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Abstract

Under link-state routing protocols such as OSPF and IS–IS, when there is a change in the topology, propagation of
link-state advertisements, path recomputation, and updating of forwarding tables (FIBs) will all incur some delay before
traffic forwarding can resume on alternate paths. During this convergence period, routers may have inconsistent views of
the network, resulting in transient forwarding loops. Previous remedies proposed to address this issue enforce a certain
order among the nodes in which they update their FIBs. While such approaches succeed in avoiding transient loops, they
incur additional message overhead and/or increased convergence delay. We explore an alternative approach, loopless inter-

face-specific forwarding (LISF), that mitigates transient loops by forwarding a packet based on both its incoming interface
and destination address. LISF needs to compute and update interface-specific instead of interface-independent forwarding
tables. But it requires neither the synchronization of FIB updates at different nodes nor the modification of the existing
link-state routing mechanisms. LISF is easily deployable with current routers if they already maintain a FIB at each inter-
face for lookup efficiency. This paper presents the LISF approach, illustrates its strengths and limitations, discusses four
alternative implementations of it and evaluates their performance.
� 2007 Elsevier B.V. All rights reserved.

Keywords: Link state routing; Transient forwarding loops; Interface-specific forwarding

1. Introduction

The widely used link-state routing protocols such
as OSPF and IS–IS distribute link states so that
each router has a complete description of the net-
work topology. When a link fails due to a faulty
interface or a fiber cut [1], the nodes adjacent to
the failure detect it and flood this change in link

state to the rest of the network so that all the routers
can recompute their routing tables. These routing
table entries are then pushed onto Forwarding
Information Base (FIB) at all line cards. Each of
these steps – failure detection, link-state propaga-
tion, routing table recomputation and FIB updates
– incur some delay. Only after these steps are com-
plete, packets, for which the shortest paths to their
destinations are affected by the failed link, are guar-
anteed to be forwarded correctly along the new
alternate paths. The interval between the failure
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detection and the FIB updates at all the routers, is
referred to as the convergence delay. During this per-
iod, routers may have inconsistent views of the net-
work and therefore can cause forwarding loops [2].
While these loops last for only a short time and their
effect is mitigated by the TTL field in IP datagrams,
they can still overwhelm high capacity links and ren-
der them unusable. A looping packet consumes
bandwidth, increasing the traffic over a link by as
much as 128 times, causing the link to congest,
and thereby impacting other traffic that is not sup-
posed to be affected by the link state change [3].
Therefore, it is desirable to avoid any forwarding
loops even if they are only transient.

Several remedies for the transient looping prob-
lem have been suggested in the literature [3–6] and
an IETF working group has been addressing this
issue [7]. Path locking with safe neighbors approach
[4] categorizes routes into three types A, B, or C, and
installs new routes for B and C types after a fixed
configurable delay such that delay for type B is
greater than delay for type C routes. While this
approach decreases the likelihood of loops, it does
not completely eliminate them. Moreover, it intro-
duces additional delays in the installation of new
routes compounding the convergence delay. A
loop-free path-finding algorithm proposed in [5]
blocks a potential loop when it detects that a loop
can be formed. To achieve this, a router first reports
to all its neighbors that its distance to reach the des-
tination is infinity, and then waits for those neigh-
bors to acknowledge its message with their own
distances and predecessor information before updat-
ing its successor in the forwarding table. A similar
method has been proposed in [6,8], where the for-
warding table updates in the network are ordered
such that a node updates its forwarding table only
after all its neighbors that use the node to reach dif-
ferent destinations through the failed link update
their forwarding tables. Recently, another technique
was proposed in [9] that progressively changes the
metric associated with the affected link while ensur-
ing loop-freedom at each step of progression, with-
out requiring modifications to OSPF or IS–IS,
making it readily deployable. Although these mech-
anisms completely eliminate transient forwarding
loops, they are designed to handle only managed link
state changes or unplanned changes in the state of
protected links.

We explore an alternate approach [10] – loopless

interface-specific forwarding (LISF) – that exploits
the existence of one forwarding table per interface

to mitigate transient loops even in case of
unplanned changes to unprotected links. When all
the routers in a network have the same view of the
network, there would not be a forwarding loop.
Only in the presence of discrepancies in the views
of different routers, a packet might get caught in a
loop. In such a case, the packet would have arrived
through an unusual interface of at least one of the
routers involved in the loop. Therefore, a forward-
ing loop can be avoided if the packet were to be dis-
carded in such a scenario rather than forwarded to
the usual next hop. LISF does precisely that by
selectively discarding packets that arrive through
unusual interfaces. The key advantages of LISF
are that it mitigates transient loops without increas-
ing the convergence delay and without employing
any additional mechanisms to synchronize the for-
warding table updates at different nodes in the
network.

The contributions of this paper are as follows. It
proposes LISF approach for mitigating transient
loops and illustrates its strengths and limitations.
It presents four implementation choices of the LISF
approach and discusses their relative merits. It
proves that all the LISF methods guarantee loop-
freedom in a network with symmetric link weights
in case of a change in the status of a single link or
node. It also shows that even the most aggressive
LISF method, that discards all packets that arrive
through unusual interfaces, cannot completely elim-
inate all possible loops in a network with asymmet-
ric links even in case of single link state change.
Similarly, it demonstrates that loops can happen
under all LISF methods in case of multiple failures
even in a network with symmetric links only. How-
ever, results of the evaluation of LISF methods on
real networks indicate that the proposed approach
works well in practice. Note that the key contribu-
tion of this paper lies more in its exploration of
the solution space for avoiding transient forwarding
loops than its presentation of a better alternative to
the existing schemes.

