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ABSTRACT
Traffic measurements provide critical input for a wide range
of network management applications, including traffic engi-
neering, accounting, and security analysis. Existing mea-
surement tools collect traffic statistics based on some pre-
determined, inflexible concept of “flows”. They do not have
sufficient built-in intelligence to understand the application
requirements or adapt to the traffic conditions. Consequently,
they have limited scalability with respect to the number of
flows and the heterogeneity of monitoring applications.

We present ProgME, a Programmable MEasurement ar-
chitecture based on a novel concept of flowset – arbitrary
set of flows defined according to application requirements
and/or traffic conditions. Through a simple flowset com-
position language, ProgME can incorporate application re-
quirements, adapt itself to circumvent the challenges on scal-
ability posed by the large number of flows, and achieve a
better application-perceived accuracy. ProgME can analyze
and adapt to traffic statistics in real-time. Using sequential
hypothesis test, ProgME can achieve fast and scalable heavy
hitter identification.

Categories and Subject Descriptors
C.2.3 [Network Operations]: Network monitoring; C.4
[PERFORMANCE OF SYSTEMS]: Measurement tech-
niques

General Terms
Algorithms, Design, Measurement

Keywords
Flowset, Flowset Composition Language, Traffic Measure-
ment, Programmable Measurement, Multi-Resolution Tiling
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1. INTRODUCTION
Accurate measurement of network traffic is a keystone of

a wide range of network management tasks, e.g., traffic en-
gineering, accounting, network monitoring, and anomaly de-
tection. A measurement tool, be it a dedicated hardware or
software running on routers or firewalls, collects statistics of
network traffic. Management applications use these statis-
tics to make network control decisions, such as re-routing
traffic, charging customer, or raising alarms to administra-
tors. The insights gained from traffic measurement are in-
valuable to administrators in making informed decisions on
network planning or operations.

Figure 1: Traditional Measurement Architecture.

Fundamentally, traffic measurement involves counting the
number of packets (or bytes) that satisfies some criteria over
a particular period of time. As depicted in Figure 1, tra-
ditional measurement architecture1, e.g., NeTraMet [5, 6],
FlowScan [28] and sFlow [27], finds a matching flow for ev-
ery sampled packet and increases the corresponding counter.
Such per-flow traffic statistics might be, upon a triggering
event like the expiration of a timer or passing of a threshold,
delivered to a centralized storage location. A management
application, be it a network manager or an anomaly detec-
tion tool, can then perform post-processing on the per-flow
statistics to retrieve useful information. For example, to an-
swer user queries like “How much traffic goes to a particular
network?”, one can perform selective aggregation to count all
the flows belonging to this query. For monitoring applica-
tions like heavy hitter identification, one can search through
the per-flow traffic statistics to find the elephant flows.

Although the traditional measurement architecture has
had some success in offering insights about network traf-
fic, the scalability of this architecture is limited in practice.
First, the traditional architecture collects statistics based

1This is an extremely simplified summary. One should not
overlook the tremendous amount of research that reduce the
number of counters or produce traffic summaries.
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on the inflexible definition of flow2. In today’s high-speed
network, especially the core of these networks, the number
of flows can be very large – easily reaching millions. Keep-
ing a per-flow traffic profile is challenging to the memory
and the processor [15]. Even if the per-flow traffic profile
can be managed locally, delivering it to the remote server
and storing it over a prolonged period of time incurs signif-
icant amount of overhead. Second, the traditional architec-
ture takes a post-processing approach. Measurement tools
have little knowledge about the actual requirement of the
management applications and focus only on providing suffi-
cient statistics. It is up to the management applications to
process the per-flow traffic statistics and extract meaning-
ful information. This disconnection between measurement
tools and management applications forces the measurement
tools to collect all the statistics that might be useful and at
the finest granularity to meet a certain level of accuracy re-
quirement. Third, the traditional architecture cannot adapt
itself to the changing network condition. It is difficult for
a measurement tool engineered to monitor a few large flows
(elephants) to quickly adapt itself to focus on large amount
of small flows (mice), e.g., in the case of Distributed Denial-
of-Service attack.

Figure 2: Programmable Architecture.

This paper calls for a departure from the traditional archi-
tecture using per-flow traffic profile and the post-processing
approach. We present a Programmable MEasurement ar-
chitecture (ProgME ) that can adapt to application require-
ments and traffic conditions in real time. Figure 2 shows the
major components of ProgME. Our first proposal is to use a
versatile definition of flowset – arbitrary set of flows – as the
base of traffic statistics collection. In other words, ProgME
keeps one counter per flowset. Compared to per-flow traffic
statistics, per-flowset statistics enables one to achieve mul-
tiple resolutions within a traffic profile. Since flowsets can
be defined arbitrarily, they do not necessarily map to the
same number of unique flows or traffic volume. Therefore,
one can track higher resolution statistics to maintain the de-
sired accuracy for a sub-population of network traffic, while
collecting coarse-grained aggregate statistics for the remain-
ing traffic (e.g., through a flowset that catches uninteresting
traffic) to reduce total number of counters required. Fur-
thermore, since a flowset can contain arbitrary set of flows,
one can construct flowsets that directly reflect the interest of
management applications. For example, one can use a sin-
gle counter to track packets from invalid source IP address
instead of keeping a large number of per-flow counters and
aggregate them later.

The second key component of ProgME is a program engine
that can dynamically (re)-program the definitions of flowsets

2There are several different definitions of flow. However, it
is normally fixed once chosen for a measurement task.

based on user queries. By enabling the management applica-
tions to program the measurement tool, one can pre-process
application requirements so that the tool only collects statis-
tics that are directly useful to applications and at a desired
granularity, thus significantly improving its scalability and
performance. Note that we do not claim that collecting
statistics according to user requirement is the right solution
for all measurement tasks. ProgME can be most beneficial if
users know their requirements beforehand. However, if one
fails to envision the usefulness of certain traffic metrics and
does not measure them directly in the first place, a posteri-
ori analysis on aggregate data might not generate accurate
estimates of these metrics.

ProgME is intended as an on-line measurement module
and offers the flexibility to support adaptive measurement
algorithms. For example, the program engine can merge or
partition flowsets and re-allocate the counters dynamically
based on past traffic statistics to increase tracking accuracy
and measurement efficiency.

The contributions of this paper are summarized as follow:

• We propose a versatile flowset definition as the base
unit of network measurement. We present a flowset
composition language (FCL) for defining flowsets con-
sisting arbitrary set of flows and a binary decision dia-
gram (BDD)-based data structure for efficient set op-
erations and matching packet to a flowset (Section 2).

