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Abstract—In this paper, we propose a BGP anomaly detection
framework called BAlet that delivers both temporal and spatial
localization of the potential anomalies. It requires only a simple
count of BGP update messages collected over a certain period.
We first investigate the self-similarity in BGP update traffic and
present a quantitative validation. The strength of wavelet analysis
in handling signals with scaling property and earlier success in
applying it for network anomaly detection motivate us to apply
the same technique on BGP routing traffic. Later by clustering
the anomalies detected at different locations, BAlet is capable of
identifying possible network-wide anomalous events. Our method
does not rely on any information within the BGP messages, and
serves as a complementary tool to reduce the candidate data set
for further detailed root cause analysis. We evaluate BAlet on
real BGP data sets that are known to contain anomalies. Results
show that it is capable of detecting network-wide events such
as message volume surges caused by slammer worm attack, and
separating affected ASes from the rest.

I. INTRODUCTION

As the de facto inter-domain routing protocol, Border Gate-
way Protocol (BGP)’s routing dynamics can have a widespread
global impact on the Internet. Anomalous BGP behavior could
result in delayed path convergence, unstable routes, and in
the worst case, disruption of network connectivity. Therefore,
an in-depth understanding of BGP’s dynamics not only help
administrators manage the network more efficiently, but also
provide valuable insights for a better routing protocol design.

BGP irregularities could be triggered by a variety of events
such as link failures, session resets, routers crashing, and mis-
configuration. Many studies [1-10] have contributed towards
better understanding of various root causes of BGP anoma-
lies. However, given the tremendous volume of BGP routing
updates, it is still extremely challenging to manually pinpoint
BGP anomalies and their root causes in real time. In general,
network administrators need to know “when” and “where” the
anomaly happened to start an investigation. Therefore, tools
that can provide femporal and spatial localization of anomalies
will be very useful. The ideal anomaly detection mechanism
should also be easy to deploy, requiring minimum processing
time, capable of detecting anomalies as accurate and indicative
as possible.

In this paper, we propose a framework called BGP Anomaly
detection with wavelet (BAlet) to characterize BGP updates as
the first step in building such a tool. BAlet targets at identifying
and grouping BGP updates based on different prefixes or ASes
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that are likely triggered by the same underlying events along
the time line. It takes a 2-dimensional matrix of localized
update counts as input and works in two phases, as shown
in Fig. 1. Phase one involves wavelet analysis on each row
of the matrix, while phase two clusters correlated row vectors
based on anomaly patterns identified in the phase one. By
detecting anomalies in the BGP update time series, as well
as clustering them into groups by location, BAlet is notably
expressive toward understanding when and where BGP anoma-
lies happened, thus achieving temporal and spatial localization
of the anomalies. This is however not an easy task at all. It
requires extensive processing on collected routing data, and
hence is performed off-line currently.
The main contributions of BAlet are as follows.

e First, it is a black-box statistical approach that does not rely
on the information contained in the BGP updates. Instead,
anomalies detected based on the key observation that most
anomalies corresponds to increases in the volume of BGP
update messages. Temporal and spacial correlations among
the anomalies also grant us the opportunity of better
localization.

e Second, the incremental nature of BGP updates and data
from multiple vantage points ensure this is “network-wide”
anomaly detection. BAlet is very effective and scalable at
detecting anomalies that are spread over multiple routing
domains. Therefore, it serves to complement the existing
body of root cause analysis work.

Evaluating our framework on arbitrary BGP routing data is
hard because of the difficulty in establishing “ground truth” to
compare to. We instead apply the proposed detection methods
on BGP data from RIPE NCC [11] and RouteViews [12]
that contains well-known network-wide events. BGP update
messages are parsed using the Python Routing Toolkit [13]
and time series are generated from counting the number of
messages. Our results show that in most cases, there are
other possible anomalies detected in addition to the reported
events. This highlights the goal of BAlet to provide an efficient
technique to locate potential BGP anomalies, in order to
shorten the overall response time. We do not intend to perform
root cause analysis of certain BGP anomalies, nor to detect
specific announcement patterns. Instead, BAlet complements
existing approaches by locating a smaller set of BGP data
(through temporal and spatial localization) that can later be
processed by other signature-based sophisticated root cause
analysis algorithms.
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Fig. 1. Tow phases of BAlet: temporal detection of anomalies in phase 1,
and clustering for network-wide events in phase 2.