The rest of this paper is structured as follows. In
Section 2, we illustrate the problem of transient
loops. Our LISF approach for mitigating forward-
ing loops and four possible implementations of it
are described in Section 3. In Section 4, we prove
that the proposed LISF methods prevent loops
when the status of a single link or node changes in
networks with symmetric links. The possibility of
loops in case of a change in the status of a single link
in networks with asymmetric links or multiple links
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in networks with symmetric links is demonstrated in
Section 5. The results of our simulations evaluating
the LISF methods are presented in Section 6. We
finally conclude the paper in Section 7.

2. Transient looping problem and existing approaches

We now illustrate the occurrence of transient
loops using an example. Consider the topology
shown in Fig. 1(a), where each directed link is
labelled with its weight. For the purpose of illustra-
tion, let us assume that all the nodes have similar
characteristics with a failure detection time of
50 ms, a failure notification time between neighbor-
ing nodes of 100 ms, and route computation and
update time of 400 ms at a node (100 ms for nodes
that are not affected by the failure for a given desti-
nation to reflect the relation between the number of
affected prefixes and the corresponding FIB update
time).

Consider a scenario where link E–D fails at time
0 s. We examine how this failure impacts the for-
warding of packets from source node A to destina-
tion node D. Table 1 summarizes the routing events
under the traditional OSPF and the corresponding
changes in the packet’s forwarding path from node
A to node D. The resulting convergence delay (i.e.,
the total time for all the nodes in the network to
converge after the failure) is 0.65 s, and the service
disruption time (i.e., the total time for which the ser-
vice between A and D is disrupted due to the failure)
is 0.55 s. During the interval between the forward-
ing table updates in nodes E and F (i.e., between
0.45 s and 0.55 s), both the nodes have a different
view of the network, resulting in a forwarding loop.

To avoid transient loops during the convergence
after a planned link failure or an unplanned failure
of a protected link, a method referred to as oFIB

was proposed in [6,8] that ensures ordered installa-
tion of forwarding table entries by exchanging mes-
sages between neighboring nodes. For the same
purpose, another technique proposed in [9], which
we refer to as incU, that progressively reconfigures
a link metric while ensuring loop-free forwarding
at each step of the sequence. Our objective is to
develop a scheme that combines the best features
of OSPF, oFIB, and incU while handling unplanned
link state changes of unprotected links. It should: (i)
allow each node to update its FIB asynchronously
like OSPF without any additional communication
overhead and like incU without any coordination
overhead; (ii) like oFIB and incU, enable the net-
work to converge without any transient forwarding
loops; and (iii) like oFIB and OSPF, update the FIB
exactly once per link state change. Such a scheme
would ideally respond to the failure of E–D as
shown in Table 1. Its behavior would be effectively
similar to OSPF except that a packet is dropped if
it would loop otherwise (as in the case of packets
destined to D from F or E during the interval from
0.45 s to 0.55 s). Consequently, the ideal scheme
would have the convergence delay of 0.65 s and ser-
vice disruption time of 0.55 s while also avoiding
forwarding loops. In the following sections, we pres-
ent and evaluate a scheme that closely approximates
this ideal behavior.

3. Our approach

Our approach for avoiding forwarding loops is
based on the notion of interface-specific forwarding,
where a packet’s forwarding depends on the incom-
ing interface in addition to the destination address.
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Fig. 1. Topology used for illustration.

Table 1
Summary of routing events under OSPF and LISF

Time
(s)

Event Packets from A to D

OSPF LISF

0 Failure of link E–
D

A–F–E-drop A–F–E-drop

0.05 D,E: failure
detected

A–F–E-drop A–F–E-drop

0.15 C,F: failure
notified

A–F–E-drop A–F–E-drop

0.25 A,B: failure
notified

A–F–E-drop A–F–E-drop

0.35 B: route update A–F–E-drop A–F–E-drop
0.45 D,E: route

update
A–F–E–F-
� � �LOOP

A–F–E–F-
DROP

0.55 C,F: route update A–F–B–C–D A–F–B–C–D
0.65 A: route update A–B–C–D A–B–C–D
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In this section, we first briefly explain interface-spe-
cific forwarding and argue how it can be exploited
to avoid loops. We then present four methods of
computing interface-specific forwarding table
entries and illustrate the differences between these
methods in terms of loop-avoidance and computa-
tional complexity.

3.1. Interface-specific forwarding

A packet in an IP network is traditionally routed
based on its destination address alone regardless of
its source address or the incoming interface. There-
fore, a single forwarding table that maps a destina-
tion address to a next hop and an outgoing interface
is sufficient for current routers to perform IP data-
gram forwarding. Nevertheless, routers nowadays
maintain a forwarding table at each line card of
an interface for lookup efficiency [11]. However,
all these forwarding tables at each interface are
identical, i.e., these forwarding tables are interface-
independent. For example, interface-independent
forwarding tables at node B of Fig. 1 are as given
in Table 2.

Instead of maintaining the same forwarding table
at each interface, it is possible to avoid forwarding
loops by making the entries of these tables inter-

face-specific. Table 3 gives the possible set of inter-
face-specific forwarding table entries at node B of
Fig. 1. Each entry is marked with ‘–’, X, or a
next-hop node. The entries marked ‘–’ are obviously
never used. The entries marked X are not referenced
when there is no failure and all nodes in the network
have the same consistent view. For example, in
Fig. 1, a packet with destination D should not arrive
at B from any of its neighbors since B is not the next
hop for them. Similarly, B should not receive from
A, a packet destined for F, since A is along the path
from B to F. However, in the presence of link fail-
ures and inconsistent forwarding tables at different
nodes (during the convergence period), a packet
may arrive at a node through an unusual interface.
Interface-specific forwarding enables special treat-
ment of such packets that arrive through unusual
interfaces without introducing any changes to the
forwarding plane of the current network infrastruc-
ture. Here, we study how interface-specific forward-
ing can be exploited for the purpose of avoiding
loops during the convergence period after a link
state change in the network.