• We show that the flexibility offered by our flowset def-
inition is helpful in broad categories of network mea-
surement, including answering user queries (Section 3)
and identifying heavy hitters (Section 4).

• We propose a scalable Flowset-based Query Answer-
ing Engine (FQAE) in (Section 3) to support arbi-
trary user queries. Used in conjunction with sampling,
FQAE can achieve the same accuracy for any given set
of queries compared to an ideal flow-based measure-
ment approach, while achieving orders of magnitude
cost reduction in terms of memory requirements.

• We propose a multi-resolution tiling (MRT) algorithm,
which dynamically re-program the flowset measure-
ment to zoom in on heavy hitters (Section 4). It can
identify heavy hitters under tight memory budget by
re-defining flowsets and re-allocating the associated
counters. MRT analyzes the traffic and the statistics
collected sequentially and can be deployed on-line.

After presenting design rationale and major components
of ProgME, we evaluate its performance in Section 5. The
related works are discussed in Section 6 and we conclude the
paper in Section 7.

2. ARBITRARY FLOWSET
Traditionally, network statistics are collected based on the

concept of flows. A flow f refers to a set of packets that
have the same n-tuple value in their header fields. Let H :
{H1, H2, · · · , Hn} denote the header fields used in the flow
definition. Typical definitions of flow include the 5-tuple of
H : {prt, sip, spt, dip, dpt} or the 2-tuple of H : {sip, dip} in
which prt is the protocol field, sip and dip are the source
and destination IP address and spt and dpt are the source
and destination port, respectively. Other header fields, e.g.,
Type-of-Service (TOS), could be used as well. A flow is
often used as the base unit for traffic measurement. With a
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Symbol Explanation

f A flow
H Set of fields that defines “flow”
F A flowset
Fw The weight of a flowset F
Fc The counter associated with F

P
A packet enumerator,
either a trace file or live traffic

Q A list of user queries
U The universal set of flows

Table 1: Notations.

n-tuple definition, a flow can be regarded as a point in the
n-dimension space with each field as a dimension.

In the context of packet classification (including routing
and packet filtering), it is often necessary to designate an ac-
tion (e.g., route to a certain interface, filtering the packet)
to a set of flows. The status quo is the concept of super-
flow, which takes a similar form of the definition of flow
except each field is extended to a range of values. In the
general 5-tuple superflow H ′ : {prtr, sipr, sptr, dipr, dptr}
definition, sipr and dipr are CIDR address blocks and prtr,
sptr and dptr could be value intervals. The semantics of
superflow is not flexible enough — it is restricted by the
well-defined structure and can only describe a regular-cut
set of flows, where each field contains a contiguous range of
values. Therefore, sipr and dipr should contain IP addresses
that form a valid CIDR block with contiguous IP addresses,
while sptr and dptr should contain continuous interval of
integer values. For example, if one is to visualize a 2-tuple
superflow defined by sipr, sptr on a 2-dimension space, su-
perflow can only carve out rectangles of various size [12], as
shown by the solid and dotted boxes in Figure 3.

We define a flowset to be a set of arbitrary flows. A flowset
is not limited by the structure of superflow and can take any
shape, even being segmented in the space (as one shall see
shortly). A flow can be considered a special case of flowset
containing only one member. To the best of our knowledge,
there are no existing languages for specifying such a versatile
flowset other than an inefficient enumeration of superflows.

Our definition of flowset should not be confused with the
template flowsets defined by Cisco NetFlow V9 [35], which
is a template-based flow record format used for exporting
per-flow records. It is not semantically expressive enough to
describe all possible set of flows, nor it is designed to do so.

In the following part of this section, we first present a
flowset composition language (FCL), which enables user to
specify an arbitrary set of flows as a single entity (Sec-
tion 2.1). Section 2.2 clarifies related definitions and Sec-
tion 2.3 introduce a canonical representation of flowset using
binary decision diagram (BDD). Coupled with the under-
lying BDD representation of flowsets, FCL allows users to
specify their requirement on aggregated traffic statistics and
enables measurement tools to pre-process user requirements.

Table 1 summarizes the notations used in this paper.

2.1 Flowset Composition Language (FCL)
We present a simple Flowset Composition Language (FCL)

using set algebra to enable specification of arbitrary flowset
(Table 2). The primitive of FCL is the 5-tuple superflow
definition, which by itself is a flowset that defines a set of
flows. However, the grammar of the 5-tuple definition is

e = e op e | (e) |¬e| pr
op ::= ∩ | ∪ | \
pr ::= < prt, sip, spt, dip, dpt >

Table 2: Grammar of Flowset Composition Language.

very limited and can only specify a regular-cut set of flows.
One can use other primitives as long as it specifies a set of
flows. We choose the 5-tuple definition because of its wide
usage in the context of firewall and policy routing.

Since the primitives are flowset themselves, one can use
set algebra to construct a flowset that constitutes arbitrary
set of flows. The FCL grammar defined in Table 2 illus-
trates several standard set operators like intersection (

T

),
union (

S

), absolute complement (¬), and relative comple-
ment (\). These operations are sufficient to build a flowset
with arbitrary set of flows. In addition, one can, using the
operators provided, build more complicated logical opera-
tions, e.g., NAND or NOR. All the laws associated with set
algebra, including the commutative, associative, distributive,
identity, and complement laws, apply to flowset as well.

Table 3 presents two examples of such flowsets that might
be of practical interest to the administrators. Flowset F1

presents all flows originated from private address space. In
practice, administrators are interested in tracking these flows
because packets with unroutable IP address are not legiti-
mate and are often used by attackers and spammers. Flowset
F2 presents incoming FTP traffic (port 21/22) except those
from an internal network. F1 and F2 are depicted in Fig-
ure 3 in dashed and solid line rectangles respectively. Notice
that a flowset, as a single entity, can cover disconnected and
irregular parts in the universal set.

2.2 Definitions
Since flowset is a type of set, concepts and definitions in

set theory apply here. In the following, we highlight the
definitions that are useful for our discussions.

• The universal flowset U contains all the possible flows,
and the empty flowset ∅ contains no flow. Two flowsets
A and B are said to be disjoint if their intersection is
empty, i.e., A

T

B = ∅.
• We denote the cardinality of flowset F as |F |, which

is a measure of the “number of possible flows of the
flowset”. Note that |F | can be larger than the actual
number of active flows one observes in a particular
traffic instance, which we denoted as |F |′.
• We denote |Hi| as the total number of possible values

of field Hi. Therefore, |Hsip| = |Hdip| = 232, |Hspt| =
|Hdpt| = 216, |Hprt| = 28. The total number of possible
flows, which is also the cardinality of U, is

Qn
i=1 |Hi|.