We show in Section III that time-series generated from the
count of BGP update messages exhibits self-similarity. This
motivates us to apply wavelet analysis techniques due to its
strength in exposing scale dependent properties in self-similar
signals [14]. Our wavelet-based algorithm for the temporal
localization of anomalies requires only minimum processing,
and is scalable and suitable for online, real-time monitoring. In
Section IV, we present our clustering algorithm which achieves
the spatial localization. We illustrate that BAlet is effective
in detecting and understanding various BGP anomalies by
performing the two-dimensional analysis.

II. RELATED WORK

Generally BGP updates can be attributed to two types of
transactions, table exchange and incremental updates. When-
ever a BGP peering session is established, all exportable
routes in the routing tables are exchanged between the peers.
Otherwise, under normal operations, a router only sends out
incremental route changes. Link failures, router glitches, and
misconfiguration can all cause a BGP session to be reset,
which will in turn provoke unusual upsurge in updates. Wang
et al. [4] and Lad et al. [8] analyzed the BGP log data
collected from various monitoring points to understand the
causes of the high surge in BGP update messages during
the Code Red/Nimda and SQL Slammer attacks, respectively.
It shows that local connectivity dynamics actually propagate
globally in current BGP routing protocol. As a result, a small
number of overloaded edge networks links to the Internet
potentially cause global routing anomaly. Zhang e al. [15]
present an algorithm called Minimum Collection Time (MCT)
to accurately detects the start and duration of table exchanges
from a stream of BGP updates.

Another well-studied BGP anomaly is the Multiple Origin
AS (MOAS) conflict first coined by Zhao et al. [16]. A prefix
is usually originated by a single AS. MOAS appears when
multiple origin ASes announce the same prefix. Its causes span
from legitimate cases such as multihoming, route aggregations,
and IP Anycast, to anomalous cases like misconfiguration
and hijacking attacks. Instead of attempting an accurate route
hijacking detection, PHAS [17] notifies of the origin AS
changes to the original prefix owners in a timely and reliable
way. Recent work by Qiu et al. [18] uses cooperation among

ASes for detection. Built on previous works, Hu ef al. [19]
significantly improves the detection accuracy of IP prefix hi-
jacking by combining passive analysis of BGP routing updates
with active data plane fingerprints of suspicious prefixes. The
novel algorithm demonstrates the ability to distinguish between
legitimate routing changes and actual attacks.

Visualization-based tools are also devised to analyze BGP
updates [20] and to detect MOAS events [21]. Zhang et al. [22]
applied both signatures (a pre-defined pattern of events) and
statistic methods for anomaly detection. These tools need
extensive processing on the content of the collected routing
data, and are therefore more appropriate for off-line post-
processing.

Several previous work are close to our proposed framework
in terms of methodology. An instance-learning framework [23]
is proposed to identifies anomalies based on deviations from
the normal BGP-update dynamics for a given destination prefix
and across prefixes. In their scheme, wavelet transform is
employed to extract update dynamic features, which are then
clustered into normal and abnormal groups. Xu et al. [24] also
suggests that updates triggered by distinct underlying events
can be separated. Specifically, Principal Components Analysis
(PCA) techniques is applied to achieve this goal. It is shown
that the method based on PCA is able to obtain a set of
clusters corresponding to a set of prefixes or ASes which are
affected by the same underlying event. Note that BAlet, on
the other hand, first detects anomalies for each AS or prefix.
The detected volume surges are then clustered into correlated
events both in time and space dimensions.

