
Interface Split Routing for Finer-Grained

Traffic Engineering

Saqib Raza,

Department of Computer Science
University of California, Davis

Chen-Nee Chuah

Department of Computer and Electrical Engineering
University of California, Davis

Abstract

Legacy IP routing restricts the efficacy of traffic engineering solutions. This re-
striction stems from the constraint that traffic at a node must be uniformly split
across all next-hop nodes corresponding to equal cost shortest paths to a destina-
tion [1]. Proposals that alleviate this constraint either completely overhaul legacy
IP routing e.g. [2–5], or introduce complex control and/or forwarding plane compo-
nents [6–8]. This additional complexity departs from the elegant simplicity of legacy
routing protocols where statically optimized [9–14] link weights embed all traffic
engineering semantics.

We present Interface Split Routing (ISR), which retains the basic forwarding and
control mechanism of legacy IP routing. Furthermore, a set of link weights embed
all traffic engineering semantics in ISR. However, ISR makes possible finer-grained
traffic engineering by configuring independent sets of next-hops to a destination
at each incoming interface. This lends itself well to modern router architectures
where each incoming interface has its own forwarding table [15]. Consequently, at
the aggregated node level, traffic to a particular destination may be non-uniformly
distributed across next-hop nodes. Hence, ISR allows additional flexibility in routing
traffic as compared to default IP routing while retaining its simplicity. We conduct
simulation studies on representative ISP topologies to compare ISR with traditional
link-weight optimized routing. ISR reduces the difference between optimal routing
and weight-optimized routing by 50%.

Key words: Intra-Domain Routing, Traffic Engineering, Autonomous System,
Link-State Routing Protocol, OSPF, IS-IS

Email addresses: sraza@ucdavis.edu (Saqib Raza), chuah@ucdavis.edu

Preprint submitted to Elsevier 13 June 2007

1 Introduction

Traffic engineering constitutes an indispensable function in large autonomous
systems, maximizing the operational efficiency of such networks [12]. Traffic
engineering mechanisms are instrumental in achieving performance objectives
with a given set of resources and deferring cost-intensive deployment of ad-
ditional resources. The optimal solution to the traffic engineering problem
yields an explicit set of paths across which the given set of demands need to
be routed [1]. We refer to routing across this optimal set of explicit routes as
optimal routing. The extent to which traffic can actually flow across such a
designated set of routes is a function of the underlying routing protocol and
the precise forwarding mechanism.

The destination-based routing paradigm of legacy IP routing does not sup-
port routing across explicit routes. Legacy intra-domain routing protocols like
OSPF [16] and IS-IS [17] involve assigning and disseminating integer link
weights for each directed link in the network. Data forwarding in the context
of legacy IP routing must obey the following pair of stipulations:

• At any given node x, traffic destined to a destination node d can be for-
warded to a node y, if and only if there exists a path ρ such that ρ is a
shortest path from x to d with respect to the assigned link weights, and y
immediately follows x in ρ. We refer to y as a next-hop from x to d, and
label this constraint the Shortest Path (SP) constraint.

• In case there exist more than one next-hops from x to d, all traffic at x
destined to d must be distributed uniformly across the next-hops. This
constraint is referred to as the Equal Cost Multi Path (ECMP) constraint.

Legacy IP routing draws upon ECMP as a heuristic to load balance traffic
across multiple next-hops. The challenge is to ascertain the degree to which
traffic can be engineered while adhering to the legacy SP and ECMP imple-
mentations. A retinue of solutions [9–14] have been proposed that are geared
towards finding link weight assignments that achieve or approach the perfor-
mance of optimal routing. These solutions work in conjunction with ECMP
and assume knowledge of the traffic matrix. However, the difference between
optimal routing and link-weight-optimized routing using legacy routing pro-
tocols may be significant [14]. Other solutions necessitate deployment of new
technology [2–5], or introduce additional control and/or forwarding plane com-
ponents and extra management complexity [6–8].

We present Interface Split Routing (ISR), that leverages the fact that modern
router architectures maintain separate forwarding tables for each incoming
interface [15]. However, these forwarding tables are interface-independent, i.e.

(Chen-Nee Chuah).

2

forwarding tables at different incoming interfaces of a router still yield the
same set of next-hops for a particular destination. ISR uses multiple weights
per link to configure interface-specific routing tables that yield different sets of
next-hops to the same destination. This serves to relax the ECMP constraint
allowing greater flexibility in engineering traffic.

