure shows that while FBML name tag pro-
cessing delays are around 1, 000ms, delays due to FBML prole
picture and FBML user status tags are about 1, 350ms and 450ms,

12The highest contributor to Facebook in terms of number of users.



respectively. These differences in !$ are quite stark and consistent
in our measurements. To understand the reason for the high !$ val-
ues for FBML prole picture tags, we examined a sample of 100
public Facebook proles across a university network and a regional
network. We found that on average, each Facebook user has 3.64
prole pictures. Facebook blogs [15] indicate that Facebook stores
four different sizes of each user�’s prole pictures. This requires a
more elaborate storage mechanism for prole pictures on Facebook
(as compared to, say, users�’ real names and dates of birth), and the
high number of total prole pictures explains the higher process-
ing delay for FBML prole picture tags. Furthermore, a user�’s
status on Facebook must be updated more often than, say, their
real names and prole pictures. For the 208 Facebook friends of
User Z, we found that users, on average, updated their status more
than twice a day. Because of this higher frequency of updates, user
statuses might require a different read/write mechanism. Lacking
knowledge of the internal Facebook provisioning and architecture,
we surmise this difference is due to a more efcient storage/update
mechanism for Facebook users�’ statuses.
(5) Data caching has significant effect on FBML tag processing
delays. To gauge the effect of caching on !$ for FBML user
tags, we repeated experiments for each FBML user tag in quick
succession with the same set of target Facebook users. The result in
Figure 13 (lower delays for subsequent experiments) demonstrates
that caching of FBML user tags plays signicant role in repeated
accesses to the same target user�’s data, and that content fetches
for our measurements are not all being performed using databases.
Hence caching signicantly affects our ability to estimate !$ .

Furthermore, among all the experiments reported here, we did
not nd appreciable (nor consistent) variation in !$ for requests
made through PL nodes in different geographical locations and
through users with varying popularity13. We thus believe Facebook
does not prioritize user requests based on geography or user pop-
ularity. This is plausible considering the very heavy usage of data
caching on Facebook [15].
(6) OSN response processing time increases linearly with num-
ber of FBML tags. The increased delays show no appreciable
variation across third-party applications and target user charac-
teristics. We measured variation in !$ using 100 to 1,000 FBML
tags. Figure 14 shows results for FBML name tags for target users
in the large New York Facebook network, as well as small regional
networks such as Pakistan and UAE, alongside results for mixed
networks. We observe an almost linear increase in !$ from 100 to
1,000 FBML tags, with minor (10ms) differences for different net-
works (that were inconsistent across time). This result suggests that
Facebook does not parallelize processing of FBML tags within in-
dividual requests, which could signicantly decrease !$ . Moreover,
this trend is common across our applications with similar results for
!$ . While the lack of appreciable variation in !$ across applica-
tions may hint at a lack of application-wise resource provisioning,
caching at the OSN hampers efforts to ascertain this conjecture.
(7) OSN response processing delays vary with time of day but are
not consistent with application usage (load). To examine the ef-
fect of !$ with actual application load, we compared !$ values
for the 300 FBML user tags across different times of day (morn-
ings or evenings) from Dec 27, 2008 to Jan 23, 2009. The results
for FBML name tags are shown in Figure 15. Similar to !# , we
were unable to nd a relation with application usage and !$ for
FBML tags. Note that even though our applications are among the
most popular on Facebook, their trafc may not have been sub-
stantial enough to overwhelm Facebook�’s resource provisioning at

13In terms of number of OSN friends.
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Figure 14: OSN processing delays (!$) for different number
of FBML name tags for users in networks with varied popu-
larity. ‘Mixed networks’ are chosen from 5,000 random users
on Hugged. The New York network is the most popular with
243,162 users on Hugged, followed by UAE with 12,187 and
Pakistan with 6,213 users. Measurements were taken Jan 18-
22, 2009 through User Z on Hugged. Results were similar for
other user accounts and applications as well. The vertical bars
denote minima and maxima for the averaged measurements.

any particular time in our trace. Contrary to our nding for !# ,
however, we observe that !$ values were higher, on average, for
morning (busy) periods and lower for evening periods on the same
days, barring Jan 3, 2009, which appears to be an anomaly whose
cause cannot be ascertained given our PL experiments utilize only
a minute fraction of Facebook�’s resources. However, this anomaly
did not occur because of CPU consumption on the PL nodes. To
make the distinction between morning and evening periods clear,
we only show results for days with complete experiment results
(Figure 15).
(8) OSN response processing delays are a significant chunk of
total time per user request to third-party applications, for both
realistic average workloads and hypothetical scenarios with vary-
ing size of content. Our previous experiments quantied !# and
!$ for the various hypothetical cases on Facebook. We observed
that while !# values are merely 130ms (on average), !$ values can
be quite signicant, and vary appreciably with type of content. To
gauge !$ for real scenarios, we modeled the average workload for
the most visited pages on the six Facebook applications. The aver-
age workload for each application is briey described below:

∙ Hugged, Holiday Cheers, iSmile, My Angels: Two FBML
name tags and one FBML prole picture tag for 25 Facebook users,
with 80Kb of HTML content and 2Kb of Javascript. The average
workload for all of these applications was similar, differing by one
or two targeted users.

∙ The Streets: One FBML name tag and one FBML prole pic-
ture tag for 25 Facebook users, with 15Kb of HTML content and
0Kb of Javascript.

∙ Pound Puppies: Two FBML name tags and one FBML prole
picture tag for 6 Facebook users each, with 3Kb of Javascript and
25Kb of HTML content.

Using these denitions of average workload, our calculations for
!$ are:

∙ The Streets: !$ = 44.4% of 1.30s total time.



Content Processed Avg. Total Time Avg. Processing Delay
HTML (200Kb) 3.63s 49.8%

Javascript (26Kb) 1.99s 66.3%
Number of Tags Number of Tags

FBML Tags 25 50 100 150 200 250 25 50 100 150 200 250
Name 1.1s 1.2s 1.35s 1.54s 1.63s 1.81s 36.4% 40.5% 47.4% 53.4% 56.4% 60.6%

Prole Picture 1.11s 1.25s 1.51s 1.75s 1.97s 2.3s 35.8% 43.3% 52.8% 58.9% 63.7% 68.6%
User Status 1.05s 1.10s 1.14s 1.23s 1.29s 1.38s 32.5% 35.6% 37.8% 42.3% 45.1% 48.6%

Network Link 1.02s 1.03s 1.05s 1.07s 1.09s 1.1s 31.8% 31.2% 32.6% 32.7% 33.5% 33.9%

Table 2: Response processing delays as fractions of average total time for user requests for different types of content. The HTML
content was generated randomly. The reported delays have !"=4ms.
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Figure 15: OSN processing delays (!$) for User Z on Hugged,
across time from Dec 27, 2008 to Jan 23, 2009 for 300 FBML
name tags targeting users in the ‘New York, NY’ Facebook net-
work. On the x-axis, E and M stand for Evening and Morning,
respectively. Results were similar for other user accounts and
applications. The vertical bars denote minima and maxima for
the averaged measurements.

∙ Hugged: !$ = 68.8% of 2.21s total time.
∙ Pound Puppies: !$ = 59.9% of 1.77s total time.
These experiments do not involve database accesses at the ap-

plication servers, hence !" is negligible (around 4ms). However,
the results conrm that indirection via OSNs imposes a signicant
overhead for user interactions with third-party applications. This
fact is further demonstrated in Table 2, which shows the fraction of
total time consumed by !$ for certain hypothetical cases for various
types of content.
Concluding Remarks: Delays across OSNs (as in the case of
Facebook) can dominate the overall latency experienced by users
interacting with third-party applications. For Facebook, we found
that the OSN forwarding and processing delays are fairly consistent
across applications and do not depend on application usage (load).
They are affected by the type of content accessed, but not by entities
targeted in FBML tags. Caching of data helps stabilize the overall
user-perceived delay in their interactions with third-party applica-
tions. Even with data caching, however, the stark difference in !$
for different types of FBML tags exists. This could be accounted
for by Facebook�’s internal network delays in accessing different
parts of its data center(s), since the sheer data volume at Facebook
might be managed through data segregation. This becomes more

evident considering different access and storage requirements for
various types of data (e.g., prole pictures and user statuses).

7. DISCUSSION
Our measurement study of interactions between users and third-

party applications through Facebook has provided us with insights
that can be useful for third-party application developers and OSNs.

Insights for Application Developers
Our measurement study revealed some take-home messages from
the perspective of third-party application developers. We saw well-
dened trends in the request arrival patterns with diurnal, weekly,
and seasonal peak activity periods. Application servers should be
well-provisioned to deal with such expected surges in activity. The
consistency in activity surges allows developers to effectively uti-
lize resources through cloud computing14. We also found that re-
quest inter-arrival times for a single application were exponentially
distributed. This information can be used to provision network
layer buffers at the application server.