Recently, a Generalized Likelihood Ratio (GLR) based
hypothesis test is designed to extract features [25] in the
change patterns of BGP message volume and AS path length.
Temporal correlations amongst features are used to effectively
minimize the number of false alarms in the detection. Huang et
al. [26] apply the same PCA subspace technique to detect BGP
disruptions. Details in the dynamic routing updates are then
combined with network-wide static configurations to identify
the root cause of the disruptions. Our emphasis and approach
are different in that BAlet achieves the network-wide events
detection based on BGP updates received at a single vantage
point, as demonstrated in the paper. It can also adapt to multi-
points event correlation by combining the data set. Therefore,
it is much simpler and more suitable for online adoption.

Network traffic has been shown to exhibit self-similarity [27,
28]. Yuan er al. [29] and Huston [30] demonstrated the same
property with the BGP traffic. Fourier analysis can be adapted
to detect drift, trends and abrupt changes in a signal. For
instance, the Short-Time Fourier Transform (STFT) analyzes a
small window of signal at a time to map it into both time and
frequency domain. However, once the time window is chosen
in STFT, the window remains the same for all frequencies.
Given the nature of self-similarity in BGP update traffic,
wavelet analysis has proved to be more effective on change
detection at multiple scales. Previous work [31-33] applied
wavelet-based algorithms to detecting traffic anomalies and



network attacks. We adopt a procedure based on the maximal
overlap discrete wavelet transform to locate BGP anomalies in
the time domain.

III. DETECTING ANOMALIES WITH WAVELET

In network anomaly detection, anomalies are generally
manifested as abrupt changes, and generally caused by either
network failures and performance problems, or security-related
problems [34]. The same argument applies to BGP as well.
Anomaly detection methods usually include rule-based ap-
proach, finite state machines, pattern matching, and statistical
analysis. It is shown that the first three approaches have
limitations in that they require substantial knowledge about the
protocols as well as enormous processing power. However the
auto-regressive model used in [34] are only suitable for data
with fixed scale in time and frequency. Section III-A unveils
the self-similarity in BGP routing data, which motivates our
wavelet-based method. We introduce the wavelet transform
briefly in Section III-B followed by a summary of existing
network anomaly detection algorithms using wavelet in Sec-
tion III-C. Our detection results are presented in Section III-D.

A. Self-Similarity in BGP Routing Data

Self-similarity and long-range dependency (LRD) have been
observed in various types of network data traffic. However,
similar property has not been established for routing traffic
like BGP until recently [29, 30].
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Fig. 2. Burstiness of BGP update counts over various time scales.
We showed in [29] that the volume time series formed by
BGP updates exhibits self-similarity and long-range depen-
dence. One of the fundamental properties of self-similarity
is the observation of burstiness over a wide range of time
scales as discovered in local network and web traffic [27, 28].
Hence simple aggregation on the time scale will not smooth
out the burstiness of self-similar traffic. More importantly, the
multi-scale nature motivates our choosing of discreet wavelet
transforms in detecting anomalies, since simple threshold and

correlation are not suitable for differentiating anomalies from
normal traffic dynamics.

Figure 2 illustrates BGP updates collected by RIPE RRC08
in Jan 2004. The subplot at upper left corner is a detailed
representation of number of updates received every second.
The rests are aggregated with bin size of 10, 100, 1000 seconds
respectively. These figures show that burstiness appears at
different time scales. Similar approach is employed in [28].
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Fig. 3. Quantitative evaluation of the self-similarity using variance plot and
periodogram.

Figure 3(a) presents the variance plot which is used to
determine the Hurst parameter (H). The circle dots represents
the log of normalized variance versus log of m, the aggre-
gation scales. The slope of the variance plot is estimated to
be between —0.53 and —0.2. Therefore the estimated Hurst
parameter (/1) ranges between 0.74 and 0.9, significantly
larger than 0.5. In Fig. 3(b), the periodogram plot give us
a similar estimation of H.

Huston [30] confirms our finding of self-similar BGP update
traffic. Huston [30] discusses the implications of self-similar
BGP traffic on the local cache management and securing BGP,
while we focus on developing techniques for on-line anomaly
detection. Our observation also complements work in [35]
towards generating realistic BGP traffic.

B. The Maximal Overlap Discrete Wavelet Transform

Wavelet analysis facilitates multi-resolution analysis (MRA)
of traffic time-frequency characteristics, and has proved to
be effective at detecting volume anomalies. We focus our
detection on a maximal overlap discrete wavelet transform
(MODWT) [36] based procedure.