In this paper we demonstrate how interface-specific forwarding tables can
be configured while retaining the basic forwarding and control mechanism of
legacy IP routing. Specifically, we show how statically assigned link weights
can embed all traffic engineering semantics required for ISR. An important
contribution of this work is that it sets up the weight assignment problem such
that any algorithm for computing optimal link weights for legacy IP routing
can be adapted to compute multiple link weights for ISR. We prove that our
scheme results in judicious configuration of interface-specific forwarding tables,
and present simulation results that showcases the performance of ISR.

The rest of this paper is organized as follows: Section 2 formalizes the opti-
mal routing problem and discusses solutions proposed in previous literature.
Section 3 introduces the ISR scheme in the context of optimal routing and
presents the general framework for ISR. Sections 4 & 5 demonstrate how mul-
tiple link weights per link are calculated and used to compute interface-specific
forwarding tables. Section 6 gives the results of our simulation experiments
and we put forth our conclusions in Section 7.

2 Background and Related Work

2.1 The Optimal Routing Problem

Traffic engineering involves routing a given set of traffic demands on a net-
work to optimize user performance and network resources. Traffic demands are
provided in the form of a traffic matrix that represents traffic intensity at the
granularity of ingress-egress pairs. We let G(V, E) represent the given network.
Furthermore, let {Ωuv}(u,v)∈V×V be the given traffic matrix. We define cij to
be the capacity of link (i, j) ∈ E, and Xuv

ij to be the fraction of traffic between
ingress-egress pair (u, v) ∈ V × V that traverses (i, j) ∈ E. The utilization of
a link (i, j) is given by µij = cij

−1 × ∑
(u,v)∈V×V (Xuv

ij × Ωuv). Routing must
obey the flow conservation constraints:

∑
i:(i,j)∈E

Xuv
ij −

∑
k:(j,k)∈E

Xuv
jk =

0 if j 6= u and j 6= v

−1 if j = u

1 if j = v

∀(u, v) ∈ V × V (1)

3

0 ≤ Xuv
ij ≤ 1 ∀(i, j) ∈ E, ∀(u, v) ∈ V × V (2)

The more universal traffic engineering objective is to route all the demands
while optimizing some measure of link utilization. One such objective is min-
imizing the utilization of the most congested link, referred to as the min-
max-utilization objective. The optimal routing problem with the min-max-
utilization objective can be formulated as an LP [7]. Fortz et. al propose an
alternative linear programming formulation that seeks to minimize a piece-
wise increasing linear convex envelope of a non-linear link cost function. The
reader can refer to [14] for details of the Fortz & Thorup metric.

The LPs solve for {Xuv
ij }(i,j)∈E,(u,v)∈V×V . In order to realize such a traffic distri-

bution through legacy IP routing, link weights should be assigned that achieve
the distribution in the presence of the SP and ECMP constraints. The SP con-
straint does not restrict us due to an important result [1] from LP Duality
theory that states that given a set of explicit paths, there exists a link weight
assignment, such that either the explicit paths are equivalent to shortest path
routing with respect to the weights, or there exists another set of paths which
are shortest paths with respect to the assigned weights, and routing along this
set of paths results in link utilization for each link being less than or equal to
the values corresponding to the original paths. On the other hand, ECMP is a
restrictive constraint and implies that explicit routing may not be achievable
by shortest path routing with statically assigned link weights. We will provide
an illustrative example in Section 3.1.

2.2 Existing Solutions

One of the general class of solutions put forth in previous literature is optimized
link weight assignment [9–14]. These solutions are geared towards intelligently
computing link weights for which shortest path routing with ECMP yields the
best traffic engineering performance. They assume knowledge of the traffic
matrix. One of the most cited works in this domain is [14]. The authors of [14]
demonstrate that statically assigning link weights using a local search heuris-
tic performs close to optimal routing, for topologies that are representative
of actual networks, . However, they also prove that for certain networks, the
difference between optimal routing and any link-weight-optimized routing us-
ing legacy routing protocols may be significant. This difference is attributable
to the simplifying ECMP heuristic for load balancing [1]. Optimal routing
can be realized if it were possible to configure arbitrary distribution of traffic
across the set of next-hop nodes [1]. A number of proposals have been pre-
sented towards the end of achieving, or more closely approximating, optimal
routing. Some of these proposals necessitate deployment of new technology
such as MPLS, ATM, or Frame Relay PVCs [2–5]. For instance, MPLS with

4

its characteristic segregation between the control and forwarding plane, af-
fords the ability to establish virtual connections between two points on an
IP network, maintaining the flexibility and simplicity of an IP network while
exploiting the ATM-like advantage of a connection-oriented network. Ingress
routers of an MPLS network can classify packets into forwarding equivalence
classes and encapsulate them with labels before forwarding them along pre-
computed paths. These label switched paths can be set up to realize a desired
set of explicit routes.