3.2. Loopless interface-specific forwarding

It is clear that under link-state routing, when all
the routers in a network have the same view of the
network, there would not be a forwarding loop.
Only in the presence of discrepancies in the views
of different routers, a packet might get caught in a
loop. However, in such a case, under interface-spe-
cific forwarding, the packet would have arrived
through an unusual interface of at least one of the
routers involved in the loop. So a forwarding loop
can be avoided if the packet were to be discarded
in such a scenario rather than forwarded to the

Table 2
Interface-independent forwarding tables at node B

Table 3
Interface-specific forwarding tables at node B

Table 4
Notation used in this paper

V Set of nodes in the network
E Set of links in the network
Rd

i Set of next-hops from node i to destination d

Fd
j!i Set of next hops to d for packets arriving through the

interface j! i

Pd
i Set of nodes along any of the shortest paths from i to d

Cd
i The cost of the shortest path

‘ The link with state change
TD Shortest path tree rooted at node D

Sði;TÞ Subtree of T below node i

S‘ði;TÞ Sði;TÞ containing only nodes affected by state change
of ‘

Ai, A0i Nodes that are aware of state change of ‘
Bi, B0i Nodes that are unaware of state change of ‘
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usual next hop. We refer to this approach of avoid-
ing forwarding loops by selectively discarding pack-
ets that arrive through unusual interfaces as loopless

interface-specific forwarding (LISF).
Ideally, a packet should be discarded by a router

only if its forwarding would definitely result in a
loop. However, with only its own local view of the
network, a router cannot always determine the
actual forwarding path of a packet with certainty.
Therefore, the design challenge of LISF is to ensure
loop-freedom without unnecessarily discarding
packets. In this paper, we study several implementa-
tion choices of LISF, ranging from conservative dis-
carding of packets only if there would certainly be a
loop otherwise but forwarding even if there could be
a loop, to aggressively discarding of packets when-
ever there could be a loop even if there may not
actually be a loop.

We now present four different LISF methods.
The difference between them lies in which of the
entries marked X in Table 3 are set to €, meaning
discard. These methods are named according to
the criterion they use to discard a packet. The nota-
tion used here is listed in Table 4. The operation of
these methods, when a packet for destination d

arrives at node i from neighbor j, is summarized in
Table 5 and elaborated in detail below. It should
be noted that, under LISF, a node i makes packet

forwarding/discarding decisions based solely on its

own view of the network.
Before we proceed to describe various LISF

methods, we note that earlier, we proposed an IP
fast reroute scheme based on interface-specific for-
warding, referred to as failure inferencing based fast
rerouting (FIFR) [12]. The difference between FIFR
and LISF is in how entries marked X are overwrit-
ten. FIFR replaces some of these entries with alter-
nate next-hops for rerouting packets, whereas LISF
resets them to € for discarding packets. Compared

to FIFR, LISF is less complex and much simpler to
implement as it involves invalidating some forward-
ing entries instead of identifying suitable alternate
entries. It does not appear feasible to simulta-
neously achieve both loop-free local rerouting with
FIFR and loop-less global convergence with LISF.
However, LISF is compatible with other IP fast
reroute schemes such as not-VIA [13] and MRC
[14] since LISF forwards in consistence with the
topology associated with the destination address
and the routing configuration of the packet. For
example, consider a packet destined to d being rero-
uted by a node x, adjacent to a failed link x–y, to a
not-VIA address z of the next-hop node y. Whereas
the packet might be discarded for avoiding a loop if
it were addressed to either y or d, due to the seman-
tics of address z, it’s arrival would not be deemed
unusual at any node along the path from x to z.
Therefore, under LISF, a packet with not-VIA
address is forwarded as expected by the not-VIA
scheme.

3.2.1. Discard if PIng-POng (PIPO)

Discard a packet if its incoming and outgoing
interfaces are the same, i.e., Fd

j!i ¼ € if j 2 Rd
i .

PIPO discards a packet only when it arrives at a
node from its next hop node, i.e., along a reverse
shortest path to the destination. It is the most con-
servative of all the methods listed here as it discards
a packet only when there is indeed a loop. Other-
wise, without PIPO, in such a scenario, packets will
ping-pong between two neighboring nodes. For
example, in Table 6, a packet to destination D arriv-
ing at B from C is discarded by PIPO since C is the
next hop to D from B. PIPO is also the simplest
since it incurs no additional overhead for computing
interface-specific forwarding table entries beyond
the currently used Dijkstra’s algorithm for comput-
ing interface-independent forwarding tables. How-
ever, PIPO can ensure loop-freedom only when
two nodes are involved in a loop, which is the case
when links are symmetric (bidirectional with equal
weights in both directions) and inconsistency in
the views among routers is limited to a single link’s
state.

3.2.2. Discard if CYCLe (CYCL)

Discard a packet if the previous node appears
along a shortest path from this node to the destina-
tion, i.e., Fd

j!i ¼ € if j 2 Pd
i .