Our results show that the number and the type of FBML tags can
affect the OSN response processing delay. Application developers
can keep this in mind to balance content they wish to serve and
minimize resulting delays perceived by users. Also, our PL mea-
surements showed that for certain regions (especially those with
inferior bandwidth), network delays can have a signicant impact
on user experience. Application developers can choose to optimize
their content based on networking resources available to the client.

Furthermore, we noticed that different API calls made by ap-
plication servers can take different amounts of time to process,
and some API call durations can appreciate signicantly with load.
This behavior was evident for Hugged, which sees longer API call
durations during high user activity periods. This hints at some form
of resource quotas (per-application or per-API-call) at Facebook
servers. A possible solution to avoid higher API call delays is to
queue API calls during high activity periods, and to empty these
queues during low user activity periods. Our experiments did not
control the rate and schedule of API calls.

Insights for OSNs
Our ndings, especially those from the PL experiments, allow us to
provide some useful insights for OSNs in general, and Facebook in
particular. The following discusses a number of issues and potential
areas of improvement for OSNs.

According to recent statistics15, Facebook has grown, and con-
tinues to grow, outside the U.S. at a rapid pace. However, a closer

14Cloud computing services such as Amazon EC2 [12] have become
easily accessible.

15http://www.insidefacebook.com/2009/01/23/



look at the statistics shows that regions farther away from Face-
book�’s server locations in California, such as India and Pakistan,
have experienced less than stellar growth. Reasons for slow growth
in far-off regions may be attributed to a number of hard-to-measure
factors, such as social and technological development. However,
one OSN architecture-related reason can be the signicant round-
trip latencies experienced whilst contacting Facebook from regions
far away from the U.S. Since latencies affect user experience even
more than bandwidth availability, diversication of data center lo-
cations outside regions of traditional growth can benet OSNs such
as Facebook. Note that the overhead introduced by latencies in user
interaction with third-party applications will still be signicant, un-
less application servers, too, move closer to the newer data centers,
depending on the application�’s targeted user base.

Allocating data centers closer to far-off regions may improve
user experience, but also introduces the complication of replicat-
ing data to these data centers. Assuming users in one geographical
region are more likely to access content generated by users within
that geographical region16, the choice of a single master data center
will not be the most optimal. Note that occurrence of this �‘social
aspect�’ in data accesses is still novel to academia as well as the in-
dustry. Further note that a master data center has the sole authority
for modifying data, which slave data centers may only serve con-
tent without modication. This is currently the case for Facebook,
which has a slave data center in Virginia, and the master data center
in California [15].

Each user request to a third-party application results in two HTTP
connection setups: 1) between the client and OSN, and 2) between
the OSN and application servers. In cases where round-trip propa-
gation delays are high (e.g., far-away clients contacting OSN servers),
protocol handshakes involved can contribute signicantly to the
overall delay experienced by users. This can be remedied through
persistent HTTP connections between the application server and
OSN. The OSN can multiplex user requests within a few HTTP
connections by mandating presence of certain �‘response identiers�’
in application responses.

Moreover, our results for OSN response processing delays indi-
cate that OSN delays grow in lock-step with the size of content.
For the Facebook Developer Platform, the main cause of concern
is the high processing delays for FBML user tags, which are per-
vasively used in third-party applications. Our results in Table 2
(and corresponding average workload measurements) suggest that
an OSN could drastically improve user experience by parallelizing
OSN tag (e.g., FBML for Facebook) processing within individual
application responses. This could, however, turn into a DoS vul-
nerability for the OSN, and must be implemented with checks in
place to avoid such attacks.

8. CONCLUSION
The launch of APIs for OSN applications has brought about

thousands of third-party OSN applications. Facebook alone makes
over 57,000 applications available to more than 150 million users.
Little information is available about the different stages of infor-
mation ow between users and third-party OSN applications, and
the role of the underlying OSN. We described an elaborate mea-
surement methodology, collect data from multiple vantage points,
and reconstruct the details of typical client-OSN-third party appli-
cation interactions. We investigated the different sources of delay
and their potential impact on user experience.

Our study showed that even for viral applications, non-exorbitant
16Since users are likely to have more online friends from the same
geographical region, e.g. from the same country or city.

resource provisioning can bound application server delays. OSNs
do introduce signicant overhead to user and third-party applica-
tion interaction. Even with caching, OSNs exhibit different pro-
cessing delays for different types of content although these delays
are relatively stable with application usage (load) and are unaf-
fected by targeted entities (such as in FBML tags). Our ndings
emphasize the impact of Facebook�’s processing delays on user in-
teractions with third-party applications. These ndings have been
veried by Facebook.
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