Other solutions [6–8] have been proposed to leverage the widespread deploy-
ment of legacy IP routing protocols and avoid an overhaul of the underlying
technology. They, however, introduce additional control and/or forwarding
plane components and extra management complexity. For instance, [7] per-
forms centralized flow optimization and requires traffic split information to
be disseminated across the network at regular intervals. [6] assumes knowl-
edge of traffic intensity information at the granularity of destination prefixes
and involves separately configuring the set of next-hops on a per-prefix basis
at each node. [8] requires dynamic link load information to be disseminated
across the network and changes to the forwarding mechanisms in the router’s
data path. These proposals do achieve relatively fine-grained routing of traffic.
However, their additional complexity represents a significant departure from
the simple elegance of legacy routing protocols with optimized link weights,
wherein statically assigned link weights embed traffic engineering semantics.

3 Interface Split Routing

3.1 Motivation for ISR

We now discuss the general idea and motivation behind ISR. Most IP networks
use link-state protocols such as OSPF [16] and IS-IS [17] for intra-domain
routing. In such networks, every link is assigned a weight (or cost) and traf-
fic between nodes is routed along minimum cost paths. These networks are
characterized by the destination-based forwarding paradigm. A routing lookup
comprises of a longest-prefix match on a destination IP address to determine
the set of nodes to which a packet may be forwarded. Since a prefix corre-
sponds to a unique egress node in the network, this set comprises of nodes
that are next-hops from the node performing the lookup to the egress node.

Formally, let Λxd be the set of next-hops from x to d with respect to the
assigned link weights. Each destination prefix ρ has an egress node denoted
by eρ ∈ V . Let λρ

x be the set of next-hops configured for prefix ρ at node
x. Shortest path routing necessitates that λρ

x ⊆ Λxeρ . In reality, ECMP only

5

implies that all traffic with prefix ρ at node x gets uniformly distributed across
the set of next-hops λρ

x. However, legacy IP routing sets λρ
x = Λxeρ . It follows

that all traffic from x to d gets uniformly distributed across the set of next-
hops Λxd.

We stated in Section 2, that ECMP restricts us such that optimal routing
may not be achievable by shortest path routing with statically assigned link
weights. We now present an example to illustrate this claim. Figure 1 shows

�

����������	
��

��
��	������

���
����

����������	
��

��
��	������

���
����

��

�

�

�

�

�

��

���

���

����

���
���

Fig. 1. ECMP constraint

our example network where the arc labels represent link capacities. We have
to route 10 units of traffic from n1 to n6, and a further 15 units of traffic from
n2 to n6. All traffic must aggregate at n3. The figure shows that there only
exist two paths from n3 to n6, denoted by p1 and p2. Let their costs be c1 and
c2 respectively. Any link weight assignment will result in one of the following
three: c1 = c2, c1 < c2, or c1 > c2. These translate into Λn3n6 = {n4, n5},
Λn3n6 = {n4}, or Λn3n6 = {n5} respectively. The corresponding values for the
maximum link utilization are 1/2, 1, and 1/4 respectively. Therefore, we can
not achieve maximum link utilization less than 1/4 with legacy IP routing. If
it were possible to arbitrarily split traffic across next-hops, we could achieve
a maximum link utilization of 1/5 in our example. This would be the case if
we route one fifth of the traffic at n3 along p1 and the rest along p2.

The idea presented in [6] leverages the observation that λρ
x must only be a

subset of Λxeρ . For instance, consider three destination prefixes ρ1, ρ2, and
ρ3 such that eρ1 = eρ2 = eρ3 = t. Further suppose that Λxt = a, b, c, d. Let
the traffic corresponding to ρ1, ρ2, and ρ3 that arrives at x be 4, 6, and 10
respectively. We wish to forward 2 units of traffic to next-hop b, 4 to d, and 7

6

each to a and c. Default IP routing only allows us to route 5 units of traffic
across each of the four next-hops. However, we can configure λρ1

x = {b, d},
λρ2

x = {a, c, d}, and λρ3
x = {a, c} to achieve the desired distribution. Hence,

judiciously configuring the set of next-hops for each prefix gives a greater
degree of freedom in engineering traffic.

