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Abstract

By providing coding ability at intermediate nodes, net-
work coding has been shown to improve network through-
put in broadcast/multicast wireless networks. In this paper,
we show that by imposing coding structure, network coding
can be further optimized specifically for video streaming in
a rate-distortion manner, in a scenario where wireless ad-
hoc peers cooperatively relay packets to each other to re-
pair packet losses during MBMS broadcast. Experimental
results show that our proposed scheme can improve video
quality noticeably, by up to 19.71dB over un-repaired video
stream and by up to 7.90dB over video stream using tradi-
tional unstructured network coding.

1 Introduction

Due to wireless cellular networks’ limited bandwidths
and unreliable transmission channels, delivery of high qual-
ity video over these networks has long been known to be
a difficult problem [1]. The advent of Multimedia Broad-
cast Multicast Service (MBMS) [2], in 3GPP specification
version 6 or later, means media content can now be deliv-
ered to multiple users simultaneously and efficiently via a
shared channel. However, it also means previously devel-
oped feedback-based packet loss recovery schemes [1] for
point-to-point streaming are no longer applicable due to the
well-known NAK implosion problem, making video deliv-
ery over MBMS an even more difficult task.

To address the problem, we have previously proposed
a Cooperative Peer-to-Peer Repair (CPR) framework [3]
for a community of wireless peers with both cellular and
802.11 network interfaces. The idea is simple: having each
correctly received a different subset of packets from MBMS
broadcast (due to different channel conditions experienced),
a local cluster of nodes can then locally broadcast their
packets via 802.11 to cooperatively recover lost packets.
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Using our developed heuristics, we showed in [3] that sig-
nificant packet recovery can be achieved under reasonable
network settings. Moreover, if we permit each peer to per-
form Network Coding [4]—linearly combining payloads of
received packets in GF (2O), where 2O is the field size—
before forwarding packets, we showed in [5] that even fur-
ther performance gain in packet recovery can be achieved.

Compared to its cellular counterpart, a 802.11 network
requires much more power to establish and maintain con-
nections [6, 7]. Therefore powering both interfaces con-
tinuously for the entire duration of a long video stream
is neither energy-efficient nor practical for a lightweight,
battery-powered mobile device. For the purpose of CPR
packet recovery then, it is more sensible to instead activate
the 802.11 interface for only duration τ in every period T ,
where τ and T together determine the fraction of 802.11
bandwidth available for peer-to-peer packet transmissions.
In this energy-limited scenario, the more challenging re-
search problem is the following: given a fraction of 802.11
bandwidth available for a limited number of peer-to-peer
packet transmissions, how to perform cooperative packet re-
pair at each peer so that the expected video distortion at the
average peer is minimized?

In this paper, we present a novel rate-distortion opti-
mized, network-coding based, cooperative video stream re-
pair scheme for the energy-limited scenario. Unlike typ-
ical network coding schemes, we structure network cod-
ing so that packets of important frames can be recovered
with appropriately higher probabilities than less important
ones. Experiments showed that our structured network cod-
ing scheme improves video quality by up to 19.71dB over
unrepaired video stream, and by up to 7.90dB over video
stream using unstructured network coding scheme.

The outline of the paper is as follows. In Section 2, we
overview related works. In Section 3, we discuss our chosen
source and network models. We differentiate unstructured
and structured network coding, the latter of which is used in
our optimization framework shown in Section 4. Based on
these discussions, we present our optimization framework
in Section 5. We explain our experimentation and discuss
the results in Section 6. We conclude in Section 7.



2 Related Work

Due to the aforementioned NAK implosion problem,
many video streaming strategies over MBMS [8] have for-
gone feedback-based error recovery schemes like [1] and
opted instead for Forward Error Correction (FEC)-based
schemes like Raptor Codes. While FEC can certainly help
some MBMS receivers recover some packets, receivers ex-
periencing transient channel failures due to fading, shadow-
ing, and interference can still suffer great losses. Never-
theless, content source should perform some optimization
to lessen the loss impact. In this work, we assume con-
tent source will first perform reference frame selection [9]
during H.264 [10] video encoding so that inter-frame de-
pendencies are minimized subject to an encoding rate con-
straint.