CYCL discards a packet when it arrives from a
node which falls along a shortest path from this

Table 5
Differences in LISF methods in discarding a packet to d arriving
at i from j

Method Discard
condition

Discard criterion

PIng-POng j 2 Rd
i In and out interfaces are

same
CYCLe j 2 Pd

i Previous node along the
path

NO Forward
Progress

Cd
Rd

i
P Cd

j No forward progress

UNusal INterface i 62 Rd
j Unusual incoming

interface

S. Nelakuditi et al. / Computer Networks 52 (2008) 593–609 597
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node to the destination. When the links are symmet-
ric, CYCL behaves just like PIPO. Only when links
are asymmetric and the resulting paths are asym-
metric, the operation of CYCL could be different
from PIPO. With a less stringent condition than
PIPO, CYCL may discard a packet even when there
may not actually be a loop, but at the same time, it
can avoid some loops that are not avoided by PIPO.
For example, in Table 6, a packet to destination E
arriving at B from F is forwarded by PIPO to A
resulting in a loop whereas it will be discarded by
CYCL since F is along the shortest path from B
to E. The computational complexity of CYCL is
similar to that of PIPO as both require only a single
shortest path tree computation.

3.2.3. Discard if NO Forward Progress (NOFP)

Discard a packet if there is no forward progress
towards its destination from its previous hop to the
next hop of this node, i.e., Fd

j!i ¼ € if Cd
Rd

i
P Cd

j .
NOFP discards a packet if its previous hop is not

farther from its destination than the next hop of this
node.1 In such a case, there is a potential for a loop
and NOFP discards such packets. For example, in
Table 6, a packet to destination D arriving at B from
F is discarded by NOFP since the cost from F to D is

2 whereas the cost from the next hop C is three. This
is in contrast to both PIPO and CYCL which for-
ward the packet to C. While such discarding by
NOFP seems unnecessary, NOFP can prevent more
loops than PIPO and CYCL even when links are
asymmetric and the state of multiple links change
simultaneously. For example, in topology shown in
Fig. 1(b), suppose link F–E failed. Further, assume
that all nodes except nodes B and C are notified of
the failure and their forwarding tables reflect the fail-
ure. In this scenario, under PIPO and CYCL, a
packet from A to D is forwarded along a loop A–
B–G–C–A–B� � �. On the other hand, under NOFP,
it is discarded by B since, according to B’s view,
the cost of three from next hop G to D is not smaller
than the cost from A to D which is also three. A
straightforward method to implement NOFP

requires a computation of O jEj
jVj

� �
times Dijkstra

on the average (to compute the shortest path trees
rooted at each neighbor), whereas PIPO and CYCL
have the same complexity as Dijkstra.

3.2.4. Discard if UNusual Incoming Interface

(UNIN)

Discard a packet if it arrives at a node through
an unusual incoming interface, i.e., Fd

j!i ¼ € if
i 62 Rd

j .
UNIN discards a packet if it is not supposed to

arrive at this node from a neighbor node according

Table 6
Interface-specific forwarding tables at B under different LISF methods

1 A similar rule for preventing forwarding loops is also used in
[15].
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to this node’s view of the network. As mentioned
before, an unusual arrival of a packet indicates the
existence of inconsistencies among routers and
UNIN discards all such packets to prevent any
potential loops. Effectively, UNIN sets all the
entries marked X in Table 3 to € as in Table 6.
UNIN is the most aggressive of all LISF methods
in avoiding loops at the expense of discarding pack-
ets that may not be caught in a loop. In terms of
computational complexity, UNIN also requires

O jEj
jVj

� �
times Dijkstra.

3.2.5. Differences between LISF methods

The difference between the actions of the above
four methods is clearly evident in the presence of
failures of links C–D and F–E in Fig. 1 as shown
in Table 7. Here it is assumed that B is not yet aware
of the failed links and the forwarding tables of B do
not reflect the change. When only F–E fails, packets
from F to D arriving at B are discarded by NOFP
and UNIN whereas PIPO and CYCL forward them
along a loop-free path via C. Essentially these meth-
ods achieve different trade-offs between loop-avoid-
ance and packet-discarding, which can be summed
up as follows:

• packet looping probability: PIPO P CYCL P
NOFP P UNIN,

• packet discard probability: PIPO 6 CYCL 6
NOFP 6 UNIN,

• network convergence delay: PIPO = CYCL =
NOFP = UNIN.

4. Proof of loop-free property of LISF

We now prove that the LISF methods described
in the previous section ensure loop-freedom when at
most a single link or node state change is being
propagated in a network with symmetric links. It

is clear that if PIPO is loop-free, the other three
methods are also loop-free since whenever PIPO
discards a packet, they would too. Therefore, it suf-
fices to provide the proof for PIPO which is given
below. In the following, we first prove the loop-free-
dom under PIPO in case of a change in the status of
a single link and then extend the proof to cover the
case of a change in the status of a single node also.

4.1. Change in the state of a single link

Let ‘ be the link whose state has changed. A
change in the state of ‘ could be due to either an
increase or a decrease in its cost. A link-down event,
which means that a link is broken and thus no pack-
ets could be forwarded through it, could be viewed as
an increase in its cost to infinity (1); a link-up event,
which means that a broken link becomes working,
could be viewed as a decrease in its cost from infinity
to a certain finite value. If the cost of ‘ increases,
some shortest paths that were previously traversing
‘may not contain ‘ any more, whereas more shortest
paths pass through ‘ when its cost decreases.

Since the forwarding to a destination is indepen-
dent of forwarding to other destinations, we prove
that a packet for a specific destination D will not
loop under PIPO in case of a single link state
change. We use the notation listed in Table 4. Let
TD be the shortest path tree with undirected links
rooted at destination D. Note that this tree contains
the shortest paths, possibly multiple equal cost
paths, from every node to D since the links are sym-
metric. We use Sði;TÞ to denote the subtree of T
below the node i, before the change if link cost
increases, whereas Sði; T Þ denotes the subtree of T

below the node i after the change if link cost
decreases. We let S‘ði;TÞ denote the subtree which
only contains the nodes whose shortest paths to D
are affected by the state change of ‘.