The discrete wavelet transform of signal { X [n]} with length
N involves the computation of the convolution between the
signal and a family of wavelets. Calculating wavelet coeffi-
cients at dyadic scales can be treated as filtering operations in
which X is passed through a real-valued wavelet filter (high
pass) {h;} of even width L. The output is a set of wavelet
coefficients W5 ; = X xh; at the original time scale (first level)
with length % Similarly by filtering the signal with the cor-
responding scaling filter (low pass) {g; = (=1)"T*hy_1_;},
we obtain the first level scaling coefficients Vi, = X x ¢
of length &. Then by applying the inverse DWT on {Wy ,}
and {V;,} independently, we separate the first level detail
D; from approximation A;. The decomposition process is
repeated using A as an input, which yields D and A at the



second level. The maximum level of DWT we can perform is
J <logy N. The MRA thus satisfies

J
X = Z D;,+ Aj.
i=1
Each level ¢ represents the strength of a particular frequency
in the signal, with a higher value of ¢ indicating a lower
frequency.

Although DWT can detect abrupt changes in a time series, it
may introduce ambiguities in the time domain. A change in the
starting point for a time series can yield quite different results
due to the alignment of the time series with the averaging
intervals predefined by the DWT. In contrast, MODWT is
translation invariant in the sense that it preserves regularity
information at each point in time for each scale, and it may be
computed for an arbitrary length time series. This translation-
invariant property allows alignment of events in a multi-
resolution analysis with respect to the original time series.
Further details of the MODWT can be found in [36].

C. Abrupt Change Detection

We summarize here the wavelet-based anomaly detection
algorithms previously proposed for network traffic in the
literature.

1) Hypothesis testing: An early work [31] proposed an
network anomaly detection algorithm based on wavelet and
Bayesian analysis. Assume that the wavelet coefficients at de-
tection scale {IV;} are zero-mean Gaussian stationary process.
The hypothesis to be tested is Hy : var(W,i) = --- =
var(W; n), and the alternative hypothesis Hy : var(W;1) =

- = var(Wjn—1) # var(W,,) = --- = var(W, ). The
change point n in the time series can be estimated from the
log likelihood ratio defined as:

A =log f(Ho|W;)/ log f(H1|Wy).

If A > 1, we can make the decision to choose H;, since a
change in the process leads to variance change after wavelet
decomposition.

The algorithm requires neither auto regression nor thresh-
olds to detect changes. It is shown to be able to detect
and locate subtle changes in variance from time series, and
performs better than adaptive thresholding techniques and
auto-regressive models.

2) Deviation score: Barford et al. [32] lay out their anomaly
detection algorithm in three steps. First the time-series is de-
composed into multiple levels using wavelet. The decomposed
signals are then synthesized into High (H), Middle (M) and
Low (L) bands. Lower levels contain high frequency fluctua-
tions and higher levels reveal slow-moving general trends. The
observation is that the “local deviation” in the high frequency
representation exposes the beginning and end of short-lived
events, while the local variability in the mid frequency filters
expose their duration. Hence surges in the local variances
indicates a sharp unpredictable change in the volume of the
measured traffic.

Potential anomalies are therefore identified by looking at
relative ratio of local variance and global variance defined as
deviation score. Global variance is the variance calculated over
the whole lifespan of the signal and local variance is calculated
over a moving window. A thresholding mechanism is then
applied for anomaly detection purpose. Employing the method
on realistic network traffic data actually exposed a number of
true anomalies verified post-mortem by network engineers.

3) Residual signal: Another simple design utilizing residual
signal has been employed in [33]. The algorithm starts with
constructing a time series signal X, and decomposes X into
Ay and D; using wavelet transformation. A; represents the
baseline, i.e., the long term trend of X. To obtain the residual
signal in time interval ¢, subtracting the trend from the time
series R(i) = X (i) — D(i — 1). Finally signal an alarm when
R(i) exceeds the a predefined threshold. The threshold value
has to be selected based on the statistical distribution of the
history residual values.