Network coding [4] has been an active research topic,
and recent works [11, 12, 13] have attempted to jointly
optimize video streaming and network coding. [12] dis-
cussed a rate-distortion optimized network-coding scheme
on a packet-by-packet basis for a wireless router, assum-
ing perfect state knowledge of its neighbors. Though the
context of our CPR problem is different, our formulation
can be viewed as a generalization in that our optimization
is on the entire Group of Pictures (GOP), while [12] is per-
formed greedily per packet. [11] discussed a hierarchical
network coding scheme where a layered structure is applied
to a scalable, layer-coded video stream. Our formulation is
more general in that our source dependency graph is a di-
rected acyclic graph discussed in the next section while the
model in [11] is essentially the more restricted dependency
chain. [13] discusses the application of Markov Decision
Process [14] to network coding, in which network coding
optimization and scheduling are directed centrally at the
access point or base station. They require complete state
information assuming reliable ACK/NAK schemes which
has not been shown to be scalable to large number of peers.
In our work, we consider fully distributed peer-to-peer re-
pair without assuming any knowledge of state information
of peers, and instead optimize using a pre-determined net-
work coding structure.

3 Models and Reference Frame Selection

3.1 Source Model
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Figure 1. DAG Source Model for H.264 Video
with Reference Frame Selection

We assume the content source first performs reference
frame selection during encoding of H.264 video [9] such
that the inter-dependencies of frames in a GOP is mini-
mized. In brief, the optimization works as follows. We first
assume that each GOP is composed of a starting I-frame
followed by M − 1 P-frames. Each P-frame can choose
among a set of previous frames for motion compensation
(MC), where each choice results in a different encoding rate
and different dependency structure. If we now assume that
a frame is correctly decoded only if it is correctly received
and the frame it referenced is correctly decoded, then this
choice also leads to a different correctly decoded proba-
bility. Using P-frames’ selections of reference frames, [9]
seeked to maximize the expected number of correctly de-
coded frames given an encoding rate constraint.

Note that though H.264 [10] specification is more gen-
eral and permits each coding block in a P-frame to individu-
ally choose a matching block in one of a number of previous
frames for MC, we restrict all blocks in a given P-frame to
point to a single previous frame. [9] showed that the stream-
ing benefit outweighted the cost in coding restriction.

After the content source performed reference frame se-
lection, we can now model M frames in a GOP, F =
{F1, . . . , FM}, as nodes in a directed acyclic graph (DAG)
as shown in Figure 1, similarly done in [14]. Each frame Fi

has an associated di, the resulting distortion reduction if Fi

is correctly decoded. Each frame Fi points to the frame in
the same GOP using which Fi performs MC. A frame Fi is
correctly decoded iff Fi is correctly received by its decod-
ing deadline, and all frames Fj’s preceding Fi, j ≺ i, are
correctly decoded. Frame Fi referencing frame Fj results in
encoding rate ri,j . We assume each frame Fj is packetized
into multiple RTP packets according to the frame size and
Maximum Transport Unit (MTU) of the delivery network.

3.2 Network Model
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Figure 2. Directed Graph Network Model:
transmission and interference links are solid
and dotted lines, respectively.

As done in [5], we assume that N peers in a wireless
peer-to-peer network are modeled by nodes 1, . . . , N in
node set N in a directed graph G = (N ;LT ,LI), and con-
nectivities and interferences among nodes are modeled by
links in link sets LT and LI , respectively. See Figure 2



for an example. A peer n2 correctly receives a packet from
transmitting peer n1 iff: i) there exists a transmission link
from n1 to n2, i.e., (n1, n2) ∈ LT ; and ii) no other nodes
whose transmission or interference ranges include n2, i.e.,
∀ni|(ni, n2) ∈ LT ∪ LI , is transmitting at the same time
as n1. Notice that by this definition of successful transmis-
sion, we implicitly imply that the broadcast mode of 802.11
is used, where the transmission of a node can potentially be
heard by all its neighbors.