If ‘ not inTD, the forwarding path to D is the
same with or without the failure of ‘. Therefore,
the forwarding to D is consistent at every node
along the path and hence packets destined for D will
not be caught in a loop due to the failure of ‘. In the
rest of the proof, it is assumed that ‘ inTD.

Let ‘ = F–L and F be the upstream node to L on
the path from F to D as in Fig. 2. When the state of
‘ changes, only those nodes in S‘ðF ;TDÞ will be
affected (i.e., all nodes outside the subtree will for-
ward along the same path with or without F–L for
destination D). Now consider a packet originating
from any node in S‘ðF ;TDÞ. That packet may be

Table 7
Differences among LISF methods in discarding packets arriving
at node B

From To Failed
link

PIPO CYCL NOFP UNIN

C D C–D Discard Discard Discard Discard
F E F–E Forward

to A
Discard Discard Discard

F D F–E Forward
to C

Forward
to C

Discard Discard

C E C–D Forward
to A

Forward
to A

Forward
to A

Discard

S. Nelakuditi et al. / Computer Networks 52 (2008) 593–609 599
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forwarded to node F and then get rerouted, or get
rerouted somewhere in S‘ðF ;TDÞ. Once the packet
goes outside the subtree, it will be forwarded to D

consistently. So the only possible loop is the one
consisting of nodes which are all within S‘ðF ;TDÞ.
Thus, to prove loop-freedom under PIPO, we only
need to show that there will not be a loop within
S‘ðF ;TDÞ when the state of ‘ changes.

Suppose there is a loop in subtree S‘ðF ;TDÞ. The
loop must contain some nodes that intend to for-
ward packets through ‘ and some that forward pack-
ets to go around ‘. This forwarding decision
discrepancy exists among nodes because at some
time within a link-state propagation period it is pos-
sible that a portion of nodes in S‘ðF ;TDÞ get to
know about the link state change of ‘ while the other
nodes are still not aware of it. If the link state change
is a cost increasing event, nodes that are aware of
this link state change forward packets to circumvent
‘, while nodes that are unaware of the link state
change forward packets to go through ‘; under a cost
decreasing event, however, the nodes that are una-
ware could forward packets to go around the link ‘
while the aware nodes may forward packets through
‘. Thus, irrespective of the change, the nodes can be
categorized into those that forward through ‘, and
those that forward around ‘. The rest of the proof
is based on this categorization of nodes into two dis-
tinct groups and therefore is applicable to both cost
decreasing and increasing events.

We use Fig. 2, where each edge labelled with its
cost, as an illustration to aid the proof. Pick an arbi-
trary node, A1, in the loop that forwards packets to
go around ‘. As shown in Fig. 2, suppose the packet
starts from A1 and is routed along zero or more ‘‘A’’
nodes, that forward packets to circumvent ‘ in con-
sistence with A1, and reaches A01, the last ‘‘A’’ node

in this stretch. A01 forwards the packet to B1, a node
that is unaware of the failure. Note that from A1 to
B1, the forwarding is consistent. We use the dashed

line to indicate subpath of the route as per the views
of ‘‘A’’ nodes. B1 then routes the packet differently
from that intended by ‘‘A’’ nodes: instead of
towards D via the dashed path, it forwards the
packet via the dotted path towards B01, i.e., it
chooses B1,B01 ! A2,F ! L,D. Similarly, the
packet is routed differently at A2, which intends to
forward it to D through the next stretch of dashed
path. This process continues until the packet is for-
warded back to A1 by Bn ðn P 1Þ.

Now we show that there is a contradiction if such
a loop exists. Note that in such a loop, any Bi can-
not forward a packet back to A0i after getting the
packet from A0i (e.g., A0iþ1 6¼ A0i), as the packet will
get dropped under PIPO when being forwarded
back to A0i. Then consider the routing decision at
node Bi ð1 6 i 6 nÞ. Since the node Bi chooses the
path Bi,Aiþ1,F over Bi,Ai�1,F , we have

Xn�1

i¼1

ðbi þ lb
i þ riþ1Þ <

Xn�1

i¼1

ðai þ la
i þ riÞ; ð1Þ

bn þ lb
n þ r1 < an þ la

n þ rn: ð2Þ
Adding them together, we have

Xn

i¼1

ðbi þ lb
i Þ <

Xn

i¼1

ðai þ la
i Þ: ð3Þ

Similarly, consider the routing decision made at
node Ai. Since it chooses the path Ai,Bi,D over
the path Ai,Bi�1,D

Xn�1

i¼1

ðaiþ1 þ la
iþ1 þ eiþ1Þ <

Xn�1

i¼1

ðbi þ lb
i þ eiÞ; ð4Þ

a1 þ la
1 þ e1 < bn þ lb

n þ en: ð5Þ

Adding them together, we get
Xn

i¼1

ðai þ la
i Þ <

Xn

i¼1

ðbi þ lb
i Þ: ð6Þ

Obviously, inequality (6) above contradicts (3).
Therefore, a forwarding loop is not possible under
PIPO in case of any change in the state of a single link.

4.2. Change in the state of a single node

We now prove that a packet destined for a node D

will not loop under PIPO in case of a single node
state change, i.e., when a node goes down or comes
up. The loop-freedom proof of single node state

A1

A1’

B1

B1’

An’

Bn

Bn’

l1
a

b1

ln
b

ln
a

bn

a1

r1

en

e1

2r
A2

l1
b

. . .