D. Illustration: Temporal Localization of BGP Anomalies

As introduced in Section III-B, wavelet analysis uses win-
dowing techniques to map a signal into a function of time
and frequency. Smaller (larger) window size gives us more
high (low)-frequency components. By varying window sizes,
wavelet analysis can extract multi-resolution properties of the
data at different scales. The choice of mother wavelets, or
filters, determine the quality of time and frequency localization.
In this paper, we use a short, compact filter known as the
Daubechies family wavelets with five vanishing moments
(db5). A short filter is preferred to avoid excessive blurring in
the time domain, which makes it difficult to distinguish strong
short-duration change versus milder longer-duration changes.

Figures 4 shows the detection results on BGP data col-
lected from RIPE RRCO08 using the deviation score algorithm
(Sec. II-C2). The main advantage of the deviation score
method is to detect anomalies at different time scales. The
signal reconstruction step offers the flexibility of change de-
tections targeting different time scales. We shaded the areas of
anomalies identified in the figures. BGP behavior during the
shaded time intervals can then be diagnosed for potentially
anomalies. Administrators need to investigate only the much-
reduced candidate data set for root cause analysis.

Our preliminary root cause analysis reveals that AS 6066
was announcing almost every single block of IP prefixes to
AS 12654 on Jan. 21. In most cases, these announcements are
without any aggregation. We suspect there is a misconfigura-
tion causing AS 6066 mistakenly announce prefixes without
aggregation. The anomaly shown at the left side of Fig. 4 is
less severe. The BGP session between AS 2914 and AS 12654
was lost and re-established and AS 2914 started feeding AS
12654 with its huge BGP table.

IV. TIME AND SPACE LOCALIZATION OF ANOMALIES

Applying wavelet based change detection to BGP traffic help
us locate potential anomalies temporally, as demonstrated in
the previous section. However, time values only comprise a
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Fig. 4. Temporal localization of BGP anomalies in January 2004 at

monitoring point RIPE RRCOS8.

single dimension in locating the network-wide anomalies. The
natural followup question is “where” such misconfigurations,
network failures, and worm attacks happened. We would like
to decide whether the anomalies have local or global impact, or
somewhere in between. In order to achieve both temporal and
spatial detections, BAlet performs a 2-dimensional analysis on
the BGP data in 3 steps. First, we need to construct an update
count matrix with each row representing a time series from
a unique origin. Next the wavelet change detection algorithm
is applied to mark all the potential anomalies for each row
in the matrix. Finally, a clustering mechanism is performed
to identify time-correlated anomalies among ASes or prefixes.
We may also discover space correlations in the clusters. Since
network-wide BGP anomalies propagates to peering ASes
across geographic locations, we could even reconstruct the trail
of the impact.

Now we discuss the way to construct the update matrix and
to perform clustering. The residual signal wavelet algorithm
(Sec. III-C3) is selected for the time domain detection in our
2-dimensional analysis due to its simplicity. To efficiently scan
through a huge number of rows of time series in the matrix,
we prefer a method with single level wavelet transformation
and easy threshold comparison.

A. Matrix of BGP Update Counts

One way to achieve spatial localization, for example, is
to categorize BGP update messages based on their Original
ASes (OAS). Table I illustrates a 2-dimensional matrix X thus
formed on Per-OAS update counts over time. Each row vector
X; = [xi1®i2 -+ x1,] is a time series of update counts for
OAS i. The time interval setting of vector x; is decided by
the size of detection window, in which we detect anomalies.

TABLE I
2D MATRIX X OF PER-OAS UPDATE COUNTS

t1 2 e ln
X1 11 12 e Tin
X2 €21 €22 o T2n
Xm Tm1l Tm?2 Tmn

The Per-OAS matrix X shown above is not the only way
we integrate space information into the time series. We can
generate a row vector based on prefix — the very index into
routing table entries. Also the transpose of X can be formed
with each row vector represents the update counts from every
OAS or prefix in the same time interval. We will specify the
construct of the matrices for the experiments in the following
sections.

