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Abstract—By allowing end hosts to make independent routing
decisions at the application level, different overlay networks may
unintentionally interfere with each other. This paper describes how
multiple similar or dissimilar overlay networks could experience
race conditions, resulting in oscillations (in both route selection
and network load) and cascading reactions. We pinpoint the causes
for synchronization and derive an analytic formulation for the syn-
chronization probability of two overlays. Our model indicates that
the probability of synchronization is non-negligible across a wide
range of parameter settings, thus implying that the ill effects of
synchronization should not be ignored. Using the analytical model,
we find an upper bound on the duration of traffic oscillations. We
also show that the model can be easily extended to include a large
number of co-existing overlays. We validate our model through
simulations that are designed to capture the transient routing be-
havior of both the IP- and overlay-layers. We use our model to
study the effects of factors such as path diversity (measured in
round trip times) and probing aggressiveness on these race condi-
tions. Finally, we discuss the implications of our study on the design
of path probing process in overlay networks and examine strategies
to reduce the impact of race conditions.

Index Terms—Interaction between multiple overlay networks,
race conditions, synchronization, traffic oscillations.

I. INTRODUCTION

APPLICATION-LAYER overlay networks are becoming
very popular due to the fact that they can often offer better

services catered to different applications than the traditional IP
networks. This concept has been exploited in building content
delivery networks like Akamai [1], resilient networks like RON
[2], multicast services like SplitStream [3], and distributed
hash table services like Bamboo [4], among others. All of these
networks have multiple nodes that collaborate with each other
at the application layer to provide features that are not readily
supported by IP layer routing services. For example, RON [2]
and Detour [5] demonstrate that end-to-end route selection can
often find better alternative paths by relaying traffic among
overlay nodes.

Numerous of these overlays are being deployed over the In-
ternet and the volume of traffic that they carry is increasing [6].
Since most overlay networks are designed independently with
different target applications in mind, our suspicion is that as
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overlay traffic load increases, different overlays may uninten-
tionally interfere with each other. It is therefore very important
to examine the impacts of the co-existence of multiple overlay
networks when their traffic represents a significant, if not dom-
inant, portion of the total traffic.

Based on our previous work in [7], we arrive at a hypothesis
that two (or more) co-existing overlays can experience race
conditions and become synchronized leading to route and
traffic oscillations, and cascading reactions (i.e., an event in one
overlay that triggers an event in a second overlay, that triggers
an event in a third, and so on). This hypothesis is formulated
based on two key observations. First, Floyd et al. [8] discuss
how there are many examples of seemingly independent pe-
riodic processes in the Internet that can inadvertently become
synchronized. They warned that the phenomenon of inadver-
tent synchronization of periodic processes would most likely
become an increasing problem. Overlay networks typically use
a periodic probing process to detect events that deteriorate path
performance and to identify alternate paths between source and
destination pairs. Events such as failures can trigger an overlay
network to move its traffic to an alternate path. The work in [8]
would suggest that when two different overlays that both use
periodic probing react to the same IP layer triggering event, it
results in a candidate scenario for the synchronization problem.
A second motivation for suspecting that synchronization might
arise comes from control theory. Different overlays are si-
multaneously and independently conducting routing control at
the application layer. This corresponds to a situation in which
multiple independent control loops coexist, yet react to the
same events (e.g, failures). This is a classic situation for race
conditions.

This paper seeks to explore this hypothesis and to quantify
the likelihood of oscillations and cascading reactions, how long
they can last, and the conditions under which they occur. The
contributions of this work are:

• We pinpoint the reasons for race conditions (oscillations
and cascading reactions) in terms of partially overlapping
paths and periodic probing process (Section IV).

• We develop an analytical method to compute the proba-
bility of synchronization between two overlay networks as
a function of the path probing parameters. We also pro-
vide an upper bound on the number of oscillations that the
two overlays will experience after they are synchronized,
in the absence of external events acting as stop triggers
(Section V). We also show that our analytical model is ex-
tensible when an arbitrary number of overlay networks co-
exist (Appendix I).

• We validate our hypothesis and analytical model using sim-
ulations that are carefully designed to capture the IP-layer
transient routing dynamics and the generic properties of
overlay routing strategies. We do indeed see a variety of
scenarios in which oscillations occur when the overlay
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traffic is a significant portion of the total traffic. The sce-
narios differ in the length of oscillations, the number of
overlays involved, and in the manner by which oscilla-
tions are eventually stopped. The simulation results closely
match the predictions from our analytical model both in
terms of probability of synchronization and the number of
oscillations (Sections III and VI).

• We show that the synchronization probability is not negli-
gible for a wide range of parameters, suggesting that par-
ticular care must be given by network designers to the con-
figuration of overlay routing protocols. We illustrate that
oscillations can occur even for two overlays that deploy
considerably dissimilar path probing parameters. We study
the impact of path diversity and probing aggressiveness on
the probability of synchronization (Section VII).

• We explore techniques to reduce the impact of race condi-
tions. We show that adding randomness to the probing pa-
rameters does not always help in avoiding synchronization.
However, a random back-off mechanism that suppresses
‘reaction time’ of overlays could help in significantly re-
ducing the chances of oscillations. We also show that it is
harder to avoid cascading reactions and hence application
and network providers should revisit deployment strategies
of overlay networks. (Section IX).

In Section VII, we summarize the implications of this study
on the design of overlay routing strategies. In contrast to today’s
practice we show that it is beneficial for overlays to be nonag-
gressive since it lowers the likelihood of synchronizing. We
present our conclusions in Section X.

An earlier version of this work appeared in [9]. This paper im-
proves that work and extends it with additional materials: (i) dis-
cussion of cascading reactions as another form of race condition
that can occur when several overlays co-exist; (ii) extension of
the analytical model into a generic form to include several over-
lays instead of just two overlays; and (iii) examining strategies
like adding randomness and back-off mechanisms to reduce the
impact of race conditions.

II. RELATED WORK

Interactions between multiple co-existing overlays were first
addressed by Qiu et al. [10], where the authors investigate the
performance of selfish routing after the system reaches the Nash
equilibrium point (when network-level routing is static). They
also show that selfish routing can achieve optimal average la-
tency at the cost of overloading certain links. Liu et al. [11]
model the interaction between overlay routing and IP traffic
engineering as a two-player game, where the overlay attempts
to minimize its delay and traffic engineering minimizes net-
work cost. In this work, we focus instead on dynamics of the
overlay routing layer before the system reaches the equilibrium.
Instead of static network-layer routing, we consider events such
as link/router failures, flash crowds and congestions that lead to
dynamic re-computation of routes.