• A set of flowsets F : {F1, F2, · · · , Fn} is said to be a
partition of a flowset X iff (Eq. 1) none of the flowset
in F is empty , (Eq. 2) flowsets in F are pair-wise
disjoint, and (Eq. 3) the union of all flowsets in F
equals to X. In particular, F is complete if it is a
partition of U.

Fi �= ∅ ∀ 1 ≤ i ≤ n (1)

Fi

\

Fj = ∅ ∀ 1 ≤ i �= j ≤ n (2)

n
[

i=1

Fi = X (3)
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F1: Traffic from private IP
F1 = r1 ∪ r2 ∪ r3, where
r1 =< ∗, 10./8, ∗, ∗, ∗ >
r2 =< ∗, 172.16./12, ∗, ∗, ∗ >
r3 =< ∗, 192.168./16, ∗, ∗, ∗ >

F2: FTP not from 10.1./16
F2 = (x1 ∪ x2) ∩ ¬x3, where
x1 =< ∗, ∗, ∗, ∗, 20 >
x2 =< ∗, ∗, ∗, ∗, 21 >
x3 =< ∗, 10.1./16, ∗, ∗, ∗ >

Table 3: Sample Flowsets. Figure 3: Visualization of Table 3. Figure 4: Disjoint Flowsets of Figure 3.

• We denote Fc as the counter associated with a flowset
F . The counter is updated when a matching packet is
observed and can take any unit, e.g., packets or bytes.
We also denote Fw the actual weight of F , and F ′

w the
measured weight of a flowset F . Measuring Fc and F ′

w

are equivalent if keeps a counter for all packets.

2.3 Underlying Data Structure
The string representation of flowset is not an ideal form for

complicated set operations. Following the approach used to
encode firewall rules and access lists in recent studies [21, 37],
we use binary decision diagram (BDD) [7] as the underly-
ing data structure for flowset (referred to as flowset label
hereafter). BDD is an efficient data structure that is widely
used in formal verification and simplification of digital cir-
cuits. A BDD is a directed acyclic graph that can com-
pactly and canonically represent a set of boolean expres-
sions. Every bit of IP header corresponds to a BDD variable.
For example, we encode the source IP block 128.0.0.0/4 as
SIP (x1x

′
2x

′
3x

′
4), whose corresponding BDD is shown in Fig-

ure 5a. Similarly, the BDD for source IP 192.0.0.0/4 is de-
picted in Figure 5b. In a BDD graph, the non-terminal ver-
tices represent the variables of the boolean function, and the
two terminal vertices represent the boolean values 0 (True)
and 1 (False). Note that only the first 4 bits are used and
the 24 masked bits are omitted in the BDD.

(a) (b) (c)

Figure 5: BDD Encoding.

Performing set operations such as intersection, union, not,
and implication using BDDs is straightforward. Figure 5c
depicts the union of Figure 5a and Figure 5b. Note that
because of canonical property of BDD, the union, actually
use less variables than either of them in this particular case.
Due to space limitation, we refer readers to [3] for detailed
information about BDD and only discuss those directly rel-
evant to this paper in the following.

• The number of BDD variables used, V , is a constant
defined by the size of the defining variables. For the
5-tuple superflow predicate, it is 104 (8 bits protocol,
2x32 bits source and destination IP address and 2x16
bits source and destination port).

• The number of BDD nodes used to describe a 5-tuple
flow (Nf ) is 104 as every bit variables is used.

• The number of BDD nodes used to describe a 5-tuple
superflow (Ns) has an upper-bound of 104. This is
because BDD ignores the unused bit variables, e.g.,
the masked bits in CIDR IP address block.

• Since a flowset is formed by set operation among a
number of N superflows, the number of BDD nodes
used to describe any flowset has an upper-bound that
is determined by the total number nodes used to define
each flow. The actual number of nodes can be smaller
since BDD keeps the canonical form.

• To determine if a packet matches a flowset, we extract
the relevant bits from the packet header and construct
a corresponding BDD. Using the logical implication
operation (⇒), we can determine if the packet is part
of the flowset.

3. FLOWSET-BASED QUERY ANSWERING
ENGINE (FQAE)

Figure 6: Flowset-based Query Answering Engine.

A major task of traffic measurement is to facilitate answer-
ing user queries about the characteristics of certain traffic
aggregates. These traffic aggregates can have very differ-
ent granularities. For example, one might query for the
FTP traffic to certain hosts (fine granularity) or a partic-
ular ingress-egress pair of the network (coarse granularity).
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As discussed in Section 1, current measurement systems col-
lect fine-grained per-flow traffic statistics and leave it to in-
dividual applications to perform post-processing to extract
the desired information. This approach is not scalable since
modern networks could easily observe millions of flows.

We make the observation that the total number of poten-
tial user queries can be far smaller than the number of flows
it observes. If the measurement system has sufficient knowl-
edge about the queries, it only needs to maintain aggre-
gated state information that pertains to the queries, thereby
avoiding the expensive per-flow states. In the following sec-
tion, we present the Flowset-based Query Answering En-
gine (FQAE) that is capable of answering any user queries
on traffic aggregates while maintaining a minimum number
of counters. FQAE contains two fundamental blocks – a
measurement engine that collects per-flowset traffic statis-
tics and a program engine that takes a list of user queries
(Q) as input and controls what to measure. The user queries
are written using FCL as illustrated in Table 3.

Algorithm 1: D ← Disentangle(Q).

input : A list of queries Q (|Q| = n > 0)
output: A list of disjoint flowsets D

D.append(U);1

foreach x in Q do2

for p in D do3

if x <> p then // identical4

break ;5

else if x ⊂ p then // subset6

D.append(p \ x) ;7

D.replace(p, x);8

break ;9

else if x ⊃ p then // superset10

x← x \ p ;11

else if p
T

x �= ∅ then // overlap12

D.append(p \ x) ;13

D.replace(p, x
T

p) ;14

x← x \ p ;15

else continue ; // disjoint16

D.append(x) ;17

To collect per-flowset traffic statistics, one needs to in-
crease the counter associated with a flowset upon observ-
ing a matching packet. This is similar to the classic packet
classification problem, but has the following distinct differ-
ences. In packet classification, the goal is to find the best
matching rule. Multiple rules can match a given packet, but
a conflict resolution mechanism, e.g., longest-match-first in
routing or first-match-first in packet filtering, can be used to
determine the best matching rule. Once the best-matching
rule is found, other rules can be safely ignored. In our case,
one packet might need to be counted for multiple matching
flowsets since queries might have non-empty intersections.