Our solution, Interface-Specific Routing (ISR) follows in the same spirit as [6].
However, we judiciously configure the set of next-hops at a per incoming inter-
face rather than per-prefix granularity. We again refer to our earlier example
(Figure 1) to illustrate the motivation to do so. Let λi

xd denote the set of
next-hops for traffic destined to d that arrives at x through the incoming in-
terface 1 (i, x). If it were possible to configure per-interface next-hops, we can
set λn1

n3n6
= {n4, n5}, and λn2

n3n6
= {n5}. This causes 5 units of traffic to be

routed across p1 and 20 units to be routed across p2, for a maximum link
utilization of only 1/5.

The example illustrates how ISR affords greater flexibility in engineering traf-
fic than default IP routing. The degree of freedom of configuring next-hops per
interface is less than the per-prefix case. However, the solution in [6] assumes
knowledge of per-prefix traffic intensity information for every prefix whose
next-hop is to be configured. In addition [6] requires additional control mech-
anisms to explicitly configure the next-hops. This contrasts sharply with the
simple mechanism of legacy IP routing wherein statically assigned link weights
suffice for traffic engineering. The distinguishing feature of ISR is that it does
not add complex control mechanisms or change the forwarding plane.

Modern routers implement separate forwarding tables per incoming inter-
face for lookup efficiency [15]. However, these forwarding tables are interface-
independent. In other words, the forwarding table at each interface yields the
same set of next-hops for a particular destination. The presence of a separate
forwarding table per interface means that routing lookups are performed in-
dependently at each interface. Hence, our previous definition of the ECMP
constraint is more precisely qualified to stipulate that all traffic destined to
node d, arriving at node x through interface (i, x) must be uniformly split
across the set of next-hops from x to d yielded by the forwarding table at in-
terface (x, i) . This set is given by λi

xd. Since λi
xd = Λxd in legacy IP Routing,

the qualified definition is equivalent to our earlier definition.

The challenge is to configure the interface-specific forwarding tables without
incurring significant control overhead. We show how to use multiple weights
per link to have optimized forwarding tables that are interface-specific, as
opposed to being interface-independent. Specifically, we assign degi

in weights
to each link (i, j), where degi

in is the number of incoming links at node i. Link

1 Without loss of generality we assume an interface corresponds to a single incoming
link. ISR can easily be extended to multiple links per interface.

7

weights can be assigned so that they yield different sets of next-hops to the
same destination at different incoming interfaces. Therefore, at the aggregated
node level, traffic to a particular destination may be non-uniformly distributed
across the next-hops. This allows additional flexibility in routing traffic as
compared to default IP routing whilst retaining its simplicity.

3.2 ISR Framework

We stated in section 3.1 that ISR does not require any changes to the for-
warding plane. The ISR control plane has two fundamental components: (a)
statically assigning link weights, and (b) configuring interface-specific forward-
ing tables. As alluded to previously, (a) involves assigning multiple weights
to each link, which are disseminated through a link-state routing protocol.
(b) involves using the multiple link weights to compute the interface-specific
forwarding tables. The following presents a synopsis of the overall ISR archi-
tecture (Figure 2). A more detailed exposition follows in the next section.

(1) Given the original network G(V, E), construct the extended network de-
noted by Ĝ(V̂ , Ê).

(2) Given the original traffic matrix {Ωuv}(u,v)∈V×V , construct the extended

traffic matrix denoted by {Ω̂uv}(u,v)∈V̂×V̂ .

(3) Assign a single weight to links in Ê towards the end of optimizing the
placement of traffic given by the extended traffic matrix {Ω̂uv}(u,v)∈V̂×V̂

on the extended network Ĝ(V̂ , Ê).
(4) Use the weights assigned in the previous step to compute degi

in weights
for each link (i, j) ∈ E, where degi

in is the in-degree of node i.
(5) Disseminate the multiple link weights across the network using a link-

state routing protocol. As a result distributed nodes can populate their
extended link state database.

(6) At each node, locally reconstruct the extended network Ĝ(V̂ , Ê) and
weights assigned to links in Ê from the extended link state database.

(7) Run Dijkstra locally to compute the set of next-hop nodes for node-
destination pairs with respect to Ĝ(V̂ , Ê).

(8) Translate the set of next-hops into interface-specific forwarding tables at
each interface and subsequently populate the forwarding table at each
incoming interface.