Other works have studied the overlay network probing
process, a crucial component of overlay routing. Nakao et
al. [12] proposed a shared routing underlay that exposes
large-scale, coarse-grained static information (e.g., topology
and path characteristics) to overlay services through a set of

queries. They advocate that the underlay must take cost (in
terms of network probes) into account and be layered so that
specialized routing services can be built from a set of basic
primitives. However, sharing network-layer path information
may induce synchronized routing decisions in overlay net-
works and unintentionally lead to route/traffic oscillations, an
aspect not addressed in [12]. We hope to shed some light on
this problem through our modeling of overlay and IP-layer
dynamics in response to failures.

While our work was in part inspired by the work in [8], the
particular periodic process we focus on is different from the one
considered in [8]. They focused on routing protocols such as
EGP, IGRP, and RIP that send a periodic update message to en-
sure routing tables are kept up to date. The process we explore
uses two types of periodic probes and only reacts to external
triggers. Also, they study the scenario of many routers partici-
pating in the same protocol, whereas we consider two different
instances of the overlay protocol with nonidentical parameters
and overlay topologies that only partially overlap in the under-
lying physical network.

III. SIMULATING MULTIPLE CO-EXISTING OVERLAYS

To validate our hypothesis (and the analytical model pre-
sented in Section V), we built a simulator that implements the
control planes at both the overlay and IP layers. The simulator
allows us to assess the impact of the conflicting decisions, made
by multiple overlays, on both overlay and other IP traffic. In
this section, we describe how we model overlay networks, and
present the details of the simulator design.

A. Modeling Overlay Networks

While different overlay networks, designed for a wide range
of applications, may differ in their implementation detail, most
of them provide a common set of functionalities, including
periodic path/performance monitoring, failure detection and
restoration. In this paper, we model the most generic properties
of an overlay network, as summarized below:

• Most overlay routing strategies select a path between a
source-destination pair with the best performance based
on end-to-end delay, throughput, and/or packet loss.
Our model assumes the overlay path with the shortest
end-to-end delays will be selected, but can be extended to
include other metrics.

• Most overlay networks monitor the actively used paths by
sending frequent probes to check if the paths adhere to ac-
ceptable performance bounds. If the probing event detects
a problematic path (due to failures, congestion, etc. at the
IP-layer), then the overlay network sends probes at a higher
rate to confirm the problem before selecting an alternate
path. Our model assumes regular probes are sent out every

seconds. If a probe does not receive a response within
a given timeout (or ) value, then the path is probed at a
higher rate (every seconds). If a path remains bad after

such high frequency probes, the overlay will find an al-
ternate path (or the next best path) between the source and
destination nodes. For instance, RON [2] can be modeled
with s, s, and while Akamai net-
work can be modeled with much smaller values of , ,
and [13]. As soon as an alternate path is found, the traffic
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is moved to the alternate path, which is now probed every
seconds to ensure that it is healthy.1

B. Simulating IP and Overlay Network Dynamics

Within each ISP domain, we emulate an IP-layer interior
gateway protocol (IGP) that implements Dijkstra’s shortest
path algorithm. To simulate real-world network scenarios, we
introduce link failures and carefully model the IGP dynamics
in response to failures as outlined in [14] and [15]. In any IP
network, the link utilization determines the delay, throughput,
and losses experienced by traffic flows that traverse the link. To
simulate realistic link delays, we model delay on any link as a
monotonically increasing piecewise linear convex function of
its utilization (as in [16] and [10]).

In our simulations, a single IP network could have multiple
overlay networks with nodes resident in its domain. Each
overlay can have a different topology and routing strategy. Note
that we do not require that all of the nodes participating in an
overlay be resident in the same domain. All overlay networks
adopt the same routing strategies and path probing mechanisms
described in Section III-A.

We assigned the background traffic between various IP nodes
in the network based on the findings in [17]. The traffic between
overlay nodes in various overlay networks was assigned such
that the overlay traffic accounts for a significant portion of the IP
traffic (an implicit assumption made in all of our discussions). In
our simulations the combined overlay traffic from all the overlay
networks was typically 30%–50% of the overall traffic. We gen-
erated numerous events at the IP layer and observed the reac-
tions of overlay and IP networks, both at the control plane and
the data forwarding plane.

C. Race Conditions in Multiple Overlays

As mentioned before, our hypothesis is that the co-existence
of multiple independent overlays can exhibit race conditions
that lead to unexpected network instability. To test our hypoth-
esis, we consider a scenario with five overlay networks deployed
on top of a tier-1 ISP backbone topology (similar to [15]), as
shown in Fig. 1. To simulate a realistic scenario with heteroge-
neous overlay networks, we chose different timers values (i.e.,

, , , and ) for each of the overlay networks (Table I). The
timers of the first two overlays have significantly larger values
compared to the other three. Even though we only consider a
single domain, it is clear that the observations and results pre-
sented in the rest of the paper can occur even when overlay net-
works span multiple domains.

We ran numerous simulations by generating different IP-level
events and various traffic loads in the overlay networks. Results
reveal many different possible interactions between overlay net-
works triggered by different events. For ease of presentation, we
only show the dynamics of multiple overlays in response to a
very common event, link failures.

Fig. 2 shows the utilization of a subset of links in one of the
simulation runs that lasted for 70 s. On the x axis we mark the
timeline of various IP-layer events such as link failures, routing

1As long as the current path adheres to the performance bounds, an overlay
does not look for alternate paths even if they may have better performance.

Fig. 1. Simulation topology.

TABLE I
TIMER VALUES FOR THE OVERLAYS IN SIMULATION

Fig. 2. Link utilization as a function of time.

re-convergence (IGP routing protocol has converged and identi-
fied alternate path), and link recovery (failed link becomes oper-
ational again). We consider two link failure events: (i) link 10-12
fails at s, and (ii) link 2-5 fails at s. The failures
are far apart such that the first link is operational (i.e., recovered)
before the second failure event. Note that we do not show mul-
tiple simultaneous link failures for ease of illustration. However,
multiple failures will exacerbate the race conditions described
here.

Traffic Oscillations: Fig. 2 shows how loads on some of
links start oscillating soon after the link failure events. There
are two sets of oscillations: one corresponding to the failure of
link 10-12 and the other for the failure of link 2-5. During these
two sets of oscillations, the paths between some source-desti-
nation pairs in the overlay layer change constantly. The first
set of oscillations involves two overlay networks (Overlay-1
and Overlay-2) while the second set involves three (Overlay-1,
Overlay-2, and Overlay-3). The overlay paths involved in these
oscillations do share at least a few common IP-layer links.
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Fig. 3. Second simulation run: cascading reactions.

Note that the oscillation events involve different number of
overlays, implying that different number of overlay networks
can synchronize with each other.

We also observed that different runs of our simulations had
different stop triggers for oscillations (e.g., IGP re-convergence,
link recovery, self-disentanglement). It is important to note that
certain IP-layer events that act as stop triggers for one set of
oscillation might not affect the oscillations at another point in
time. Also, most of the IP layer events that act as stop triggers
are heavily dependent on the current network conditions at the
IP layer. For example, IGP convergence depends on the timer
values set by the ISPs and the location of BGP peering points
[15]. The order of occurrence of these stop triggers is not deter-
ministic, thus introducing unpredictability in the duration of the
oscillations.