One naive approach is to match a packet against all queries
one-by-one. This is inefficient when the number of queries
is large. As illustrated in Figure 6, our approach is to first
disentangle the user queries to disjoint sub-queries such that
each packet matches exactly one sub-queries (details in Sec-
tion 3.1). Consequently, we only need to find the only
matching sub-query and increment its counter. We follow
the similar approach as in EGT-PC [4] to achieve this goal

(details in Section 3.2). One can certainly imagine using
other packet classification techniques to assist in identifying
the matching sub-query. However, the tradeoffs in memory
and speed need to carefully explored. Please refer to [17] for
a comparison of some packet classification algorithms.

3.1 Disentangle User Queries
Algorithm 1 generates disjoint sub-queries (D) from a list

of user queries (Q). It works by adding the flowsets in Q to
D in sequence. For every flowsets in Q, we compare it with
flowsets in D in sequence. A pair of flowsets must satisfy
one of the following relationship: identical (line 3), subset
(line 6), superset (line 10), overlap (line 12), and disjoint
(line 16). Therefore, one can use set operations to separate
the overlapped flowsets. Note that Algorithm 1 initiates D
with one flowset – the universe (U) (line 1). As user queries
might not cover the universe, this step ensures the resulting
D is complete (a partition of U). Consequently, every packet
is guaranteed to match exactly one flowsets in D.

Figure 4 illustrates the effect of running Algorithm 1 on
the two queries in Table 3 (shown in Figure 3). The two
flowsets defining the original queries have nonempty inter-
section. They divide the universe into four disjoint flowsets.
Note that all operations in Algorithm 1 are performed using
the underlying BDD-based data structure.

3.2 Reduce Matching Candidates
Since the disjoint sub-queries D and is a partition of the

universe U, every packet is guaranteed to match exactly one
flowset. However, the naive approach — comparing a packet
against each flowset until a match is found — is still not an
efficient solution when the number of flowsets in D is large.

Figure 7: HashReduce Algorithm.

FQAE introduces a hash table based mechanism called
HashReduce to reduce the number of comparisons required
to find the matching flowset. We use a hash function that
simply extracts several bits from the header fields. For ev-
ery possible hash value H , we build a BDD Hbdd, which
describes a flowset containing all flows with this particu-
lar value in the header. The table of matching candidates
(TMC) can then be built by finding all flowsets in D that
has non-empty intersection with Hbdd. Consider Figure 7 as
an example that uses the first bit from source IP and the
first bit of destination IP field. The hash function, by ex-
tracting two bits, divides the universe into four quadrants,
each intersects with a few flowsets in D.

The HashReduce mechanism follows the similar spirit as
EGT-PC [4], which uses one or two header fields to find can-
didate matching rules in n-tuple packet filter. Furthermore,
it presents a tradeoff between memory and lookup speed
that can be fully customized. Using more bits in the hash
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function incurs more memory overhead but can reduce the
number of candidates in table entries.

3.3 Collect and Report Statistics
Collecting traffic statistics is a simple two-step process.

Upon receiving a packet, FQAE first uses the same hash
function to extract the bits from the packet header and
lookup the TMC for a list of candidate flowsets. Then,
FQAE compares the packet to the flowset sequentially until
a matching flowset is found.

During the measurement process, FQAE performs traffic-
aware optimization by sorting the order of candidates in
the TMC based on the number of packets observed earlier
(TrafficSort). Note that this seemingly simple optimization
is possible only because FQAE make flowsets fully disjoint.
If flowsets have non-empty intersections, finding the opti-
mal order is NP-complete, and one will have to resolve to
heuristics, as some have attempted in the context of packet
filtering [1, 18].

Based on the statistics collected for each sub-queries, an-
swering user queries requires a simple aggregation. Note
that the fundamental difference here, as compared to per-
flow statistics, is that sub-queries are generated according
to user queries and we expect the number to be significantly
smaller than the number of flows in traffic.

Algorithm 2: Multi-Resolution Tiling.

input : P : a packet enumerator
input : R: a flowset defines the search range
output: Eleph: A list of identified elephants

Eleph← {};1

Mice← {} ;2

D← Partition (R) ;3

repeat4

FQAE (D, P , S) ;5

for F in D do6

if Fw < θ then // no elephants7

Mice.append (F );8

else if |F | = 1 then // elephant9

Eleph.append (F ) ;10

else if Fw >= θ then11

D.replace (F , Partition (F )) ;12

D.replace (Mice, union (Mice));13

until ElephantsFound ;14

4. HEAVY HITTER IDENTIFICATION
Heavy hitters, or elephants, are the largest-n flows in

terms of weight in network traffic. Alternatively, one can
define heavy hitters as flows with a weight larger than a
threshold θ. These two notions are equivalent if the thresh-
old θ equals the weight of the nth largest flow. In this paper,
we use the latter definition unless mentioned otherwise. We
further assume the weight of a flow f , fw , is defined rela-
tively as a percentage of total traffic. Identification of heavy
hitters are of particular interest to network management.
For example, traffic engineering often focus on re-routing
the few heavy hitters instead of worrying about the large
number of mice [15].

Identifying heavy hitter is trivial if one maintains a counter
for every single flow. However, this naive approach is not
memory-efficient and does not scale to large number of flows.

We propose Multi-Resolution Tiling (MRT), which exploits
the versatility of FQAE and offers scalable heavy hitter iden-
tification. Our key idea is that one can, by observing a
flowset, infer the characteristics of its subsets or objects (the
flows). Therefore, one can selectively zoom into flowsets that
might contain heavy hitters while ignoring others.

4.1 Multi-Resolution Tiling
Algorithm 2 presents the multi-resolution tiling (MRT) al-

gorithm for identifying elephants. MRT starts from a range
R, which is provided through user specification as a flowset.
This enables one to only identify elephants belong to a cer-
tain flowset, e.g., elephants that are TCP flows. If no user
specified R is given, MRT starts its sear set to U.

At each iteration, MRT calls upon FQAE to match a list
of S packets from P . For every flowset F (in D), MRT per-
forms sequential hypothesis test (Section 4.2) to determine
if Fw, the weight of F is larger than θ, the threshold defi-
nition of elephant. MRT uses the following logical inference
rule (Eq. 4) to determine if a flowset can be ruled out the
possibility of having any elephants. The logical inference
rule states: if the weight of a flowset F , which is the sum of
the weight of all flows in it, is smaller than θ, then none of
the flow f in F can possibly be an elephant.