DLF

sub–tree rooted at node F

Fig. 2. Scenarios for illustrating loop-freedom under PIPO.
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change could be derived from that of single link state
change. We assume that any single node failure will
not partition the whole network. For simplicity, we
still use Fig. 2 for illustration. In case that node F
fails, all the links connected to F go down, and these
links come up after the node recovers from failure.
Upon a state change of F, each neighbor of F prop-
agates notification of adjacent link state change to
other nodes, and thus each node in the network will
receive multiple notifications. Note that when a link
is down, a node updates its FIB only after it receives
a notification from both nodes adjacent to that link.
Therefore, in case of failure of F, a node will know
that F is down and updates its FIB only after it
receives notifications from all the neighbors of F.

Thus, before all the nodes in SðF ;TDÞ finish
updating their FIBs, there are only two categories
of nodes in SðF ;TDÞ: those that maintain their old
FIBs, which means that they have not updated their
FIBs with the information that node F has changed
its state; and those who have already calculated new
routes by removing/adding node F from/to the base
topology and updated their FIBs. During conver-
gence, nodes in one category try to forward through
F to destinations, while nodes in the other category
intend to forward packets to go around F. With
the same method as we used in the previous section,
we can prove that no loop could happen in case of a
single node state change.

5. Limitations of LISF methods

Previous sections have proved that LISF methods
guarantee loop-free convergence under a single link
or node state change for a network with symmetric
links. In this section, we illustrate that LISF methods
may incur forwarding loops during convergence if
multiple link failures happen simultaneously or if a
single failure happens in a network with asymmetric
links. As discussed previously, among all the LISF
methods, UNIN is the most aggressive in discarding
packets and thus has the least probability of for-
warding loops. However, even UNIN cannot pre-
vent forwarding loops completely under these
conditions. Fortunately, as we will see in the evalua-
tion section, these forwarding loops will rarely occur
when LISF is applied to the networks in real world.

5.1. Single link failure with asymmetric links

We have shown that all the LISF methods pre-
vent loops in case of any single link state change in

a network with symmetric links. We now contrast
these methods in their ability to handle a single link
failure in a network with asymmetric links. Consider
the topology shown in Fig. 3 where each directed
edge is labelled with its cost. For clarity, links in
the opposite direction are not shown here as it is
assumed that their costs are so high that they are
not included in any of the shortest paths to destina-
tion D. Suppose the link A! D goes down and the
corresponding link state advertisement is being
propagated in the network. During the convergence
period, some nodes would have received the notifica-
tion and updated their FIBs while others have not.

Table 8 lists various possible scenarios, in each
scenario the set of nodes that updated their FIBs
and the corresponding behavior under each LISF
method. In all scenarios, a packet from source A
to destination D would loop under PIPO. It is sur-
prising that there exists a scenario where even
UNIN cannot prevent a loop. When all nodes
except C and H have new FIBs, the packet gets for-
warded from A to H consistently along the path
A! B! E! F! G! H! D. But H forwards
it to C since the packet arrives through the usual

Table 8
Differences between LISF methods in forwarding from A to D
after A!D is down

Nodes with
new FIBs

PIPO CYCL NOFP UNIN

A,D loop(A–B–
E–A� � �)

A–B-
drop

A–B-drop A–B-drop

A,B,D loop(A–B–E–A� � �) A–B–E–
A-drop

A–B–E–
A-drop

A,B,D,E loop(A–B–E–F–C–A� � �) A–B–E–
F-drop

A,B,D,E,F,G loop(A–B–E–F–G–H–C–A� � �)

B

E

F G

H

D

C

A 1

1

4

1

1

1

1

1

1

1

2

Fig. 3. Topology with asymmetric links to illustrate the limita-
tions of LISF methods.
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interface according to its out-of-date FIB. Similarly
node C forwards to A. The node A too does not dis-
card it, since A is the usual next-hop from C to D
according to the new FIB at A and forwards to B.
Thus the packet from A to D, gets caught in a loop
A! B! E! F! G! H! C! A! B � � �.
This is because the interfaces at the boundaries of
new and old FIBs along the path, i.e., G! H and
C! A, are deemed usual. The essence of this illus-
tration is that when a node’s view of usual interface
remains same before and after a link state change,
interface-specific forwarding based approach may
not be able to prevent a loop.

5.2. Multiple failures with symmetric links

We now focus on the scenarios of multiple link
state changes being propagated in the network simul-
taneously. Since we have already shown that there is
a possibility of looping under LISF in networks with
asymmetric links, here we consider a network with
symmetric links as shown in Fig. 4. Assume that links
A–D and E–H are down. Table 9 lists various possi-

ble scenarios, in each scenario the set of nodes whose
FIBs reflect the failure of A–D, those that reflect the
failure of E–H and the corresponding forwarding
behavior of LISF methods. Note that since links
are symmetric, there would not be any difference
between PIPO and CYCL methods. In the first sce-
nario, when A’s FIB reflects the failure of A–D but
not E–H, A would forward a packet destined for D
along the new shortest path to B. The node B which
is aware of the failure of E–H but not A–D drops the
packet and avoids a loop under all LISF methods.
On the other hand, in the last scenario, even UNIN
cannot prevent a loop. The node A forwards the
packet to B which in turn forwards it to E. But E,
with a view different from A and B, considers this
as a usual arrival and forwards it to G, which in turn
forwards to F. Node F, which is aware of the failure
of E–H only, forwards it to C, since the shortest path
from G to D is via F. Node C, which is unaware of
any of the failures, forwards it to its usual next hop
A, since F! C is usual interface to destination D.
Thus, the packet arrives back at A forming a loop
A–B–E–G–F–C–A–B � � �. Once again, this example
illustrates that when a node’s view of usual interface
remains the same even when a neighbor’s view of the
network is different, interface-specific forwarding
based approach may not be able to prevent a loop.
However, our evaluation of these methods on real
topologies under multiple failures show that LISF
methods would be quite effective in preventing loops
in practice.