Although the raw transmission rate of 802.11 is large,
the peers need to contend for the shared medium for trans-
mission in some distributed manner so that the occurrences
of collision (simultaneously transmission of two nodes n1,
n2 to a third node n3 where (n1, n3), (n2, n3) ∈ LT ) and
interference (simultaneously transmission of n1, n2 where
(n1, n3) ∈ LT and (n2, n3) ∈ LI ) are reduced. Note that
while transmission links LT are discovered through local
message exchanges, interference links LI are unknown to
peers. To avoid collisions and interferences, we assume
each peer n performs a collision avoidance procedure at the
MAC layer: a clocking mechanism that backs off a varying
random amount of time when it senses the carrier is busy.

4 Network Coding for CPR

In this section, we describe how network coding can be
used in the context of CPR. In particular, beyond the well
known Unstrcutured Network Coding, we present Struc-
tured Network Coding, which can be optimized for video
streaming in a rate-distortion manner.

4.1 Unstructured Network Coding

Suppose there are M original (native) frames F =
{F1, . . . , FM} to be disseminated among N peers in a CPR
setting. Each frame Fk is divided into multiple packets
Pk = {p1

k, p2
k, . . . , pBk

k }, where Bk is the number of pack-
ets frame Fk is divided into. We use P∗ to denote the set of
all the packets in a GoP, i.e., P∗ = {P1, . . . ,PM}. There-
fore there are P = |P∗| = ∑M

i=1 Bi packets to be dissemi-
nated. Using network coding (NC), each peer n can gener-
ate and transmit a NC packet q using a linear combination
of its set of received MBMS native packets Gn and its set of
received NC packets Qn as follows:

q =
∑

pi
k
∈Gn

ai
kpi

k +
∑

qm∈Qn

bmqm (1)

=
∑

pi
k
∈P∗

ci
kpi

k, (2)

where ai
k’s and bm’s are random numbers in GF (2O). ai

k

is the random coefficient for each of the original packet and
bm is the random coefficient for the received encoded NC

packet. Because each received NC packet qm is itself a lin-
ear combination of native and NC packets, we can rewrite
q as a linear combination of native packets with native co-
efficients ci

k’s as shown in (2). For unstructured network
coding (UNC), ai

k’s and bm’s are always non-zero, and a
peer can reconstruct all P native packets when P “innova-
tive” native or NC packets are received and therefore all the
frames can be recovered. By innovative, we mean that na-
tive coefficient vector v = [c1

1, . . . , c
B1
1 , . . . , c1

M , . . . , cBM

M ]
of a newly received NC packet cannot be a linear combina-
tion of native coefficient vectors from the set of previously
received innovative native or NC packets. In other words,
new native coefficient vector v must be orthogonal to old
native vectors of previous innovative packets.

The downside of UNC is that if a peer n receives fewer
than P innovative native or NC packets, then the peer can-
not recover any of the native packets from the received NC
packets. If the probability of receiving at least P innova-
tive native or NC packets for many peers is low, then this is
obviously not a desired result.

4.2 Structured Network Coding

To address the aforementioned issue, we propose to use
structured network coding (SNC). By imposing structure in
the coefficient vector, we seek to decode at a peer even when
fewer than P innovative native or NC packets are received.
We accomplish that by forcing some chosen coefficients ai

k

and bm’s to be zeroes during NC packet generation, so that
when a peer receives m innovative packets, m < P , it can
decode m packets (m linear equations for m unknowns).
Thus some of the frames can be recovered.

More precisely, given the DAG source model described
in Section 3.1, we first define a series of X frame groups,
Θ1, . . . , ΘX , where Θ1 ⊂ . . . ⊂ ΘX = F , and Θx ⊆ F ,
1 ≤ x ≤ X . Corresponding to each frame group Θx is a
NC packet type x, which is identified in the packet header—
Φ(q) reveals the packet type of NC coded packet q. A peer
n then can encode a NC packet qn(x) of type x, given peer’s
set of received or decoded native packets Gn and set of re-
ceived NC packets Qn, as:

qn(x) =
∑

pi
k
∈Gn

U(Fk ∈ Θx) ai
k pi

k +

∑
qm∈Qn

U(Φ(qm) ≤ x) bm qm, (3)

where U(c) evaluates to 1 if clause c is true, and 0 other-
wise. In words, peer n constructs NC packet of type x by
linearly combining received or decoded packets of frames
in Θx and received NC packets of type x or smaller.