Cascading Reactions: We also observed that a reaction from
one overlay network can trigger a series of reactions in other
overlay networks. We refer to such a domino effect as cascading
reactions or cascading route changes.

We ran the same simulation as before but with a slightly
different traffic load in the overlay networks. The top graph
in Fig. 3 shows the load on IP links that were common to
the overlay paths between nodes 10 and 18 in Overlay-1 and
Overlay-2. The bottom graph shows the load on some of the
links used by Overlay-4 and Overlay-5 between nodes 8 and
15, and, 8 and 12, respectively.

By observing the link loads on these IP links (Fig. 3) and
correlating it with the path changes at the overlay control layer,
we found the following. Soon after the failure of link 10-12,
Overlay-1, which uses the failed link as a part of the primary
path between nodes 10 and 18, moves its traffic on to an alter-
nate path through link 10-15. We can see this as an increase in
the load on link 10-15 in the top graph of Fig. 3. A little later
Overlay-2 also moves its traffic onto the same alternate path. We
can see this as a further increase in the load on link 10-15 in the
top graph. This increase in load on link 10-15 deteriorates the
performance of the path from node 8 to node 15 in Overlay-4.
The primary path for this source-destination pair is 8-10-15.
Overlay-4 reacts to this performance deterioration and moves
its traffic to an alternate path (i.e., 8-9-12-15). This results in a

Fig. 4. Third simulation run: cascading reaction leading to oscillations.

decrease in load on link 10-15 as in the top-graph and a simulta-
neous increase in load on link 8-9, as shown in the bottom graph.
This traffic shift overloads link 8-9 and link 9-12, prompting the
traffic between nodes 8 and 12 in Overlay-5 to find an alter-
nate path. Note that the primary path from node 8 to node 12
in Overlay-5 was 8-9-12. Overlay-5 finds an alternate path (i.e.,
8-7-11-12) and moves its traffic. This leads to a decrease in load
on link 8-9 and an increase on link 11-12 (bottom graph). This
shows that a reaction in one or more overlay networks could lead
to a series of reactions from other overlays. A critical observa-
tion here is that such cascading reactions could become common
as the number of overlays that co-exist increases.

Fig. 4 shows the results from our third simulation run which
differs from the second run only in the overlay traffic load. The
cascading reactions observed are similar to the second simula-
tion run except that: (i) the alternate path found by Overlay-5
between nodes 8 and 12 is 8-10-15-12 instead of 8-7-11-12;
and (ii) the reaction of Overlay-4 to the routing decisions made
by Overlay-1 and Overlay-2 results in oscillations in both
Overlay-4 and Overlay-5. The resulting load fluctuations on
link 10-15, link 10-11, link 8-10, and link 8-9 can be observed
in the top and bottom graphs of Fig. 4. Note that all four
overlays (Overlay-1, Overlay-2, Overlay-4, and Overlay-5)
start oscillating after the failure of link 10-12 resulting in highly
unstable network condition. The only difference between the
simulation runs in Figs. 3 and 4 is the overlay load conditions.
In other words, an increase in load in a overlay network could
completely change the complexity of the problem. It is worth
noting that a gradual increase in overlay traffic load over time
could be a major factor that could lead to such cascading
reactions.

Our observation of cascading reactions in multiple overlay
networks is similar to the bistable behavior detected in tradi-
tional nonhierarchical telephone [18]. Typically, these networks
are built as a full-mesh of 4ESS switches with logical links
between them. By default, under low-load conditions, all the
calls use the direct (one-hop) path between switches. Under high
loads, when the direct path is full, the network picks a two-hop
alternate path to carry a call. These two-hop calls consume more
resources in the network, and could force other potential direct
calls to use two-hop paths. This might result in most of the calls
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using two-hop paths thus reducing the network capacity by half.
This is very similar to cascading reactions observed in overlay
networks. The solution for this problem in telephone networks
was to use trunk reservation schemes that prevent a link to be
used for two-hop calls when its utilization exceeds a threshold
value. This scheme is inapplicable in the context of overlays
since (i) there is no single administrative control for different
overlays, and (ii) IP networks lack admission control and hence
reservation of bandwidth on different links is not feasible.

IV. WHY DO RACE CONDITIONS OCCUR?

In this section we present the arguments for why and when
race-conditions (hence traffic oscillations and cascading reac-
tions) between multiple co-existing overlays occur.

A. Conditions for Traffic Oscillations

Oscillations are initiated when coexisting overlays satisfy the
following conditions:

Path Performance Degradation: An event must trigger a per-
turbation of the network state that leads overlay networks to re-
visit their routing decisions and look for alternate paths. This
event can be an increase in the traffic demand of the IP net-
work or one of the overlay networks, or a link failure event that
results in a reduction of capacity. Since different overlays are
controlled by autonomous timers and routing algorithms, a path
performance degradation event could provoke independent re-
actions from different overlays.

Topology (i.e., Primary and Backup Paths): The node loca-
tions determine how the paths of coexisting overlay networks
overlap. Oscillations may occur when the primary and alternate
paths share at least one common link. Fig. 5 illustrates this case
with overlays on top on an IP network. The node pair A-F in
Overlay-I, and pair A-L in Overlay-II share the link A-C on their
primary paths. Assume, for simplicity of discussion, that the
“top” path is their first alternate choice. If link A-C fails, then the
first alternate path for A-F and that for A-L would share link A-B.
If this link becomes a bottleneck, forcing the overlay networks
to move their traffic again, then the overlay source-destination
pairs A-F and A-L would now move to the “bottom” path. How-
ever, they would still share link A-D that could itself become a
bottleneck. Hence, the topology criteria for synchronization to
occur is: there is a pair of overlay nodes in each of two overlays,
such that their primary paths share at least one common bottle-
neck link. This condition is intuitive. Two overlays will not get
synchronized if they do not share portions of physical paths. For
oscillations to sustain, the two overlays must share bottleneck
link/s in both their first and second alternate path choices.

Periodic Probing Process: As mentioned in Section III-A,
overlays periodically probe their paths. Consider the two over-
lays in Fig. 5 and a failure on link A-C that is common to their
primary paths (A-F in Overlay-I and A-L in Overlay-II). Sup-
pose the timing of the probing processes for two overlays is
such that the last high frequency probes, for each of the over-
lays, expire within a short time window of the other. Then both
overlays will shift their traffic to their first choice alternate path
roughly at the same time. When this occurs we say that two over-
lays get synchronized. This happens when the window of time is
so short that the overlay that moves second does not have time
to re-probe its path to realize that some traffic load from the

Fig. 5. Two overlay networks that partially share primary and alternate paths.

other overlay has already moved. Now, if the traffic load on the
first choice alternate path becomes high, then the overlays could
react again moving their traffic to the second choice alternate
path. Such reactions can continue and overlays move their traffic
in a lock-step fashion between the two alternate paths until the
distance between the probes grows large enough to end the syn-
chronization. When this happens we say that the two overlays
disentangle themselves.