Fw < θ ⇒ fw < θ ∀ f ∈ F (4)

If it is impossible for a flowset to contain any elephant, we
exclude all flows in F from further consideration. Other-
wise, we partition F into multiple disjoint flowsets and start
another iteration. The partition algorithm will be discussed
in great detail in Section 4.3. In essence, MRT keeps on fil-
tering out flowsets that are impossible to contain elephants
while zooming the focus on those that could. This itera-
tion terminates when all the elephants are identified. For
identifying threshold-θ elephants, this happens when all the
flowsets with a weight larger than θ contain only one flow.
For identifying largest-n elephants, this happens when the
largest n flowsets contain only one flow.

4.2 Sequential Hypothesis Testing
In Algorithm 2, it is crucial to determine quickly if the

weight of a flowset is larger than θ (Fw > θ). We propose
to use sequential analysis, more specifically sequential prob-
ability ratio test (SPRT) proposed by Wald [30], to achieve
this. SPRT has been used successfully by Jung et al. [24] for
port scan detection. Instead of using a fixed sample size to
determine the correctness of a hypothesis, sequential anal-
ysis allows one to determine dynamically whether further
observation is required based on the current observation.

Let H0 be the null hypothesis and H1 be the single alterna-
tive. An ideal test procedure should satisfy user requirement
on false positive rate (α) and false negative rate (β) while
requiring the minimum number of observations. SPRT, for
all practical purposes, can be regarded as such an optimum
sequential test procedure.

Let us denote the result of ith observation as Xi and
the result of a series of n observations as a vector X :<
X1, X2, · · · , Xn >. SPRT hinges on finding Λ(X) — the
probability ratio that this entire observation is produced
when H1 is true as compared to the case when H0 is true.

Λ(X) =
P{X|H1}
P{X|H0} (5)
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As described in Eq. 6, we compare Λ(X) against two positive
number A and B.3 . If Λ(X) is greater than A (smaller
than B), we consider that there are strong enough statistical
evidence to accept (reject) the null hypothesis and the test
terminates. Otherwise, we continue with more observations.

Intuitively, Λ(X) is an indicator of the likelihood whether
H0 or H1 is true.

decision =

8

>

<

>

:

reject H0 (accept H1) if Λ(X) > A

accept H0 (reject H1) if Λ(X) < B

continue observation Otherwise

(6)

In order to determine if MRT should zoom into a partic-
ular flowset F , we need to determine if the weight of F is
larger than θ. Therefore, our null hypothesis H0 is Fw < θ
and the alternative hypothesis H1 is Fw ≥ θ (Eq. 7). Since
these two hypotheses are composite hypotheses, the actual
hypothesis we used for testing is H ′

0 and H ′
1 in Eq. 8. Note

that θ− (θ− < θ) is chosen so that false positive rate is
smaller or equal to α. Similarly, θ+ (θ+ > θ) is selected so
that false negative rate is smaller or equal to β

H0 : Fw < θ and H1 : Fw ≥ θ (7)

H ′
0 : Fw = θ− and H ′

1 : Fw = θ+ (8)

For the ith packet (pi) observed, we use Xi to indicate if
it is a member of F

(

Xi = 1 if pi ∈ F

Xi = 0 if pi /∈ F
(9)

Therefore, Xi is a Bernoulli random variable with parameter
Fw.

P{Xi = 1|H ′
1} = θ+ P{Xi = 1|H ′

0} = θ−

P{Xi = 0|H ′
1} = 1− θ+ P{Xi = 0|H ′

0} = 1− θ− (10)

With n packets, one observes a vector of random variable
X :< X1, X2, · · · , Xn >. If these n packets are randomly
sampled, then Xi are all independently identically distributed
(i.i.d). Therefore, Λ(X) can be found as the product of the
probability ratio of every single observation (Eq. 11). Eq. 12
defines Λ(X) in log space, which is easier for computation,
especially if Λ(X) is incrementally updated.

Λ(X) =
n

Y

i=1

Λ(Xi) =
n

Y

i=1

P{Xi|H1}
P{Xi|H0} (11)

log Λ(X) =
n

X

i=1

log Λ(Xi) (12)

Let us denote the scenario that m among the n observed
packets belongs to F as Xm

n . The probability of observing
Xm

n when H1 or H0 is true can be found as:

P{Xm
n |H ′

1} = (θ+)m(1− θ+)n−m (13)

P{Xm
n |H ′

0} = (θ−)m(1− θ−)n−m (14)

Therefore, one can determine the probability ratio of Xm
n

as:

log Λ(Xm
n ) = m log

θ+

θ− + (n−m)log
1− θ+

1− θ− (15)

3A > B. A and B are determined by the user prescribed

strength (α, β). A ≤ 1− β

α
, B ≥ β

1− α

Eq. 15 requires the knowledge of n and m. Our FQAE rou-
tine counts the number of packets matched by each partition
(m). And n is simply the total number of packets observed
so far. The value of log Λ(X) can then be compared with
log A and log B as described in Eq. 6.

4.3 Partition Strategies

(a) C = 4 (b) C = 25 (c) C = 19

(d) G = 2 (e) G = 25 (f) G = 64

Figure 8: Partition Strategies.

After determining that a flowset F might consist of one
or more elephants, we need to choose a partition of F so
that MRT can zoom into this flowset. Note that the num-
ber of partitions of F is huge4, even when the cardinality of
F (|F |) is only marginally large, say 10. Therefore, it is im-
practical to explore every possible partition of F . Choosing
a particular partition presents a tradeoff between memory
consumption and speed in identifying elephants. We define
the memory cost factor C as the number of subsets gener-
ated and the identification gain factor G as the cardinality
of original flowset over the total cardinality of remaining
flowsets that might contain elephants.

One natural strategy is to partition F into equal size sub-
sets. Figure 8a and Figure 8b present two approaches with
different memory cost factor and Figure 8d and Figure 8e
present their respective results after one iteration. With a
large memory cost factor, one can partition the flowsets into
more smaller subsets. Consequently, it can exclude more
flowsets in a single iteration and achieves a larger gain fac-
tor. Therefore, the optimal strategy is to use the largest
memory cost factor as long as it satisfies the memory con-
straint. The number of iterations (N) required to identify
the elephants is:

N = logC |U| (16)

Without a priori knowledge about the elephants, equal-
size partition is the optimal strategy. In reality, however,
administrators do have knowledge to make educated guesses,
which might further improve the speed of heavy hitter iden-
tification. For example, one probably expect the protocol
field of elephants to be TCP or UDP in most networks. For
a particular network, certain IP addresses, e.g., Web/FTP
server and certain port numbers e.g., port 21 or 80, are more
likely to appear as elephants than others.