A peer n can recover all m packets in frame group Θx

once it has received m innovative packets of types ≤ x. We
call this recovery process NC-decoding. In the following



section, we show how the frame groups are selected using
our optimization framework.

5 Optimization Framework

5.1 Optimization Formulation

We assume a video source using MBMS delivers each
GOP of M frames in time duration T , called an epoch. Re-
pairs of the current GOP take place during the next epoch;
802.11 interface of each peer is activated from sleep mode
to idle mode [7] for the first τ seconds of the next epoch T ,
during which peers can transmit and receive peer-to-peer
repair packets of GOP of the previous epoch. The initial
playback buffer delay for each peer is therefore two epochs.

Because of the transient join/leave nature of peers in
an ad-hoc network, the exact number and connectivities of
peers at any given time is difficult to track. Instead, we as-
sume that the video source performs the optimization of the
NC structure for the average peer n, assuming that on av-
erage a peer is expected to have received Rn packets from
peers. Using the DAG source model from Section 3.1, the
expected distortion at an average peer n can be written as:

∆n = D −
M∑

i=1

di

∏
j¹i

αn(j), (4)

where D is the initial distortion of the GOP if no frames are
received, and αn(j) is the recovery success probability of
frame Fj at peer n. αn(j) itself can be written as:

αn(j) = (1− l)Bj +
(
1− (1− l)Bj

)
Sn(j), (5)

where l is the MBMS packet loss rate, and Sn(j) is the
probability of frame Fj being recovered at peer n through
CPR given Fj was not initially successfully delivered via
MBMS. Note we assume that all the packets within Fj must
be received in order to decode Fj .

Suppose we are given NC groups Θ1, . . . , ΘX with Fj 6∈
Θx−1 but Fj ∈ Θx. Then frame Fj can be recovered
if

∑
Fi∈Θx

Bi innovative NC packets of type ≤ x are re-
ceived, or if

∑
Fi∈Θx+1

Bi innovative NC packets of type
≤ x + 1 are received, etc. If a node n sends a NC packet
type x with probability βn(x), we can approximate Sn(j)
as:

Sn(j) = Q(n, x) +

X∑
y=x+1

Q(n, y)

y∏
z=x+1

(1−Q(n, z − 1)) , (6)

where Q(n, x) is the probability that node n can NC-decode
NC packet type x by receiving

∑
Fi∈Θx

Bi innovative NC
packets of types ≤ x. We approximate Q(n, x) as:

Q(n, x) ≈
Rn∑

k=

⌈
l
∑

Fi∈Θx
Bi

⌉
(

Rn

k

)(
x∑

i=1

βn(i)

)k( X∑
i=x+1

βn(i)

)Rn−k

,

(7)

where l
∑

Fi∈Θx
Bi is the expected number of lost packets

due to MBMS broadcast and to be repaired using CPR. As-
suming CPR has perfect collision avoidance, Rn, the aver-
age number of packets a peer can receive in an epoch time,
can be approximated as:

Rn =
γτ

L/Cmax

(
ET

n

ET
n + 1

)EI
n

, (8)

where γ is the fraction of bandwidth used for packet trans-
mission after collision avoidance, which is estimated via ex-
perimentation. L is the average size of a CPR packet. Cmax

is maximum rate of IEEE 802.11 used for CPR. Therefore
γτ

L/Cmax
is the maximum number of packets node n can re-

ceive during an epoch time without considering interfer-
ence. ET

n = |S : {∀ni|(ni, n) ∈ LT }| and EI
n = |S :