Since overlay networks have no control over performance
degradation events inside an ISP (first condition), and since they
may not have much control over the placement of overlay nodes
that eventually determines the overlap of paths (second condi-
tion), we focus our calculation of the probability of synchro-
nization in terms of just the probing process parameters.

B. Conditions for Cascading Reactions

Cascading reactions tend to occur when a large number of
overlays coexist and satisfy the “path performance degradation”
and “periodic probing process” conditions similar to case of os-
cillations, and also satisfy the following:

Topology (i.e., Primary and Backup Paths): Although oscil-
lations also require the topology condition to be satisfied, the re-
quirement for cascading reactions are quite different from that
of oscillations. Cascading reactions could occur when the alter-
nate path of first overlay overlaps with the primary path of the
second overlay, the alternate path of the second overlay overlaps
with the primary path of the third overlay, and so on. Fig. 6 illus-
trates a scenario with three overlays spanning multiple domains
that could lead to cascading reactions. Consider the primary and
alternate paths between the node pairs as indicated in the figure.
The alternate path between the node pair A-G in Overlay-1 par-
tially overlaps with the primary path between the node pair
C-K in Overlay-2. Same is the case for the node pair C-K in
Overlay-2 and node pair B-H in Overlay-3. For simplicity of
discussion assume that the link D-G fails. Soon after the failure,
Overlay-1 will move the traffic between the node pair A-G from
its primary path (A-D-G) to the alternate path (A-C-F-G). This
alternate path shares the link C-F with the primary path between
node pair C-K in Overlay-2. If this link gets overloaded de-
grading the performance, then Overlay-2 could move the traffic
between node pair C-K to the alternate path, C-B-E-H-K. No-
tice that Overlay-2 and Overlay-3 now share links B-E and E-H.
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Fig. 6. Three overlay networks in multiple domains that partially share their
primary and alternate paths.

If anyone of these links gets overloaded, then Overlay-3 could
move its traffic to the alternate path, B-A-D-F-H. If there are
more overlays in the system that satisfy the topology condition
then these reactions could percolate to several overlays affecting
their performance.

Since a particular overlay network cannot know whether its
paths overlap with those of another overlay, and since it cannot
predict performance failures, avoiding these conditions is be-
yond the control of an overlay network. However an overlay can
control its own probing process, thus in the rest of this work we
focus on modeling the impact of the path probing process on
oscillations.

V. ANALYZING OSCILLATIONS

In this section, we focus on how the path probing parameters
affect synchronization. First we develop an analytic formulation
of the probability of synchronization for two overlays as a func-
tion of the parameters in the path probing procedure. Second
we derive an upper bound on how long two overlays can remain
synchronized, for a given set of parameters.

A. Probability of Synchronization

For our analysis, we assume the first two conditions for syn-
chronization hold, i.e., the two overlays share at least one link
on their primary paths and one event on the shared links occurs
(e.g., failure or congestion) that causes probe packets to be lost
or excessively delayed.

As described in Section III-A, overlay networks probe their
paths at regular intervals of seconds. If the path is healthy,
the probe should return in one round trip time, with a measure
of the path delay (or an assessment of another chosen metric). If
the probe does not return before the timeout expires, then the
overlay starts sending its high-frequency probes ( will be sent)
every seconds. Thus, the probing procedure for each overlay

on path is specified by five parameters: the probe interval ,
the high frequency probe interval , the timeout , the number
of high frequency probes , and the round trip time over
path . Note that is the same for low- and high-frequency
probes. By definition .

The probing procedure implies that (under normal circum-
stances) on a given path there will be exactly one probe in every
time period of length . Now suppose that an event (e.g., a link
failure) occurs at time . We assume that a probe sent on path
in overlay at time “senses” the state of the path at ,
i.e., the probe is dropped if the path is not operational at that
time.2 Hence, the overlay network will detect the failure event
with the probe sent at if . We
call this period the detection period. The overlay will then react
at time sending the high frequency probes as discussed
above.

Consider two overlay networks, and . Let and be
the actual times at which the initial probes are sent during the
detection period. We assume that and are equally likely
to occur anywhere in their detection period and hence are uni-
formly distributed in their detection period. Once an overlay net-
work detects the failure, it begins sending the high frequency
probes every time units. The final high frequency probe will
be sent out at for , 2.

An overlay network actually moves its traffic to an alternate
path immediately after the final high frequency probe has timed
out ( for ). Two overlay networks will synchronize if
they both move their traffic to the same bottleneck link (shared
by their chosen alternate paths) in a “short” window of time.
By “short” we mean here that the window is small enough that
when one overlay moves, the second overlay does not see or
detect that move through its probing process and thus moves
itself onto the same link(s).

There are two cases for synchronization—in one case
moves its traffic first and moves shortly thereafter, or vice
versa. Consider the case of moving first. Suppose that
sends out the final high frequency probe after sends its final
high frequency probe, but before moves its traffic. We as-
sume that decides at time what its alternate path will be if
this last probe does not return, and hence it doesn’t have time to
detect the traffic move by before it moves its own traffic.
Hence, if we have the timing and ,
then both overlays move their traffic without being aware of the
other’s reaction. This is the condition for synchronization when

moves first. Similarly, if moves first, the networks will
synchronize if and . Hence, the two over-
lays get synchronized if any one of the following two conditions
are satisfied:

(1)

(2)

Since the above two conditions are independent of each other,
we can combine them as follows:

(3)

where ; .

2To simplify our analysis during failures we ignore the exact values of prop-
agation delays between the source, the failed spot, and destination. Thus, we
approximate the instant at which a probe is dropped by R =2.
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Fig. 7. All possible scenarios to calculate the region of conflict.

We assume that and can occur anywhere in their detec-
tion period with a uniform probability. It is important to notice
that the actual value of is irrelevant and hence for the ease
of understanding we consider . Thus, the range of is

and the range of is ,
where is the RTT for the primary path in overlay and
is the RTT for the overlapping primary path in the other overlay,3

.
For a specific set of parameters for ,

2, we can represent the system as a two dimensional graph with
the x axis representing probe and the y axis representing
probe . All the allowable values for the tuple lie in-
side the rectangle with the vertices: ,

, and
(see Fig. 8). This geometric representation allows us to

compute the probability of synchronization, , of two over-
lays in an intuitively simple way. We define region of conflict
to be the portion of this rectangle in which synchronization will
occur, i.e., the region that satisfies the two constraints specified
in (3). The boundaries of the region of conflict are thus deter-
mined by the boundaries of the rectangle and their intersection
with the two parallel lines of slope 1:

(4)

(5)

Since and can occur anywhere in their detection period
with uniform probability, synchronization will occur if the point

lies inside the region of conflict. Now the probability of
synchronization, , can be defined to be the ratio of the area
of the region of conflict to the total area of the rectangle. This
two-dimensional representation captures the influence of all the
parameters since these quantities ultimately
define all the corners and line intersection points needed to com-
pute the relevant areas.