4The exact number of possible partitions for a set with n
elements can be found using Bell number recursively with
Bn+1 =

Pn
k=0

`

n
k

´

Bk and B0 = B1 = 1.
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Using ProgME, it is easy to exploit user knowledge to
improve identification of elephants. Our approach is to use
preferential partitioning, which allow users to predefine flowsets
with an amplified memory cost factor C′. This is illustrated
in Figure 8c. The lower left quadrant is assigned a larger
memory cost factor and is therefore partitioned into smaller
subsets. Consequently, even though the memory consump-
tion of the strategy in Figure 8c is lower than the strategy
in Figure 8b, the identification gain is larger.

The effectiveness of preferential partitioning relies heav-
ily on the user to make correct guesses. We believe this
is an reasonable assumption for administrators monitoring
network behavior on a daily base.

5. EVALUATION & DISCUSSION
In this section, we evaluate the proposed ProgME frame-

work, which has two major components — the programmable
engine (FQAE) and the adaptive controller (MRT). We first
look at the scalability and accuracy of FQAE and use two
application scenarios to discuss the potential usage of FQAE
in traffic engineering and security monitoring. We then dis-
cuss the speed of MRT in identifying heavy hitters.

5.1 Scalability of FQAE
FQAE has unique advantage in its scalability, which is

achieved by keeping per-flowset counters instead of per-flow
counters. We perform empirical evaluation on the scalability
of FQAE by comparing the number of counters one has to
keep for flow-based and flowset-based measurement.

{sip} {dip} {sip, dip}
#1 53,191 214,411 336,463
#2 52,762 127,543 293,519

Table 4: Number of Flows in 5-minute Traces.

Configs
# flowsets

Log-Only (Orig/Disj ) All (Orig/Disj)
#1 19/22 40/55
#2 0/0 35/38
#3 0/0 800/845

Table 5: Size of Queries.

To understand the typical number of flows one should ex-
pect on high speed links, we look at the packet traces col-
lected at OC-48 links by CAIDA [33] on 04/24/2003. We
choose to look at the 5-minute traces since 5-minute is a
typical statistics report interval. As shown in Table 4, these
trace files have a large number of flows (in the order of
105−106) even when using simple flow definitions like source
or destination IP address. If we use the two-tuple {sip, dip}
flow definition, the number of flows are even larger. We
only present two traces but other traces have similarly large
number of flows.

Since we have yet to see production usage of FQAE, we
emulate the scenario of network administrator querying live
traffic based on the production firewall configurations ob-
tained from a tier-1 ISP and several campus networks. We
use two approaches to emulate potential flowsets from these
firewalls. In the first approach, we consider each “LOG”

rule in the configuration file as a query for statistics. In the
second approach, we consider every filtering rule as a query.
Table 5 presents the number of user queries based on several
firewall configurations. One can observe that the number of
queries or disjoint sub-queries are significantly smaller than
the number of flows one would observe from traffic traces.
Note that such emulation does not fully utilize the capabil-
ity of FQAE to reduce counters as we make a conservative
assumption that every rule corresponds to a query.

One might argue that the number of independent flowsets
generated by n user queries (denoted as m) can also be large.
This is a legitimate concern since m = 2n in the worst case
when every new flowset overlaps with all existing flowsets
(Algorithm 1, line 12). However, we argue that the number
of flowsets cannot be larger than the number of active flows.
One can ensure that every flowset contains at least one active
flow by aggregating flowsets with no active flows into one
large flowset. Furthermore, our study on filter rules show
that only a small portion of the rules overlaps with other
rules. Consequently, the number of disjoint sub-queries (m)
is only moderately larger than the number of queries (n)
instead of being close to 2m. This is also consistent with
earlier study on firewall and router configurations. For a
scenario of 300 queries with every 3 rules overlapping with
each other, the number of disjoint flowsets one has to main-
tain counter for is just 700, which is significantly smaller
than the number of flows on most high-speed links.

The reduced number of counters has multiple implications
to the measurement architecture. First, it makes it possi-
ble to store the counters in the faster registers or SRAM.
This is crucial for high-speed network devices. Second, it
reduces the volume of data to be exported. Currently, Cisco
NetFlow imposes a minimum five minutes interval between
subsequent exports so that the measurement data, probably
coming from multiple vantage points in the network, will not
overload the network. With the reduced number of counters,
one can monitor the network at a higher temporal resolution
and thus be more responsive to any anomalous events.

5.2 Memory Cost of Flowsets
Although FQAE can reduce the number of counters, a le-

gitimate concern is that how much memory one has to spend
for maintaining the underlying data structure of flowsets. To
understand the memory cost associated with a flowset, we
first look at a practical scenario of building a flowset repre-
senting all the bogon IP addresses in Figure 9a. We add each
CIDR block in the current bogon list [29] one-by-one using
the “union” operation and plot the corresponding number of
BDD nodes required to represent this flowset (“FQAE”). For
comparison, we plot the cardinality of the flowset and ob-
serve that the cardinality of the flowset increase significantly
faster than the number of BDD nodes used to describe it.
Furthermore, we plot the total number of BDD nodes used
to describe each CIDR blocks. Without using FCL, a list
representation of all the CIDR blocks (“BDD w/o FCL”) will
require more than five times memory. Note that the last bo-
gon entry is 224.0.0.0/3 which could match 229 unique source
IP address, thus the sharp increase in the cardinality of the
flowset at the right end. However, its BDD representation
requires only three nodes. In the case of using FCL to con-
struct the flowset, only one additional node is required.

Figure 9b looks at the number of BDD nodes associated
with randomly generated flowsets. On the X-axis, we vary
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Figure 9: Memory Cost of Flowsets.

the number of primitives used to define a flowsets. Each
primitive is defined by a two-tuple {sip, dip} with both mask
lengths varying between 7 and 26. We randomly choose set
operators (∩, ∪, \) to join the primitives so that they col-
lectively defines a non-empty flowset. One can observe that
the maximum number of nodes used to describe a flowset
grows linearly with the number of primitives. This is con-
sistent with our discussion in Section 2.3 and happens when
the BDD representations of the primitives do not share com-
mon path. It is however quite possible for flowsets involving
larger number of primitives to require less number of BDD
nodes. The average number of BDD nodes for a flowset
grows sub-linearly with the number of primitives. Note that
the memory required to define a flowset depends only on the
primitives and the set operators and is independent of the
traffic pattern it measures.