{∀ni|(ni, n) ∈ LI}| are the expected numbers of neighbor-
ing and interference nodes of node n, respectively. Both
of them are estimated via actual experimentation. We as-
sume each interfering node has the same fraction of time for
transmission as its neighboring nodes, thus ET

n /(ET
n + 1)

is the probability that an interfering node doesn’t transmit at

a given time and
(
ET

n /(ET
n + 1)

)EI
n is the non-interference

transmission probability of node n.
With our formulation shown in equations (4)—(8), the

SNC optimization process is therefore to find the number
of frame groups X , composition of frame groups Θx’s, and
the packet transmission probabilities of NC types βn(x)’s
corresponding to frame groups so that the average distortion
of the GOP is minimized:

min
X,{Θx},{βn(x)}

∆n (9)

Next we discuss how the optimization is performed.

5.2 Local Search Solution

We can estimate the size of the search space as follows.
Suppose there is only one NC type. Then the number of
unique assignments of one NC type to M frames, K1(M),
is trivially 1. Now suppose there are two distinct NC types.
Then the number of unique assignments of two NC types
to M frames, K2(M), such that at least two frames have
different types, is 2M combinations minus two single-type
assignments where only type 1 or only type 2 is assigned to
all frames, i.e., 2M − 2. Now suppose there are three dis-
tinct NC types. K3(M) is 3M minus combinations that as-
sign only two distinct types, minus combinations that assign

only one distinct type: 3M −
(

3
2

)(
2M − 2

)
−

(
3
1

)
(1).

Since the maximum number of NC types for M frames is
also M , the number of unique NC type assignments to M
frames, K(M), is:

K(M) =

M∑
i=1

Ki(M) (10)



Ki(M) = iM −
i−1∑
j=1

(
i
j

)
Kj(M)

For each NC structure, we need to search the transmis-
sion probability βn(x) from (0, 1) for each NC type x.
Clearly for reasonable values of M—K(5) = 541, exhaus-
tive search is not a feasible approach. As such, we present
a local search method as follows.

We first notice that the search space can be reduced by
considering the DAG structure described in Section 3.1. A
frame Fj that precedes frame Fi must surely be as impor-
tant as frame Fi, since without it Fi cannot be correctly
decoded. When we assign frames to NC types then, we will
assign preceding frames with a smaller or equal NC type
than succeeding frames given the DAG structure.

We perform the local search as follows. We first assign
M NC types to the M frames in topological order accord-
ing to the DAG structure, so that a frame Fj preceding Fi

will have a NC type smaller than Fi. For this NC struc-
ture, we exhaustively search the best βn(x) resulting in the
smallest distortion using (9). We then find the best “merg-
ing” of parent and child frames—assigning the same NC
type to the merged group— according to the DAG, and
search for the best βn(x) for each of the group so that the
objective is most reduced. We continue until no such bene-
ficial merging operation can be found.

6 Experimentation

6.1 Experimental Setup

We present the benefit of the SNC scheme over the UNC
scheme under various CPR transmission rates, i.e., various
τ/T ratios. The MBMS source transmits at rate 220kbps
and the packet loss rate is constant at 0.1. Two test video
sequences are used for simulations: 300-frame MPEG class
A news and class B foreman sequences, which are cap-
tured at 30fps and sub-sampled in time by 2. The GOP size
is 15 frames: one I-frame followed by 14 P-frames. Quanti-
zation parameters used for I-frames and P-frames are 30 and
25, respectively. The H.264 codec used is JM 12.4, down-
loadable from [15]. We perform reference frame selection
in [9] with encoding target rate equals 220kbps, resulting
in a DAG describing the inter-frame dependencies as dis-
cussed in Section 3.1. The MTU is set to be 1000bytes.

The SNC CPR scheme was performed as follows. With
the video source models and the cellular and CPR net-
work parameters, the MBMS source packetizes the frames
into multiple RTP packets and searches for the optimal NC
structure using the optimization framework shown in Sec-
tion 5. The MBMS source then adds in the header of each
of packets the NC structure. After receiving the packets
which are attenuated by the cellular broadcast channel, the

peers in the network initiate the packet repairing process
using their 802.11 wireless interfaces. Peers exchange their
packets according to the pre-determined packet types and
transmission probability. The repairing process ends when
τ seconds have elapsed.