There are a number of ways in which Line-1 and Line-2 in-
tersect the boundaries of the rectangle. The nine different sce-
narios for intersection are illustrated in Fig. 7. Consider Fig. 8

3Since we focus only on the primary path in both the overlays, we drop the
second subscript in R .

Fig. 8. Scenario 1 (V = R =2 and V = R =2).

that represents Scenario 1 in detail. Line-1 intersects the bottom
and right edges, while Line-2 intersects the left and top edges.
As evident in Fig. 8, we can clearly see that the area of the
rectangle is composed of three distinct regions: (area of the
region below Line-1 and the rectangle boundaries), (area of
the region above Line-2 and the rectangle boundaries) and the
region of conflict. Hence, the region of conflict, , can be ex-
pressed as

(6)

Thus we can express the probability of synchronization as

(7)

In Scenario 1, and are triangular regions with two
equal edges (due to the fact that both Line-1 and Line-2 have
a slope of 1). From Fig. 8, we see that can be computed
using

(8)

(9)

(10)

Although the above equations for and are valid for
Scenario 1, they do not hold for scenarios where Line-1 inter-
sects boundaries other than the right and bottom edges of the
rectangle, and/or Line-2 intersects boundaries other than the left
and top edges of the rectangle. For example, if we consider Sce-
nario 2 in Fig. 7, Line-1 intersects the top and bottom edges
of the rectangle. If we use (9) to calculate , then is larger
that it should be since it includes space outside the rectangle. We
thus need to add another term, , to in (6) to compensate for
the excess included in . In the case of Scenario 2, the excess
term to be removed is .
We do not include the compensation areas for each of the nine
scenarios since it is a straightforward computation. Although
this model results in 9 different scenarios, each with a different
equation for , it is still attractive due to its simplicity. This
model can be extended to an arbitrary number of overlays, as
shown in the Appendix.
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B. How Long Do Oscillations Last?

Suppose that two overlays react to an event within a short
window of time, and land up on alternate paths that share at
least one common link. As depicted in Fig. 5, such a reaction by
both overlays could overload the common link, prompting them
to find another alternate path. These reactions lead to oscilla-
tions that last until the overlay networks disentangle themselves
or are influenced by an external event. If no external events stop
the oscillations, then it is important to ask how long these os-
cillations will last. In this section, we derive an upper bound on
the number of oscillations.

To break synchronization what matters is the temporal
spacing between the two probing processes that govern their
reaction times (moving traffic). Let denote the
difference in time between the initial detection of the path
problem. Since we are concerned with the difference between
the reaction times, we can map the region of conflict space
onto space on a real line for all possible scenarios. In other
words, we can represent all the points in the region of conflict
by the value of at that point. Here all the points in the
region of conflict are mapped to the region between the points

and on the real line.
Every time an overlay network shifts traffic to an alternate

path it starts probing the new overlay path every seconds.
If both the overlays shift their traffic almost simultaneously re-
sulting in performance degradation on the first choice alternate
path, then this will trigger another response from both overlays.
They will shift their traffic to their second choice alternate path.
If these second choice paths become overloaded, each overlay
may move back to its first choice path, thus entering into oscil-
lations. The time for an overlay to detect a problem on a new
path and then move its traffic is given by . Thus,
each time the synchronized overlays move together from one
set of alternate paths to another, the spacing between the probes
change by . After

such reactions, the spacing between the probes
can be expressed as

(11)

Note that we have implicitly assumed here that the parameter
values for the primary and alternate paths remain the same for
both the overlays; hence the value of is the same regardless of
whether we are on the first or second set of alternate paths. We
make this assumption for two reasons. First, it allows our model
to remain tractable; without this the size of the box (feasible re-
gion for probe values) in our model for would change with
each traffic shift. Second, this is not unreasonable for scenarios
in which two overlays select locations for their nodes that are
similar either because they are strategic or resident where the
traffic demands are high. Also, if the values of are different
for each of the alternate paths then the rate at which the spacing
moves towards the boundary condition could either increase or
decrease, introducing the possibility that the number of oscil-
lations could be better or worse than the case that we consider
here.

From (3) the stop condition for the oscillations is given by
(note that ). The worst case in the number

of oscillations happens when is equal to (or ) and moves

Fig. 9. Comparison of theoretical and simulation results forP (S) for two iden-
tical overlay networks with different values of P .

Fig. 10. P (S) as a function of the ratio P=Q with different values of Q for a
given value of P in two identical overlay networks.

towards (or ) by seconds at each step. It is then straightfor-
ward to derive , the upper bound on the number of oscillations,

. Hence

(12)

Notice that when the overlays have identical parameters, they
remain synchronized forever. The model thus follows our in-
tuition that once two overlay gets synchronized, if the spacing
between the probes never changes, they remain synchronized
always.

VI. VALIDATION OF ANALYTICAL MODEL

To validate both our analytic formulation and our implemen-
tation in the simulator, we compare computed using the
model (Section V) versus that seen in simulation. We first con-
sider two similar networks (i.e., all the parameters are identical),
but vary the value of the probe interval. The results are given in
Fig. 9. The simulation results are based on running the simula-
tion 1000 times and calculating the number of times the overlay
networks got synchronized. We can see that the analytical re-
sults closely match the simulation results.

When the two overlay networks are identical (i.e,
, , , , and

, it is easy to see that we have and .
Hence, the probability of synchronization [from (7), (8), (9),
(10)], collapses to the simple equation .
If our model is correct, this implies that is independent of

, and . Fig. 10 shows the variation of (generated
using the simulator) as a function of for constant values of .
We can clearly see that for a given probe interval, varying
does not impact the probability of synchronization between two
identical networks thus confirming the accuracy of our model.

To verify the correctness of the theoretical upper bound on
the number of oscillations [(12)], using our simulator we sim-
ulate oscillations in two synchronized overlays that are dissim-
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Fig. 11. Comparison: theoretical versus simulations for number of oscillations.

ilar (Fig. 11). We run the simulations 50 times for each set, but
the figure represents only those cases where the overlays syn-
chronize and oscillate. We can clearly see that the theoretical
upper bound on the number of oscillations before the overlays
disentangle is larger than the actual number of oscillations in
our simulations, yet lies near the values observed in simulation.
Note that we are exploring the number of oscillations in a small
parameter space, but the main purpose of this figure is to validate
our model. We look at a wider parameter space in Section VII-B.