1-5 outline the computation and assignment of multiple link weights. The
weights are computed to represent the optimal choice of interface-specific next-
hops for each node in the network. This is explained in Section 4. 6-8 delineate
how interface-specific forwarding tables are computed from the multiple link
weights. The details of this computation follow in Section 5.

8

���������	�
�

����������	
�����
�	��

���������	�
�

��������������	�

�������	�
�	������	����
��	��	�
�	���������

�����	�	��	�������������
��	���	����	

��	�
�	�	����
�������	�

����������	�
�	��������

����	����
��

�����������	�
�	��������������	�

��	������	����	����
��

���������	����������

����	�
�����������	�
	������
����

����	�
�	���	��	�
�	��������������	�

��������
�	
�����

������	��

��������	����	� ���
��	��	�
�	���������

�����	�	������	�
�	����������	
�����
�	��

����	������
������
�	������

Fig. 2. ISR Framework

4 Multiple Link Weight Assignment

In default IP routing, we use knowledge of the traffic matrix {Ωuv}(u,v)∈V×V

to optimize weights for links in the network G(V, E). These weights are then
assigned to links and propagated across the network via link-state routing pro-
tocols. Nodes can then run a shortest-path algorithm. Interface-independent
forwarding tables are simply configured by setting next-hop nodes for a prefix
to be nodes that are immediately downstream the shortest path from the node
to the egress node for the prefix. In ISR we must optimize weights in a way
that leverages the ability to have interface-specific forwarding tables. Secondly,
we must distribute enough information that allows each node to configure the
desired interface-specific forwarding tables.

9

We will show how this can be accomplished by statically assigning and there-
after disseminating degi

in weights for each link (i, j) ∈ E, where degi
in is the

in-degree of node i. The following discussion shows how this is done.

4.1 Construct the Extended Network

We first construct an extended network Ĝ(V̂ , Ê) from our original network
G(V, E). We construct a source node si for every node i ∈ V . Let S =

⋃
i∈V si

be the set of all source nodes. We construct a destination node ti for every node
i ∈ V . Let T =

⋃
i∈V ti be the set of all destination nodes. For every link (i, j) ∈

E, we construct two nodes inij and outij which we call the link ingress node
and link egress node respectively. Let I =

⋃
(i,j)∈E inij and O =

⋃
(i,j)∈E outij.

The set of nodes in our extended network are given by V̂ = S ∪ T ∪ I ∪O.

���
����

��
����

���
����

��
���	

���
���	

��
���

���
���

��
�	��

���
�	��

��
�
��

���
�
��

�
��

�
��

�
��

�
�	

�
�

�
��

�
��

�
��

�
�	

�
�

�
��

�
��

��
����

Fig. 3. Extended Network

We now discuss the set of links Ê in our extended network. We define an
originating link (si, inij) for all (i, j) ∈ E. Similarly, we define a terminat-
ing link (outij, tj) for all (i, j) ∈ E. Let S ′ =

⋃
(i,j)∈E (si, inij) and T ′ =⋃

(i,j)∈E (outij, tj). We define a capacity bottleneck link (inij, outij) for all (i, j) ∈
E and let C ′ =

⋃
(i,j)∈E (inij, outij). Finally, we define transit links (outij, injk)

for every {(i, j), (j, k)}|(i, j), (j, k) ∈ E and i 6= k. Let X ′ be the set of all
transit links. The set of links in our extended network are given by Ê =
S ′ ∪ T ′ ∪ C ′ ∪X ′.

Figure 3 gives the extended network corresponding to our example network
from Figure 1. The capacity of all links other than the capacity bottleneck links
(corresponding to physical resources) is set to infinity. These links are shown

10

by the solid arcs. The capacity of capacity bottleneck link (inij, outij) is set
to cij, where cij is the capacity of link (i, j) in the original network G(V, E).
Figure 3 shows the capacity bottleneck links by dashed arcs. We fix the weights
of all links (i, j) ∈ Ê−(S ′ ∪X ′) to be 0. The links belonging to S ′∪X ′ (shown
in bold) are the ones for which we will optimize weights.

From our construction we see that |V̂ | = |S| + |T | + |I| + |O| = 2|V | + 2|E|.
Hence our example extended network has 2× 6 + 2× 6 = 24 nodes. Likewise,
|Ê| = |S ′|+ |T ′|+ |C ′|+ |X ′| = 3|E|+ ∑

i∈V degi
indegi

out. We can see that our
example extended network has 3× 6 + 6 = 24 links.