One might notice that we used the number of BDD nodes
instead of the more direct bytes to evaluate memory con-
sumption. This is because there are many BDD packages
with node size varying between 8 and 36 bytes. Our cur-
rent implementation is based on BuDDy [26], which uses 20
bytes per node. We believe that porting ProgME to another
BDD package is easy and will not require any change to its
algorithms. Please refer to [23] for a comprehensive survey
on various BDD packages.

5.3 Accuracy of FQAE
The accuracy of measurement results is of paramount con-

cern for every management application. Existing flow-based
measurement tools use average per-flow error as the pri-
mary measure of accuracy. Facing the challenge posed by
the large number of flows, some recent research propose to

keep counters preferentially for large or long-lived flows while
excluding mice from occupying counters (more details in
Section 6). Such techniques effectively produce biased flow
statistics that results in smaller average error than unbiased
random sampling. Note that unbiased random sampling has
a natural tendency to favor large flows because small flows
have a higher chance not being sampled. Ideal unbiased
per-flow statistics is only possible when every single flow is
counted. Please refer to [15] for comparison on the average
error using different techniques.

(a) Flows (b) Unbiased (c) Biased

Figure 10: Flow-based Estimation.

For a management application, lower average error does
not always translate to higher accuracy for the answers to
their queries, which directly affects their decisions and is
more important. Consider the scenario depicted in Fig-
ure 10. The original traffic has some elephants and mice
(Figure 10a). Figure 10b presents the ideal measurement
results for the four queries on each quadrant if every sin-
gle flow is recorded. Ignoring mice cause limited errors on
queries dominated by elephants. However, for queries in-
volving mostly mice (the top left quadrant in Figure 10c),
the error can be very high.

Queries dominated by mice do have practical importance
in network planning and monitoring. Typical examples are
ICMP, DNS, and routing traffic. Although the absolute vol-
ume of these traffic might be small, their relative volume
variation could be a useful indicator for administrators. Bi-
ased statistics that ignores these traffic is not suitable for
monitoring mice-dominated traffic. More importantly, bi-
ased statistics makes it possible for attackers to evade the
detection of volume-based monitoring tools. An attacker can
generate a large number flows, each with a different spoofed
source IP address and small number of packets. Since these
individually small flows are likely to be ignored by both bi-
ased and unbiased per-flow measurement, monitoring tools
based post-processing of these statistics might fail to detect
these kind of attacks.

If there were no memory limitation and statistics could be
maintained for every flow, per-flow statistics could achieve
high per-query accuracy under any traffic condition. FQAE
achieves the same effect by counting for each query directly.
The analytical proof is skipped in this paper due to space
limit. Intuitively, If every single flow is recorded, it does
matter whether post-aggregation or pre-aggregation is used.

5.4 Case Studies on FQAE
In this section, we present two case studies illustrating

how administrators can use FQAE to accomplish their mea-
surement goals. To use FQAE, one need to use FCL to spec-
ify the measurement queries. These two case studies show
that it is not easy to produce the flowset definitions defining
practical measurement tasks. We also compare FQAE with
the following approaches:

105



1. Per-Flow : the ideal case that every flow is tracked.

2. Elephant: methods that produce biased statistics that
favors heavy hitters, as discussed in Section 5.3.

3. Superflow : In many routers and firewalls, it is possi-
ble to configure LOG rules to collect traffic statistics
of superflows. LOG rules are similar to accept/drop
rules except that its only operation is to increment the
counter when a matching packet is observed. There
is a large amount of research on packet classifiers, but
for comparison purposes, we consider the most widely
deployed variation, where a packet traverses through
the rules sequentially until the first matching is found.

5.4.1 Deriving Traffic Demand
Our first task is to collect traffic statistics for deriving

the traffic matrix of an ISP backbone. In particular, we
consider the case that an administrator wants to measure
the traffic going through a particular ISP with a list of AS
number Y1, Y2, · · · , Yn

5. Such measurement has important
application in traffic engineering and network planning.

# Counters Accuracy

Per-Flow 106 High

Elephants 103 Good

Superflow 1.7× 105 High
FQAE 1 High

Table 6: Comparison on Deriving Traffic Demand.

The classical approach proposed by Feldmann et al. [16]
is to perform per-flow measurement on ingress router and
then, based the routing table at that moment, aggregate
the flow statistics to find traffic demands. They also ob-
served that around 1,000 elephants account for about 80%
of the traffic demands. Therefore, techniques that ignores
mice should still return sufficiently good statistics in gen-
eral. One could associate a counter with every routing rule
to collect statistics for each prefix (superflow) and then per-
form aggregation. However, since current BGP table carries
around 170,000 prefixes [34], such approach will generate a
large amount of data.
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Figure 11: Memory of Prefixes

We propose a two-step process to pre-process the routing
table and compute the flowset that will go through AS Y .
First, we process the routing table to find all prefixes that
contains any of Yi, Y2, · · · , Yn in its AS path. Then we use

5The registration of AS number can be found at [31].

FCL to compute the union of the selected prefixes to find
the flowset. We experiment this approach on the BGP rout-
ing table dumped by the Route Views project [36] and find
this approach viable. We identified 84,312 prefixes (among a
total of 188,275 prefixes in the routing table) that might tra-
verse through this tier-1 ISP (with 13 AS numbers) on its AS
path. Figure 11 presents the BDD nodes used throughout
our computation. The final flowset that represents the union
of them requires a total of 70,291 BDD nodes (1.4MB using
BuDDy and can be reduced to 560KB using other packages).
At the beginning, adding new prefixes causes the BDD to
require more nodes to enumerate more paths. However, the
number of BDD nodes used to describe such flowset peak
at about 80,000 nodes (56,000 prefixes) and decreases with
more prefixes. This is because the large number BDD paths
actually present more opportunity for BDD to summarize
the entire sub-tree into one node.

5.4.2 Tracking Bogons
The second task we consider is to track bogons, which are

packets with reserved or unallocated source IP addresses.
Packets from these addresses have no legitimate reason to
appear on the Internet but these addresses are often used
by spammers or attackers. Since these source IP addresses
are spoofed, differentiating them is not meaningful. Ad-
ministrators would normally want to track the aggregated
volume of bogons as a single metric. Furthermore, adminis-
trators have to be prepared for the worst case since this is a
security-oriented application.