6. Performance evaluation

In this section, we evaluate the performance of
LISF methods and compare them against OSPF.
We present our evaluation results in three different
settings. First, we consider single link failures in a
Tier-1 ISP topology with randomly assigned sym-
metric and asymmetric weights. Then, we use the
real Abilene and three other backbone topologies
measured by Rocketfuel with the given symmetric
weights for evaluation under single node, single
and double link failures. Finally, we simulate multi-
ple link and node failures in a Tier-1 ISP topology
with both symmetric and asymmetric weights. These
experiments under different settings demonstrate
that LISF methods prevent a significant number
of loops that are possible under OSPF. Further-
more, they reveal the trade-offs of LISF methods
between packet-discarding and loop-avoidance.

D

A

B E

G

C F

4

1

3

1

1

3

1

1

1

6

H

Fig. 4. Topology with symmetric links to illustrate the limitations
of LISF methods.

Table 9
Differences in LISF methods in forwarding from A to D after A–
D, E–H are down

Aware of
A–D

Aware of E–H PIPO/CYCL NOFP UNIN

A,D B,E,H A–B-drop A–B-
drop

A–B-
drop

A,B,D,E B,D,E,F,G,H loop(A–B–
E–G–F–C–
A� � �)

A–B-
drop

A–B-
drop

A,B,D,E D,E,F,G,H loop(A–B–E–G–F–C–
A� � �)

A–B–
E–G-
drop

A,B,D,E,G D,E,F,G,H loop(A–B–E–G–F–C–A� � �)
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6.1. Single link failures in a Tier-1 ISP

To evaluate LISF methods, we built a control-
plane simulator that emulates intra-domain routing
dynamics in the presence of link failures and mea-
sures both service disruption (SD) time between dif-
ferent origin–destination (OD) pairs and network
convergence (NC) time as presented in [16]. We use
a Tier-1 ISP backbone (PoP-level) topology with 20
nodes and 42 links in our simulations which was used
earlier in [16]. We assign OSPF link weights to differ-
ent links by randomly picking integer values between

1 and 5. We consider both symmetric links where
X! Y has the same OSPF weight as Y! X, and
asymmetric links where the OSPF weight for
X! Y could be different from Y! X. The forward-
ing table at each node includes entries for all the pre-
fixes in the Internet. We assume that the rate of FIB
update is 20 entries/ms and the number of prefixes is
161,352. The other parameters in the simulator are
set based on the findings in [17]. In every simulation
run, we fail each link in the network exactly once.
The results presented below represent the effect of
all the link failures in a simulation run.

Fig. 6. Network convergence time due to various single link failures.

Fig. 5. Average service disruption time per link failure for various O–D pairs.
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The total time during which a forwarding loop
exists under OSPF is observed to be 11.851 s,
whereas LISF methods, as expected, have no loops
in case of symmetric weights. For the case of asym-
metric weights, OSPF has loops for a duration of
6.989 s, while it is 0.056 s for PIPO. In both cases,
there are no loops under CYCL, NOFP, or UNIN.
These results demonstrate the effectiveness of LISF
methods in avoiding loops. We proceed to show
that this is achieved not at the expense of larger con-
vergence delay or longer service disruption.

Fig. 5(a) represents the average SD time experi-
enced by all OD pairs due to a single link failure in
this network with symmetric links. We can clearly
see that the average SD time for a particular OD pair
remains the same when LISF is implemented on top
of OSPF. This shows that LISF does not add any
extra SD time. Fig. 5(b) shows a very similar behav-
ior of average SD time for this network with
asymmetric links. Fig. 6(a) and (b) shows the conver-
gence time due to different link failures for the back-
bone network with symmetric and asymmetric links,
respectively. As expected, LISF behaves similar to
OSPF, as it does not require any synchronization
between nodes for updating their FIBs.

Fig. 7(a) shows the packet discard times due to
various LISF methods in the ISP network with sym-
metric links. As expected, with symmetric link fail-
ures, the packet discard times of PIPO and CYCL
are identical. While UNIN has much higher packet
discard times, NOFP is quite close to PIPO. A sim-
ilar pattern is observed even with asymmetric links
(Fig. 7(b)). However, the packet discard times under

PIPO and CYCL are not identical due to the
fact that more loops are avoided by CYCL than
PIPO.

6.2. Single and multiple link failures in Abilene and

Rocketfuel topologies

In this section, we evaluate LISF methods using
real Internet backbone topologies. Particularly, we
use Abilene topology and three other AS backbone
topologies measured by Rocketfuel [18]. These net-
works are summarized in Table 10. Note that all net-
works contain links with symmetric weights only.

In simulating OSPF and LISF methods, for the
sake of simplicity, we assume that once a router is
notified of a failure, it will take LSP processing
delay, SPF computation time and FIB update delay
for a router to update its forwarding tables to handle
the failure. We also assume that the LSP packet con-
taining failure notification needs 10 ms propagation
delay across each link and LSP processing delay is
20 ms. As before, we assume that the FIB update
rate is 20 entries/ms and the number of prefixes is

Fig. 7. Average packet discard time per link failure for various OD pairs.

Table 10
Real backbone topologies used in evaluation

AS number Name # of routers Degrees

Abilene 12 1.33
1221 Telstra (Australia) 108 2.82
1755 Ebone (Europe) 87 3.70
3967 Exodus (US) 79 3.72
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161,352. The SPF computation time is assumed to be
5 ms for Abilene and 60 ms for other networks.