4.2 Construct the Extended Traffic Matrix

We construct the extended traffic matrix {Ω̂uv}(u,v)∈V̂×V̂ from the original traf-
fic matrix {Ωuv}(u,v)∈V×V . This is a simple step given by:

Ω̂uv =

Ωij if (u, v) = (si, tj)

0 otherwise
(3)

For instance, in our example given by Figure 1, Ωn1n6 = 10, Ωn2n6 = 15, and
all other entries of {Ωuv} are zero. Hence, Ω̂sn1 tn6 = 10, Ω̂sn2 tn6 = 15, and all
other entries of {Ω̂uv} are zero.

4.3 Assign Optimal Link Weights

As explained above, we fix as 0 the weights of certain links in our extended
network. Specifically, these are the terminating and capacity bottleneck links
given by T ′ ∪ C ′. The weights for the originating and transit links, given by
S ′ ∪ X ′ are tuned in order to optimize the placement of traffic represented
by the extended traffic matrix {Ω̂uv}. These weights for the extended network
are assigned under the routing model characterized by the SP and ECMP
constraints.

This optimized link weight assignment problem is exactly similar to the one
used to compute link weights for default IP routing given the traffic matrix.
The only difference is that we fix the weights of some links. The authors of [14]
prove that finding the optimal weight setting is NP hard. Therefore, we can
employ any of the heuristic algorithms or search techniques proposed to as-
sign weights for default IP routing [9–14]. Most of these search-heuristics or
algorithms randomly initialize the weights to be found. We specify an opti-
mization for ISR. We first compute the optimal link weights for our original

11

network G(V, E) and original traffic matrix {Ωuv}(u,v)∈V×V . Let wij be the
weight assigned to link (i, j) ∈ E. We initialize (outij, injk) to have the weight
wjk for all (outij, injk) ∈ X ′. We also initialize (si, inij) to have the weight wij

for all (si, inij) ∈ S ′. We denote the optimal weights found for the extended
network by ŵij for (i, j) ∈ Ê.

���

���

���

���

���

���

���

���

���

���

���

���

���

���
���

���

���

��� ���

���

���

���

���

���
���

����

��
����

���
����

��
���	

���
���	

��
���

���
���

��
�	��

���
�	��

��
�
��

���
�
��

�
��

�
��

�
��

�
�	

�
�

�
��

�
��

�
��

�
�	

�
�

�
��

�
��

��
����

Fig. 4. Optimized Link Weight Assignment

Figure 4 delineates the optimal link weight assignment for our example net-
work. We seek to optimize the min-max-utilization metric. The optimal link
weight assignment for the given traffic for our original network in Figure 1 is
setting w(n3,n4) = 2 and setting all other link weights equal to 1. This yields
the optimal max-utilization of 1/4 achievable with default IP routing. Figure 4
shows two weights x/y for each link in the extended network. x is the initial
weight set for a link derived from the solution for the original network and
original traffic matrix. y is the optimized link weight with respect to the ex-
tended traffic matrix. Observe that the the optimized link weights with respect
to the extended network and extended traffic matrix yield a max-utilization
of 1/5 in our example.

4.4 Assign Multiple Weights to Links

The optimized link weights with respect to the extended network and extended
traffic matrix constitute the information we require to configure interface-
specific next-hop at network nodes. However, we want this information to
be made available to distributed network nodes by using existing link-state
routing protocols. This is easily accomplished by modifying Link State Adver-
tisements (LSAs) so that instead of having one weight for link (i, j) ∈ E, we

12

now have degi
in weights for (i, j) ∈ E. Therefore, every link has the following

set of weights: Wij = {ŵh
ij|(h, i) ∈ E or h = j}. The value of ŵh

ij is set as:

ŵh
ij =

ŵouthiinij if (h, i) ∈ E and h 6= j

ŵsiinij if h = j
(4)

ŵh
ij and ŵh

ik for h 6= j 6= k can be interpreted as signifying the relative pref-
erence of link (i, j) and (i, k) for traffic arriving at node i through node h.
Also, ŵh

ij and ŵg
ij for h 6= g 6= j can be interpreted as signifying the relative

preferability of link (i, j) by traffic arriving at node i through nodes h and g,
respectively. Notice that we would never want to forward traffic arriving at
node i through node j back to node j. We abuse the notation ŵj

ij to signify
the preferability of link (i, j) for traffic originating at node i.