# Counters Accuracy Computation/Pkt

Per-Flow 109 High 1 Hash
Superflow 71 High 35.5 match

FQAE 1 High 1 bdd imp

Elephants 103 Low ×

Table 7: Comparison on Tracking Bogons.

The current bogon list [29] has 71 non-aggregated CIDR
blocks (about 109 unique IP addresses). Keeping per-flow
counter for these bogons is clearly unrealistic, even though it
has high accuracy and requires only a single hash operation
to derive the flow ID. Techniques that focuses on elephants
are not suitable here as we discussed in Section 5.3. For
superflow-based measurement, a packet will be compared
with 35 bogon IP blocks on average. Using FQAE, one can
pre-compute the union all 71 CIDR blocks in bogon list as
one flowset (as in Figure 9a). Consequently, one only needs
to maintain one counter for all packets with bogon source.

5.5 Speed of MRT
In network monitoring, especially if it is security-related,

it is important to detect a heavy hitter in the shortest time
possible. In addition to the memory cost factor, the sample
number required for the hypothesis to be conclusive (de-
noted as N) is another key parameter. For a flowset with
weight Fw, the expected value of N (E[N ]) is a joint function
of θ+, θ− Fw, α and β, as in Eq. 17.

E[N ] =
L(Fw) log B + (1− L(Fw)) log A

Fw log
θ+

θ− + (1− Fw) log
1− θ+

1− θ−

(17)

In Eq. 17, L() is the operating characteristics (OC) function
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of the test. Directly evaluating L(Fw) is difficult. Therefore,
Wald [30] proposed a numerical method (pg. 51) to evaluate
L(Fw), which we used here to calculate E[N ].
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Figure 12: Average Sample Number E[N ].

Figure 12 presents E[N ] under various scenarios. For a
given α and β, Average sample number (ASN) is larger when
Fw is close to the threshold θ and is small when the weight
is either significantly larger or smaller than θ. This prop-
erty presents a much desired feature for heavy hitter iden-
tification — heavier elephants will be identified faster than
not-so-significant elephants.

One can use Figure 12 together with Eq. 16 to determine
the expected speed of MRT in identifying elephants. Con-
sider the case that we want to find all flows with weight
larger than 0.01 and one flow f has a weight of 0.1. The
worst case scenario is that f is the sole flow in the flowset
that covers it. In this case, it takes an average of 26 samples
for the hypothesis test to conclude that MRT should zoom
into this flowset. For a two-tuple {sip, dip} definition of flow
and a memory cost factor of 256, it takes eight iterations,
i.e., 208 packets to identify the ID of this flow. Note this
is the theoretical worst-case and the actual speed of MRT
depends on the traffic pattern and could be faster.

6. RELATED WORK
Online aggregation [2, 22] has received considerable atten-

tion in the database community. A typical example is to find
the sum or average of a large number of objects. Instead of
running through a large number of objects and return an
accurate result after a long latency, such systems use sta-
tistical methods to provide running (online) estimation so
that users can decide in real time whether to continue. If a
database of flow/packet records has been built, such a sys-
tem can be adapted to query a database of flow records. The
proposed flowset composition language (FCL) can be used
for efficient specification of user queries, and FQAE can be
used for aggregation on the database side.

There are several work on producing traffic summary or
identifying hierarchical heavy hitters. Aguri [8] is a traffic
profiler that aggregates small flow records (both temporal
and spatial) until the aggregated weight is larger than a cer-
tain threshold. Autofocus [14, 32] is an traffic analysis and
visualization tool that finds both uni-dimensional or multi-
dimensional clusters from traffic trace or flow records. These
tools requires per-flow statistics to make summary bottom-

up. They are more engineered to work offline to find an
effective presentation of traffic statistics but cannot improve
the scalability of the measurement tools. There are some
online variants that identify hierarchical heavy hitters with-
out maintaining per-flow counters. Zhang et al. [38] applied
packet classification algorithms dynamically (upon reaching
a fixed threshold) to identify hierarchical heavy hitters top-
down. The MRT algorithm in this paper also zoom into
the heavy hitters top-down, but use SPRT to update the
flowsets with proved optimality. Both offline and online ag-
gregation are along hierarchies and driven entirely by traffic.
They do not consider the different preference administrators
might have, e.g., to cluster traffic on port 80 with port 8000
instead of port 81.

In Section 5.3, we compared FQAE with techniques that
produce biased flow records to reduce resource consump-
tion. This is exemplified by the seminal work by Estan and
Varghese [15] which calls to “focus on the elephants and ig-
nore the mice” in flow statistics collection. They proposed
two techniques, namely sample and hold and multistage fil-
ter, to achieve this goal. Of similar spirit are the work using
smart sampling techniques. Threshold sampling [9, 11] is a
stream-based method fits ideally for online monitoring. Pri-
ority sampling [10] follows the similar spirit of online aggre-
gation and is more suitable for querying a database of flow
records. Another elegant formulation are the coincidence-
based techniques [19, 20, 25] that exploit the fact that one
is more likely to observe n consecutive packets from the
same flow if the flow is large or long-lived. These techniques
favors large flows without knowledge of user requirements,
thus unsuitable when mice, e.g., DDoS traffic, are of inter-
est. ProgME can complement these techniques by defining
flowset that should receive preferential treatment, e.g., by
setting different thresholds for different flowsets. ProgME
can also use some of those techniques to improve its adap-
tive engine. For example, one could use coincidence-based
techniques together with SPRT to improve the zooming pro-
cess of the MRT algorithm.

Adaptive NetFlow (ANF) [13] is a scheme that dynami-
cally adapts the sampling rate and the size of time bin in
order to reduce the number of flow records while maintain-
ing the accuracy. ProgME and ANF are complementary to
each other since ProgME offers spatial adaptability while
ANF achieves temporal adaptability.

7. CONCLUSION
In this paper, we presented ProgME, a framework for pro-

grammable network measurement. The core idea of ProgME
is to collect traffic statistics based on a novel and versatile
concept of flowset i.e., arbitrary set of flows, instead of the
traditional inflexible concept of flow. The core of ProgME
is a flowset-based query answer engine (FQAE), which can
be programmed by users and applications via the proposed
flowset composition language. Knowledge about user re-
quirements offers measurement tools a fresh perspective and
enables them to adapt itself by collecting statistics according
to the tasks at hand. We further extended ProgME with an
adaptive multi-resolution tiling (MRT) algorithm that can
iteratively re-program itself to identify heavy hitters. We
show that ProgME, being a versatile tool, can adapt to dif-
ferent measurement tasks. We believe ProgME is a useful
addition to the arsenal of measurement tools.
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