6.2 Experimental Results
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Figure 3. PSNR for the news and foreman un-
der various CPR transmission rate.

With our NC frame group optimization using the lo-
cal search method, it turned out that when the CPR band-
width was low, the NC group optimization returned more
NC types than when the bandwidth was high. The range of
the number of NC types was from 2 to 9. We noted that the
lower the bandwidth was, the smaller the sizes of the first
few NC groups. This is reasonable because when band-
width was low, peers needed desperately to decode at least
the first few frames. Dividing the packets into more groups
increased the chance that the received packets could be de-
coded and therefore peers could at least decrease some of
the distortion with the limited number of receiving packets.

Fig. 3a and Fig. 3b show the CPR bandwidth vs PSNR
plot for the news and foreman sequences. The video
qualities resulting from the UNC and the SNC schemes
were compared, as well as the un-repaired video quality.
The CPR bandwidth varied from 0kbps up to 130kbps.

It is clear that both of the UNC and the SNC schemes
showed large improvement over the un-repaired video
stream. Both of the schemes provided 13.51dB PSNR im-
provement for the news sequence and 19.71dB PSNR im-
provement for the foreman sequence when the bandwidth
was larger than 130kbps. For the UNC scheme, the peers
needed to possess

∑15
j=1 Bj innovative native or NC pack-

ets before any repairing could be performed. However, for
the SNC scheme, nodes could repair part of the frames as
long as the received packets could help decode some NC
types of frames. This would be much less than the to-
tal number of packets. Therefore, when bandwidth was
low, i.e., less than 90kbps, the performance of the SNC
scheme was much better than the UNC scheme. For ex-
ample at the transmission rate of 30kbps, the SNC scheme



achieved 3.01dB gain over the UNC scheme for the news
sequence and around 7.90dB gain for the foreman se-
quence. When the bandwidth was higher, i.e., larger than
90kbps, the number of received packets increased so that
the UNC scheme recovered more packets and the perfor-
mance of the two schemes became similar. Eventually both
of the two schemes converged to the same best performance
point when the bandwidth was larger than 130kbps, where
both of them recovered all of the lost packets.

Comparing Fig. 3a and Fig. 3b, we see similar PSNR
trends. However, it is also worthwhile to note that when
bandwidth is low, the gap between the SNC and UNC
schemes was larger in foreman than in news. This is due
to the fact that foreman has more inherent motion and re-
quires more encoding bits for the same given quantization
parameters. As a result, the DAG dependency graph was
long rather than wide. It means if a particular packet close
to the root node is lost, it affects many descendent frames
and results in large distortion. Therefore SNC is more im-
portant in the foreman sequence than the news sequence.

7 Conclusions
In this paper, we propose a rate-distortion optimized

structured network coding scheme for cooperative video
stream repair of MBMS packet losses for 802.11 peer-to-
peer networks. We focus on the case when the 802.11 net-
work interfaces are only activated for a short amount of time
periodically, and hence the repair bandwidth is low and a
limited number of repair packets are transmitted. Specifi-
cally, reference frame selection is performed at the content
source to minimize inter-frame dependencies in a Group of
Pictures in H.264. Packets of video frames are then mapped
into a series of frame groups, such that when structured
network coding types are designed accordingly and repair
packets of these types are sent at each peer with different
weights, recovery of frames in more important frame groups
are more likely than less important ones. In so doing, we
show that our proposed scheme provides as large as 7.90dB
video quality improvement over the UNC scheme when the
CPR bandwidth is low, and up to 19.71dB improvement
over the un-repaired video stream.

Although the discussion of the paper focused on the
network scenario of 802.11 peer-to-peer repair of MBMS
broadcast video, a carefully structured NC scheme is also
useful for other combinations of peer-to-peer and broadcast
technologies. For example, combination of bluetooth based
peer-to-peer repair of MBMS broadcast video, or 802.11
peer-to-peer repair of DVB-H broadcast video.
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