5 Interface-Specific Forwarding Tables

Thus far we have shown how, given the original network G(V, E) and the
original traffic matrix {Ωuv}(u,v)∈V×V , we can compute a set of weights Wij =
{ŵh

ij|(h, i) ∈ E or h = j} for a link (i, j) ∈ E. We further claimed that
{Wij}(i,j)∈E holds all the information required to optimally configure the interface-
specific forwarding tables at each node. This section explores how to do that.

A link state routing protocol ensures that the link-state databases of a network
node gets populated with {Wij}(i,j)∈E. The routing protocol also ensures that
each node learns about the original topology G(V, E). Using the deterministic
construction defined in Section 4.1, each node can reconstruct the extended
network Ĝ(V̂ , Ê).

Furthermore, we can also reconstruct the link weights that define our optimal
solution for the extended network and traffic matrix as follows:

ŵuv =

0 if (u, v) ∈ {T ′ ∪ C ′}
ŵh

ij if (u, v) = (outhi, inij)

ŵj
ij if (u, v) = (si, inij)

(5)

We now wish to compute the optimal interface-specific forwarding tables. We
revert to our earlier definition from Section 3.1 wherein λi

jd denotes the set
of next-hops for traffic destined to d that arrives at j through the incoming
interface (i, j). Note that i, j, and d are nodes in the original network and
(i, j) is a link in the original network. Let Λ̂jd be the set of next-hops from

j ∈ V̂ to d ∈ V̂ with respect to {ŵuv}(u,v)inÊ, in the extended network. The

13

interface specific forwarding tables are configured as follows:

λi
jd =

{k|injk ∈ Λ̂sitd} i = j

{k|injk ∈ Λ̂outijtd} otherwise
(6)

We use our example network to elucidate how interface-specific forwarding
tables are configured. Consider node n3 in the original network. It has two
incoming interfaces (n1, n3) and (n2, n3). In the extended network with optimal
weights shown in Figure 4, Λ̂outn1n3 tn6 = {inn3n4 , inn3n5}, and Λ̂outn2n3 tn6 =
{inn3n5}. Therefore, λn1

n3n6
= {n4, n5}, and λn2

n3n6
= {n5}. In other words, the

set of next-hops at n3 to n6 for traffic arriving through n1 is {n4, n5}, and for
traffic arriving through n2 is {n5}. Looking at Figure 1, this results in traffic
arriving at n3 from n1 to be equally split across p1 and p2. Similarly, the all
the traffic arriving at n3 from n2 gets routed along p2. We, therefore, achieve
a maximum link utilization of 1/5, which is superior to that which could have
been achieved through default IP routing. Since we initialize the link weights
to correspond to the optimal weight setting for default IP routing, ISR is
guaranteed to achieve performance that is equal to or better than default IP
routing

We defined Λ̂jd as the set of next-hops from j ∈ V̂ to d ∈ V̂ with respect

to {ŵuv}(u,v)inÊ, in the extended network. Λ̂jd is determined by computing
Shortest-Path Trees (SPT) with respect to the extended network. Since the
extended network is larger than the original network, computing SPTs con-
sumes greater CPU time. This can potentially mean that nodes could take a
longer time to converge to a consistent forwarding state upon failure. However,
solutions exist that ensure prompt computation of SPTs from the structure
of previous SPTs [18, 19]. Such dynamic SPT computation lowers both the
asymptotic complexities and the practical running times of the shortest path
computation. For instance, SPT computation only takes O(100ms) for a net-
work of more than 600 nodes [20]. Furthermore, since updating the forwarding
engines constitutes the major bottleneck in convergence time [21], the extra
computational overhead of SPT is an acceptable cost.

Proof of Correctness

Correctness of our ISR implementation will demonstrate that optimizing the
min-max-utilization and Fortz & Thorup metrics for Ĝ(V̂ , Ê) with respect to
{Ω̂uv}, results in optimizing the metrics for G(V, E) with respect to {Ωuv}.
Let χ be the set of i → j paths in G(V, E) and Υ be the set of si → tj paths
in Ĝ(V̂ , Ê), where i, j ∈ V . We define a function < : Υ → χ, that maps each
path in Υ to a corresponding path in χ. This function is represented by the

14

following:

<((s1, in12, out12, in23, out23, ..., in(k−1)k, out(k−1)k, tk)) = (1, 2, 3, .., k − 1, k)
(7)