We ran three types of failure scenarios: 1-link, 1-
node, and 2-link failures. For 1-link or 1-node fail-
ure scenario, we failed one link or node for each run
and examined each source–destination (OD) pair
affected by this failure during the convergence time.
For each OD pair, we define the delivery ratio as the
ratio of the time window during when its packet can
be successfully delivered to the total network con-
vergence time. When a packet is not delivered, it is
either discarded by a node along the path or caught
in a forwarding loop. Correspondingly, we define
the drop ratio and loop ratio for an OD pair in a
similar fashion. When we collect the delivery, drop
and loop ratios for each affected OD pair during a
test run, we average these measurements among
all OD pairs and report the average values for that
test run. We have done 2-link failure simulation a
little differently. Since it is almost impossible to
run every combination of two link failure, we ran-

domly select 500 2-link failure cases for each net-
work and then run the simulation accordingly.

Figs. 8–10 show the simulation results of OSPF
and LISF methods using the real backbone topolo-
gies. These figures consistently show that OSPF incur
forwarding loops under all simulation scenarios
within a range of 2—10%. On the other hand, LISF
methods do not have forwarding loops at all for any
network under any failure scenario. It shows that
even under 2-link failure cases, LISF methods can
rarely cause forwarding loops in real network topol-
ogies, though in theory loops may be possible in such
cases. Meanwhile, PIPO, CYCL and NOFP have
exactly the same delivery ratio as OSPF, with only
one exception in Fig. 10(b) where NOFP has a
slightly lower delivery ratio and a higher drop ratio.
We can also see that UNIN, the most aggressive
method, has the lowest delivery ratio and the highest
drop ratio among all LISF methods, since it discards
packets aggressively to prevent loops. This is consis-
tent with the illustrations of the previous sections.

Fig. 8. Performance under 1-link failure.
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6.3. Multiple failures in a Tier-1 ISP

To further evaluate LISF methods, we simulated
failures of multiple links and nodes. For this study,
we used the Tier-1 ISP topology as before but
assigned different symmetric and asymmetric
weights to induce forwarding loops. Furthermore,
we did not use the control-plane simulator men-
tioned above as it can only handle single link fail-
ures. Instead, we used a simplified model to
approximate link-state propagation and route
computation and FIB update times. It is assumed
that link-state propagation takes 1 time unit per
hop and route computation and FIB update
time is 3 units. We simulate single node failures
and also simultaneous failures of 2 nodes, and also
2 links and 3 links. In each failure scenario, we for-
ward a packet between every pair of nodes and
count the number of node pairs for whom packets
are undeliverable and also those that get caught in
a loop.

Tables 11 and 12 show the relative performance
of different LISF methods and OSPF in terms of
their ability to avoid loops and deliver packets
under symmetric and asymmetric weights, respec-
tively. Note that PIPO and CYCL yield identical
performance when the link weights are symmetric.
There are several things to observe here. Compared
to OSPF, loops are close to 1000 times less likely to
happen with PIPO and CYCL. In terms of packet
delivery, both PIPO and CYCL have the same per-
formance as OSPF. UNIN prevents loops under all
scenarios whereas NOFP has a very few loops and
only under asymmetric weights with 3-link and 2-
node failures. However, the delivery ratio of NOFP
is only slightly worse than OSPF while that of
UNIN is significantly worse. Considering that
NOFP prevents almost all loops without excessive
discarding of packets, we believe LISF approach
with NOFP method is a viable alternative for avoid-
ing transient loops during the convergence of intra-
domain routing schemes in IP networks. On the

Fig. 9. Performance under 1-node failure.
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other hand, PIPO is easier to implement and is quite
adequate in mitigating most of the loops since

majority of the failures involve a single link or a sin-
gle node.

Table 12
Comparison of OSPF and LISF under multiple failures and asymmetric weights

Failures Looping probability % of undeliverable node pairs

OSPF PIPO CYCL NOFP UNIN OSPF PIPO CYCL NOFP UNIN

2 links 10�2:4 10�4:5 10�4:8 0 0 6.0 6.0 6.0 6.4 7.8
3 links 10�2:2 10�4:0 10�4:3 10�6:4 0 8.7 8.7 8.7 9.3 11.3
1 node 10�2:9 0 0 0 0 4.4 4.4 4.4 4.7 5.4
2 nodes 10�2:5 10�3:7 10�4:4 10�5:0 0 8.3 8.3 8.3 8.8 10.0

Fig. 10. Performance under 2-link failure.

Table 11
Comparison of OSPF and LISF under multiple failures and symmetric weights

Failures Looping probability % of undeliverable node pairs

OSPF PIPO CYCL NOFP UNIN OSPF PIPO CYCL NOFP UNIN

2 links 10�2:3 10�5:3 10�5:3 0 0 5.9 5.9 5.9 6.2 7.3
3 links 10�2:1 10�4:9 10�4:9 0 0 8.6 8.6 8.6 9.1 10.7
1 node 10�3:0 0 0 0 0 4.3 4.3 4.3 4.4 4.8
2 nodes 10�2:7 10�3:7 10�3:7 0 0 8.1 8.1 8.1 8.2 9.1

S. Nelakuditi et al. / Computer Networks 52 (2008) 593–609 607



Author's personal copy

7. Conclusions

In this paper, we proposed a simple interface-spe-
cific forwarding based approach called LISF to
avoid transient forwarding loops during the net-
work convergence periods. LISF approach selec-
tively discards packets arriving through unusual
interfaces when they are likely to be caught in a
loop. We have demonstrated that LISF incurs no
additional message overhead compared to OSPF
and avoids forwarding loops without increasing
the network convergence time. We have presented
several LISF methods and evaluated their perfor-
mance under various network topologies and failure
scenarios. We observed that simple PIPO is effective
in eliminating most of the loops particularly when
weights of links are symmetric and NOFP provides
the best trade-off between packet-discarding and
loop-avoidance.
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