Our purpose is on observing temporal correlations among
anomalies detected at different locations. The correlation can
be gauged by the distances among vectors. There are several
options when it comes to measure the distance. The simplest
is Euclidean distance, however, it takes no account of any
patterns of covariance that exist in the data. We choose
Mahalanobis distance defined as following:

D = (xi — x;)Cx (xi — x;)7 )]

where Cx = E[(X — E[X])(X — E[X])?] is the covariance
matrix of X.

B. Cluster Analysis

1) Methodology: There are a lot noise in the matrix of
update counts along both temporal and spatial dimensions.
After applying residual signal wavelet anomaly detection pro-
gressively on each time series in the matrix, those locations
with no obvious abrupt changes can be discarded. Furthermore,
since we correlate update counts across multiple OASes and
prefixes, we are interested in only those anomalies detected at
more than two different locations or for at least two prefixes.
Anomalies found from only one single OAS or prefix are more
likely to be just isolated aberrations rather than network-wide
events. By decreasing the order of the matrix, we are also
able to reduce the complexity of the correlation and clustering
process. We call a time series obtained after order reduction a
feature vector.

Once we obtain a list of feature vectors using the above
selection, we cluster the vectors based on the distance between
every pair of them. There are many existing algorithms for
clustering such as K-means and Single-Linkage hierarchical
clustering. We adopt a simple iterative algorithm [33], which
is an alternative to K-means without predetermined number of
clusters. The algorithm assumes each cluster has a centroid.
A vector belongs to the cluster whose centroid is closest to it
compared with the distances from itself to other centroids.

The algorithm starts with one cluster whose centroid is
randomly chosen. Then, it iteratively selects a vector that has
the largest distance to it as a new hub, and re-clusters all the



vectors based on their distances to all the selected hubs. This
process continues until there is no vector whose distance to
its hub is larger than the half of the average hub-hub distance.
We also compare the simple iterative algorithm against vanilla
K-means and Single-Linkage, and find out both work equally
well. However, Single-Linkage are much faster for us in terms
of running time.

Once we detect a new cluster of network-wide anomalies,
we generate an alarm before examining further to identify the
involved OASes or prefixes from which the cluster shaped.
Based on the suspicious spatial and temporal localization,
system administrators can decide whether root causes of the
anomalies can be identified, or the abnormal events that should
be further investigated.

2) Evaluations: To validate BAlet, we perform several
detailed analysis on BGP update data collected by RIPE
NCC [11].

a) A single origin AS: In the first case study, we ran-
domly picked BGP log files for AS#12 over a 6 month period
from October 1, 2002 to March 31, 2003 to analyze. The data
is aggregated in one day interval since we are concerned to
the volume change on a daily bases.

|
|
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2004.01 2 3 4

0
2003.10 11 12
days
Fig. 5. Time series of BGP update received at RRCO0O from original AS

12 between October 1, 2003 and March 31, 2004, five potential anomalies
detected on day 35, 52, 117, 130, and 162

Figure 5 shows the time series of update data originated
from AS 12. In order to detect abrupt changes in the time
series, we calculate the simple residual signal of the long-
term trend considering the first level detail D, as a wide-sense
stationary Gaussian process. When we set the threshold at 2.5¢0
for random variable D, we can detect anomalies with an error
rate of 0.5% since:

P(u—250 < Dy < p+2.50) ~99.5%

There are 5 days detected on which the number of updates
are likely to be abnormal, as shown in the figure with dotted
vertical lines.
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Fig. 6. A global event detected involves over 5,500 ASes from 01/2003 to

02/2003 with surge on day 23.

b) A global event: January 25, 2003 marked the day
slammer worm attacked. As shown in [8], although the worm
was not directly targeted at the routing infrastructure, a number
of critical AS peering links were overloaded, which caused a
globally observed increase in the volume of routing update
messages.