VII. SENSITIVITY TO PROBING PARAMETERS

To assess whether or not these race conditions pose a
problem in the design of overlay networks, we need to un-
derstand whether such situations are pathological (and thus
very unlikely to occur) or if there is a reasonable chance that
this can happen over some non-narrow range of the parameter
space. For the case of two overlays, we have ten parameters,
and thus describes a probability in 10-dimensional space.
We now study how varies with respect to some of these
parameters, or combinations of them. Due to the complexity
of the parameter space, we direct our attention to address the
following questions: (i) Is non-negligible in operating
regions that can occur in the Internet? (ii) Can we count on
naturally occurring variations in RTT (due to path length diver-
sity) to reduce to negligible values? and (iii) If not, which
parameter settings can drive to low values? In other
words, how should an overlay network designer choose the
probing parameters to reduce the likelihood of synchronization,
especially when the behavior of other overlays are not known?

A. Aggressiveness Factor and Probe Parameter Setting

We start with the simplest case of two overlays with identical
parameter setting since it provides some insight about overlays
in general. Recall from Section VI that for two identical over-
lays, we have . Hence, depends
only on the probe interval and the timeout values of the overlays.
The maximum value of occurs when , i.e., the
overlay networks will definitely synchronize. If then

. To decrease the probability of synchronization to
less than 0.05 (i.e., 5% chance of synchronization), we need to
choose .

Fig. 12. P (S) versus (R �R )=R for proportional parameter overlays with
similar aggressiveness and varying RTT.

We are thus motivated to characterize overlay networks by
their probing frequencies. We consider overlays that probe fre-
quently and move their traffic quickly as aggressive. We de-
fine an aggressiveness factor, , of an overlay network as the
ratio of the timeout and probe interval, . Since

, hence . For two identical overlay
networks, , which shows that as the networks
increase their aggressiveness (as ), increases.

In many of our sample scenarios in the next section, we varied
RTT between 20 ms and 300 ms to capture a variety of real-
istic Internet overlay paths that span either a small or large geo-
graphic distance. We choose the timeout value to be four times
the RTT. This is motivated by the type of approach usually fol-
lowed in TCP in which timeout values are set to be the mean
RTT plus 3 or 4 times the standard deviation. Assuming the stan-
dard deviation is similar to the mean, we use in
our calculations.

The other probing parameters and can be set in two ways:
(i) Proportional values, where and are set to be multiples of

(and hence RTT) and are different for each path in the overlay;
and (ii) Fixed values, where and are constants independent
of and RTT and therefore the same for all paths.

B. Results and Discussion

In Fig. 12, we explore the impact of variations in RTT values
on for two proportional parameter overlays. Although
both overlays have the same aggressiveness in this example, the
actual values of , , and will differ for each overlay because
the parameters ultimately depend on the particular RTT. We ob-
serve that when both overlays are aggressive (e.g., ),

can be as high as 55%. When both are nonaggressive (e.g.,
), never gets above 10%. In this figure, we

plot versus the relative difference in RTT values between
two overlays. The figure indicates that when one RTT is more
than twice the value of the other, then this synchronization issue
is not a concern as is near or at zero. However when the
RTTs are less than 50% different from one another, then we can
have non-negligible probability of synchronization. This could
happen for two overlay networks that both span a similar ge-
ographic region. Since the dependence here is on the relative
RTT’s, the actual size of this geographic region does not matter.

As overlays are not widely deployed and their performance
requirements are not yet well understood, it is not clear how
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Fig. 13. Proportional parameter overlays with mixed aggressiveness and
varying RTT.

Fig. 14. Proportional parameters, mixed aggressiveness, and constant RTT.

to decide for which values should be considered “signif-
icant”, or “non-negligible”. In this paper, we consider to
be non-negligible if it exceeds 10%. Admittedly, this number
is subjective, however we will see plenty of scenarios in which

is considerably far away from zero to indicate that syn-
chronization problems should not be neglected.

In Fig. 13, we examine some scenarios in which the two
overlays have different aggressiveness factors. In these sce-
narios, the first overlay is set to be aggressive, while the second
overlay varies from aggressive to nonaggressive

. We see that even in the case of one aggres-
sive and one nonaggressive overlay network, can still
be non-negligible for a wide range of relative RTT values.
However, this figure indicates that an overlay might benefit
from using nonaggressive parameters even if another overlay
behaves aggressively. To further explore this hypothesis, we
consider a wider variety of cases in Fig. 14.

Fig. 14 shows the value of as a function of the ag-
gressiveness factors of the two overlays. Each curve in the
graph represents the value of for a fixed value of
but different values of . As the aggressiveness of both
overlays increases, there is a higher chance of synchronization.
This probability significantly decreases when the overlays are
nonaggressive. This confirms that as long as one of the overlays
is nonaggressive, the probability of synchronization is low. In
other words, setting a high value of is critical to reducing

. We wish to point out that there could be fairness issues
when one overlay is very aggressive, and exploits the nonag-
gressive parameter settings of the other overlay. We defer the
study of fairness to future work.

Fig. 15. Fixed parameter overlays (RON-like) with the same values of P and
Q, and varying RTT.

We now look at the impact of using a fixed parameter ap-
proach to choosing and . In Fig. 15, we consider the case
of two RON networks. The pattern in this figure is explained as
follows. Each straight line of points belongs to the cases of a
fixed as is varied through its entire range. An interesting
observation from this plot is that even when the relative differ-
ence between the RTT’s is zero, does not take on a single
value, but instead can take on any of a number of values. is
at its minimum when both RTT values are small ( ms,

ms), and achieves its maximum when both RTT values
are large ( ms, ms). This suggests that in
fixed parameter overlays, unlike proportional parameter over-
lays, the absolute value of is an important factor in deter-
mining . We observe that RON networks are designed to
be nonaggressive ( varies between 0.007 and 0.1) and this
results in low synchronization probabilities. However, there still
do remain a number of cases in which exceeds 10%.

In Fig. 16, we consider two fixed parameter overlays with
different values of and . We see similar behavior as in the
previous case of fixed parameter overlays. We point out that in
these two cases is significant for a wider range of values
on the x axis as compared to Fig. 12. In other words,
does not reach zero once the relative difference exceeds 60%
or 70%. Using a fixed approach to parameter selection means

is constant, however, since aggressiveness is , the
aggressiveness is varying per path (since is proportional to
RTT). The overlay is more aggressive on long paths and less so
on shorter paths. The increased aggressiveness on longer paths
could explain why does not disappear when the relative
difference of RTTs is high (e.g., 300%).

We also examine the influence of on and conclude
that the influence of is far less significant compared to that of

or . Due to lack of space we omit these results.
Finally, Fig. 17 shows the upper bound on the number of os-

cillations between two overlays after they are synchronized for
both proportional and fixed parameter overlays. Even though we
are exploring a small subset of the parameter space, there are a
considerable number of cases where the number of oscillations
is more than 5.

VIII. IMPLICATIONS OF SYNCHRONIZATION IN OVERLAYS

Today’s Internet does not have multiple overlay networks de-
ployed, that is, not the type that use continuous probing to do
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Fig. 16. Fixed parameter overlays with the different values of P and Q, and
varying RTT.

Fig. 17. Maximum number of oscillations as a function of relative RTT.

path selection. We have explored the possibility of race condi-
tions occurring should multiple overlays get deployed so that we
may accumulate some wisdom about how to design such net-
works before they become widely used. We have seen a variety
of scenarios in which the probability of synchronization ex-
ceeds 10%. These scenarios included cases in which RTTs were
varied, probe rates were varied, and the relationships among the
parameters were varied. We thus believe that there does exist a
non-narrow range of the parameter space in which synchroniza-
tion is non-negligible. We also illustrated that once synchroniza-
tion occurs, the resulting oscillations can sometimes last for a
long time. We thus believe that these issues should be taken into
consideration when overlay networks are designed and config-
ured.

One of the questions we explored was whether we can count
on variations in RTT alone to avoid synchronization. When
using a proportional approach to parameter selection,
can be significant (e.g., 40%) when the relative difference
in RTTs is small (roughly less than 70%) and the overlays
are aggressive. With a fixed approach to parameter setting,

can exceed 10% even when the relative difference is
as high as 300%. Moreover, when using the fixed approach,
the absolute value of RTTs matter and large RTTs can bring
about larger . This implies, for example, that designing
a cross-continental overlay network is more challenging than
designing one in a single country. Since synchronization can
occur, even when overlay paths have dissimilar RTTs (whether
large or small), overlay network designers should not rely upon
differences in RTTs to avoid synchronization.

We believe that overlay networks should be designed with
care so as to mitigate race conditions as much as possible. This
is nontrivial as we have shown there isn’t any “ideal” set of pa-
rameters that ensures avoidance of synchronization. Our results
indicate that using a proportional approach to parameter selec-
tion might be better than using a fixed one. The proportional ap-
proach narrows down the range of relative RTTs in which syn-
chronization can occur. Also, proportional parameter overlays
depend only on the relative RTTs and can exploit the path diver-
sity in the Internet better than fixed parameter overlays. But in
reality, different overlay networks could easily end up choosing
the same strategic locations to place their nodes, resulting in
similar RTT values for various paths in different overlays, thus
making it harder to achieve and exploit path diversity. In other
words, using either a proportional or fixed parameter approach
could result in a fair chance of experiencing oscillations.

We saw that is more sensitive to the low-frequency
probe than the higher frequency probe . It appears that the
best approach for averting race conditions, is for overlays to
be nonaggressive in their probing, i.e., by using large values of

. The tradeoff here is a slower reaction time. We showed that
being nonaggressive can result in smaller values of even if
other overlays are aggressive. There may be implications here in
terms of fairness. We also show that it is beneficial to be nonag-
gressive, as we suspect that the trend is towards building more
aggressive overlays because of the popular belief that overlays
can outperform layer-3 networks in terms of their reaction time
to performance degradation events. We wish to point out that
when many overlays start to co-exist, aggressive probing can
have negative consequences and overlays can inadvertently step
on each other.

IX. LIMITING THE IMPACT OF RACE CONDITIONS

To limit the impact of synchronization among multiple
overlay networks we can take two approaches: (i) reduce
among overlays, and/or (ii) reduce the number of oscillations
once the overlays get synchronized.

Reducing the Probability of Synchronization: Intuitively, one
way to make it less likely that two overlays synchronize would
be to add randomness into the probing procedure. The idea of
adding randomness was illustrated to help in the case of periodic
routing protocols in [8]. Here we study the resulting behavior of
overlays when we add randomness to their probing parameters.
The hope is that these random values will drive the reaction
times of the overlays far apart, thus reducing the possibility of
synchronization.

Fig. 18 shows the effect of adding randomness into overlay
probing parameters on the likelihood of overlay network syn-
chronization in our simulator. The parameters values for the
two overlay networks are shown in the figure. In the results (in
Fig. 18), the value of is randomized by a certain percentage of
its own value (for example, 10%, 20%, etc.). Let us consider the
case of adding 10% randomness. In this case, we add a random
value chosen from a uniform distribution between 0 and
to the original value of . Although we use a similar strategy to
add randomness to both overlays, the random values chosen for
the two overlays are independent of each other.

In Fig. 18, we can see that adding randomness to the probe
interval, , does not help in decreasing the . Based on the
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Fig. 18. P (S) for randomized probing parameters.

fact that depends on the difference terms (like
and in (3), (6)–(10)), the randomness added to
the same parameters in two overlays could either increase or de-
crease the value of . We have repeated these experiments
by adding randomness to other probing parameters (i.e., and

), but found very similar results (not shown due to space con-
straints). Hence, adding randomness does not always ensure that
two overlays are less likely to synchronize.

Reducing the Number of Oscillations: In order to reduce the
number of oscillations after a synchronization event, we propose
an approach based on the well-known behavior of TCP. When-
ever a flow using TCP experiences a packet loss due to con-
gestion the protocol backs off from using an aggressive packet
transfer rate. Typically this back-off occurs at an exponential
rate to reduce the impact of congestion. In our case of mul-
tiple overlays, we propose to use a similar back-off technique
where an overlay network successively increases the reaction
time each time it decides to switch routes between the same
source and destination nodes (if the reactions occur in a small
time interval). In other words, this is similar in spirit to damp-
ening i.e., to slow down the reaction time of a protocol so as to
avoid responding too quickly. Note that the back-off technique
is also similar to the idea of nonaggressive probing. The main
difference is that while using nonaggressive probing, the param-
eter (or timer) values are always large, but while using back-off
strategy the parameter values are increased only when oscilla-
tions are detected.

Fig. 19 shows the effect of using back-off techniques on the
number of oscillations for two synchronized overlays. In these
simulations, we use two different approaches to accomplish
back-off: (i) “Deterministic” exponential back-off where the
amount of time that an overlay waits to change its path increases
exponentially (but in a deterministic manner) when the overlay
has changed its path in the recent past. In Fig. 19 both overlays
double the reaction time when the overlay has changed its path
in the previous 20 seconds. (ii) Random back-off where the
overlays wait for a random amount of time before deciding to
move to an alternate path.

We can clearly see in Fig. 19 that, on an average, using
random back-off reduces the impact of synchronization more
than exponential back-off. Since both overlays use the same
back-off parameters there is a higher chance that the overlays
will remain synchronized for a longer period when they use
exponential back-off strategy. However, while using random
back-off strategy, both overlays are more likely to wait for
different amounts of time before reacting, and hence it results
in reducing the impact of synchronization significantly.

Fig. 19. Effect of using back-off technique on the number of oscillations.

Fig. 20. Effect of using back-off technique on the number of oscillations when
the overlays are using different values for N .