We construct the matrix of per-OAS update counts as de-
scribed in Section IV-A. The time series in each row represent
the number of route announcements every day during January
and February 2003. After dimension reduction by removing the
row vector containing no detected anomalies, BAlet performs
the clustering on the matrix and identifies a major cluster,
which consists of over 5,500 ASes from a total of more than
19,000 active ASes as shown in Fig. 6(a). We find out that
almost all of the ASes in this cluster correlates along the events
of the slammer day. Typical anomaly pattern from 4 cluster
members is illustrated in Fig. 6(b). We confirmed that a surge
in the update messages has been detected on January 23, 2003
from all the ASes in the cluster. Therefore BAlet captures
this network-wide anomaly and correlates them successfully.
Besides the major cluster, small clusters involving around 20
ASes also indicates multiple underlying network-wide surges
in much smaller scales.

c) Temporal and spatial correlations: This example
proves further that BAlet is effective at pinpointing the time
and locations of the possible network anomalies, thus serves as
a first step in troubleshooting BGP routing problems. We chose
the 6 months time frame from October 2003 to March 2004 at
RRCOO to evaluate. It turns out that there are no global events
that affects a large portion of ASes in the previous example.
However, we do locate several correlated events as shown in
Fig. 7. The top 2 clusters are marked in Fig. 7(a), with the
number inside the brackets indicating the size of each cluster.

Cluster 1 is made up of 76 ASes from universities and
research institutes that are part of an area educational network.
Anomaly detection returns two correlated events for the cluster
members: one on November 12, 2003, the other on March
10, 2004, as shown in Fig. 7(b). In both cases, we observe
that all the ASes in the cluster kept announcing their prefixes
every 5 minutes. Since most ASes were holding only a couple
of prefixes and usually not very active (sending just one or
two announcements per day), the surge of almost a hundred
messages on those two days indicates something unusual. The
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Fig. 7.

second incident could be related to the short AT&T/Level 3
outage reported on NANOG [37], while possible causes for the
first surge detected may be due to misconfigurations or router
failures.

Cluster 2 consists of 71 ASes which are mostly geograph-
ically located in Latin America. Figure 7(c) shows 4 ASes
randomly picked from the cluster: namely, AS676 (United
Nation Development Office in Argentina), AS 1797 (Uruguay),
AS 27658 (America Express Latin America), and AS16732
(Velocom, an ISP in Argentina). The anomaly detected hap-
pens on October 10, 2003. High message counts on the day
could be a indication of major hardware failures.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we presented BAlet, a framework to achieve
both temporal and spatial localization of BGP anomalies. We
first studied the self-similarity of signals generated from BGP
update count, and conclude that signals of total BGP traffic is
self-similar with H parameter around 0.8. We applied wavelet
analysis for temporal localization of the anomalies because
of its strength in handling self-similar signal. The deviation
score and residual signal based algorithms at different time-
granularity are employed and prove to be effective in detecting
volume anomalies. BAlet requires only a simple count of
BGP update messages, therefore, it is scalable and suitable for
online monitoring. Our two-dimensional clustering procedure
opens up further possibilities in locating anomalies not only
temporally but spatially. In addition to locating the potentially
anomalous time span and origin ASes, BAlet helps in under-
standing the scale of the impact from slammer attack. This step
requires to construct a BGP update matrix based on the origin
AS or prefixes, and to perform clustering over the anomalies
detected.

In the future, we would construct the BGP update matrix
based on the prefixes rather than the OASes to detect anomalies
such as MOAS conflicts. Furthermore, we need to thoroughly
evaluate BAlet’s 2-dimensional analysis method in terms of
performance and complexity, such as false postives/negatives
ratios and processing time benchmarking. This toolkit can also
be improved for real-time detection. However the major hurdle
lies in the computation time of cluster analysis. Currently it

100

Days

(b) Cluster 1 pattern

Days

(c) Cluster 2 pattern

Two network-wide events identified from 10/2003 to 03/2004 using clustering.

took 10 ~ 20 minutes to finish the clustering. We believe by
optimizing the clustering algorithm, the job can be done in sub-
minute. The other difficulty is the trade-off between the time
interval value for cluster analysis and reducing computation
time. Choosing a large time interval means higher probability
to detect network-wide anomalies. On the other hand, the
dimension of the matrix increases, which also increase the
processing time. As part of our future work, we also plan to
compare with other statistical techniques, such as likelihood
hypothesis test and FFT based time and frequecy analysis
tools.
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