Fig. 20 explores the impact of using back-off technique on the
upper bound of the number of oscillations. When the number of
oscillations is low, the two back-off techniques perform simi-
larly. Also, we see a huge spike at 3.75 on the x-axis, illustrating
extreme sensitivity to a particular parameter setting. From (12),
we can see that there are several combinations of parameter
settings that will make the denominator zero, or close to zero,
causing such spikes. Since overlays today do not coordinate
their parameter choices, uncovering such situations is beyond
the ability of an overlay network. Hence, there are many isolated
cases where the race conditions we describe could be severe.
For these cases, random backup-off appears more effective in
quickly curbing the spike by moving the parameters away from
the sensitive setting.

X. CONCLUSIONS AND FUTURE DIRECTIONS

We have shown that co-existing overlay networks can experi-
ence race conditions, affecting both the overlay and nonoverlay
traffic in the ISP network. We analytically modeled the proba-
bility of synchronization between overlay networks and showed
that overlay networks could get synchronized even when they
use dissimilar sets of probing parameters. We also explored
strategies to reduce the impact of race conditions, which can be
used as a guideline for designing or deploying future overlay
networks.

Further studies are required to gain a comprehensive under-
standing of stop triggers for oscillations. We plan to investigate
the following: (i) What are the various possible stop triggers,
and the frequency of occurrence for each of them? (ii) What
is the stop trigger for a given set of oscillations? (iii) How do
network topologies and operational conditions affect the occur-
rence of stop triggers? Since this is the first work of its kind, we
made many assumptions in our model and analysis, but we plan
to relax these assumptions in future work.
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APPENDIX I
EXTENSION OF THE ANALYTICAL MODEL

We now illustrate how our existing framework can be ex-
tended to scenarios in which more than two overlays exist. When

(where ) overlays coexist, there are a variety of ques-
tions from different perspectives that one can ask about combi-
nations and subsets of overlays that synchronize. For example,
we may ask “What is the probability that all overlays syn-
chronize?” If were very large, the probability that all of these
overlays synchronize simultaneously is likely to be very small.
It seems more meaningful to ask “What is the probability that
more than a large number, say , of overlays synchronize?”
(where ). The synchronization of a large number
(but not all) of overlays, is more likely than synchronization of
all of them. We call this global synchronization, and leave the
choice of up to the questioner. Another interesting perspec-
tive is from that of a single overlay who may like to ask “What
is the probability that I will experience a synchronization event
with (or with less than or equal to ) other overlays?”. If is
a small number (i.e., ), then we refer to this as local syn-
chronization. In Section V we computed the case when .

We first address the following question: “Given the coexis-
tence of overlays , what is the probability
that all synchronize?” This can be viewed as a network-wide
perspective on global synchronization. We show how our ana-
lytical framework can be extended to the case of coexisting
overlays when all the overlays satisfy the conditions outlined in
Section IV-A.

Let be the times at which the final high
frequency probes are sent by overlays
after a path performance degradation event is detected. Let

be an ordering of such that
if . Similar to the conditions for synchronization

of two overlays outlined in (1) and (2), the condition for the
synchronization of overlays is given by a set of
inequalities:

(13)

The above equations represent the required conditions for
coexisting overlays to synchronize. The ordering in depends
on the actual times at which the final high frequency probes are
sent out by different overlays and hence there could be several
different combinations. However, from (13), we can clearly see
that the order in which the final high frequency probes are sent
out by the first overlays does not affect the synchroniza-
tion condition. The only requirement is that the final high fre-
quency probe from should be sent out after all the other
overlays have sent their final high frequency probes. In other
words, results in the same synchroniza-
tion condition as or
as long as . Hence, the different possible combinations
of depends on the value of . Note that can take any
one of the values and hence there can be
different combinations of . This implies that in a system with

overlays there are independent synchronization conditions
for all the overlays to synchronize. In each of these synchroniza-
tion conditions there will be sets of inequalities (as we can
see in (13)) that are required to be satisfied in order for overlays
to synchronize.

To illustrate the above reasoning let us first consider the case
where there are only two overlays, i.e., . In this case there
should be , i.e., 2 independent synchronization conditions and

, i.e., 1 set of inequality in each of the synchronization con-
ditions. We can clearly see that this is in fact true based on (1)
and (2). Similarly in the case of three overlays there are 3 inde-
pendent synchronization conditions with 2 sets of inequalities
in each of these conditions.

Equation (13) can be rewritten as

(14)

where . The set of inequalities in
(14) involves overlays and contains uniform random vari-
ables . The range of these variables are
similar to the definitions in Section V-A, i.e., the range of
is for . Hence, this
system of inequalities represents a -dimensional space and
the range of values for each random variable ensures that the al-
lowed values for the variables are bounded inside a finite volume
(i.e., ) enclosed by the hyperplanes

and for .
A key observation in the inequalities defined in (14) is that

every inequality depends on only two variables. In other words,
the two hyperplanes defined by and

are parallel to all other axes except the axes in the
direction of and . Note that with only two varying di-
mensions for each inequality, the situation is similar to the one
described in Section V-A. There are 9 possible scenarios (sim-
ilar to Fig. 7) that could occur for each inequality and there are

such inequalities in a synchronization condition. Hence,
for each of the synchronization conditions there are
possible scenarios, each one with its own compensation vol-
umes. The probability of synchronization for a particular syn-
chronization condition is the ratio of the volume enclosed by
the hyperplanes defined by the inequalities in (14), and the total
volume . Since the synchronization conditions are independent
of each other, the total probability of synchronization of over-
lays is the sum of the probabilities of synchronization of all the

synchronization conditions. We denote the probability of syn-
chronization of overlays, , as .

We now consider local synchronization from the perspective
of a particular overlay . We assume a system with over-
lays where all the overlays satisfy the conditions outlined in
Section IV-A. The probability that overlay synchronizes
with just one other overlay network can be expressed as

(15)

where is the probability of synchronization between over-
lays and as computed in Section V. The term
represents the probability that the overlay does not synchro-
nize with . The second part of the above equation represents
the probability that and do not synchronize with any other
overlay networks in the system.
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Generalizing the above equation, the probability that
synchronizes with exactly other overlay networks can be
written as

(16)

(17)

where represents the probability of synchronization
of with other overlays (i.e., the result from the discussion
earlier in this section where the total number of overlays is ).

We can now define the probability that synchronizes
with less than other overlays. Using (16) and (17), we can
express this probability, called the probability of local synchro-
nization of , namely , as

(18)

From the perspective of a single overlay, one can also ask
“what is the probability that I experience a global synchroniza-
tion event?” Defined to be the probability that an overlay syn-
chronizes with more than overlays, we can write this as

(19)

Our initial exploration with these models indicates that global
synchronization of a large number of overlays becomes quite
small. However, from the perspective of a single overlay, when
there are many co-existing overlays, the likelihood of local syn-
chronization with any one of them is even higher than the prob-
abilities presented in our results herein.
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