As an example, consider the path ρ14 = (sn1 , inn1n3 , outn1n3 , inn3n4 , outn3n4 , tn4)
in the extended network in Figure 3. Then, <(ρ14) is given by the path (1, 3, 4).
We further claim that < defines a 1:1 correspondence. This can be proved by
observing that there are only four types of links in a si → tj path in Ĝ(V̂ , Ê),
where i, j ∈ V . These are originating links of the form (si, inij), terminating
links of the form (outij, tj), capacity bottleneck links of the form (inij, outij),
and transit links of the form (outij, injk). From our construction of the ex-
tended network in 4.1, the following is true:

(i, j) ∈ E ⇔ (si, inij) ∈ Ê (8)

(i, j) ∈ E ⇔ (outij, tj) ∈ Ê (9)

(i, j) ∈ E ⇔ (inij, outij) ∈ Ê (10)

(i, j), (j, k) ∈ E ⇔ (outij, injk) ∈ Ê (11)

Therefore, there exists a unique path <(ρ̂) ∈ χ, ∀ρ̂ ∈ Υ. Similarly, there exists
a unique path <−1(ρ) ∈ Υ, ∀ρ ∈ χ.

Let ρ̂ ∈ Υ be a path from si to td, and <(ρ̂) be given by ρ = (n1 =
i, n2, n3,, nt = d). Consider only the traffic between si to td on Ĝ(V̂ , Ê),
and between i to d on G(V, E). We claim that the amount of this traffic that
arrives at node nj through interface nj−1 is equal to the amount of traffic at
outnj−1nj , for 1 < j ≤ t. We prove our claim by induction. We assume that
the amount of traffic that arrives at nj through interface nj−1 is equal to the

amount of traffic at outnj−1nj . From 5 we know that innjnj+1 ∈ Λ̂outnj−1nj nt

implies that nj+1 ∈ λ
nj−1
njnt . Also from 5, we know that |Λ̂outnj−1nj nt

| = |λnj−1
njnt |.

ECMP implies that amount of traffic forwarded along (outnj−1nj , innjnj+1) is
equal to the traffic forwarded along (nj, nj+1) that arrived at nj through nj−1.
Since (innjnj+1 , outnjnj+1) is the only outgoing link from innjnj+1, the amount
of traffic that arrives at nj+1 through interface nj must be equal to the amount
of traffic at outnjnj+1 . The basis is proved for j = 2, by noting that the traffic
at sn1=i and n1 = i is the same. This follows from 3 wherein Ω̂si,td = Ωid.

Again from 5, we know inn1n2 ∈ Λ̂sn1nt implies that n2 ∈ λn1
n1nt

. Also from

5, we know that |Λ̂sn1nt| = |λn1
n1nt

|. Hence, the same amount of traffic gets
forwarded along (sn1 , inn1n2 and (n1, n2). Since inn1n2 has only one outgoing
link, it follows that the amount of traffic that arrives at n2 through interface
n1 must be equal to the amount of traffic at outn1n2 .

Suppose setting link weights for links in Ĝ(V̂ , Ê) with respect to the extended

15

traffic matrix, results in M units of traffic to traverse ρ̂ ∈ Υ. The definition of
< and the preceding discussion imply that configuring the forwarding tables
as per 5 and routing the original traffic matrix along G(V, E) results in M
units of traffic to traverse <(ρ̂) ∈ χ. Furthermore, from the definition of <,
<(ρ̂) = ρ implies that if a capacity bottleneck link (inij, outij) ∈ ρ̂ then (i, j) ∈
ρ, and vice versa. Observe that capacity bottleneck links in V̂ are the only links
with finite capacity. Suppose that we route the extended traffic matrix along
Ĝ(V̂ , Ê) and the original traffic matrix along G(V, E) by computing interface-
specific forwarding tables according to 5. The link utilization on each link
(i, j) ∈ E is equal to the utilization of (inij, outij) ∈ Ê. Therefore, heuristics
optimizing the min-max-utilization and Fortz & Thorup metrics for Ĝ(V̂ , Ê)
with respect to {Ω̂uv}, also result in optimizing the metrics for G(V, E) with
respect to {Ωuv}.

We initialize link weights in the extended traffic matrix as described in Section
4.3. This results in λi

xd = Λ̂xd = Λxd. Hence, ISR always achieves equal or
better traffic engineering than default IP routing.

6 Simulation Results

We now present results of our simulation study to quantify the performance
of Interface Split Routing. We take into consideration both the performance
metrics mentioned in Section 2. The min-max-utilization objective seeks to
minimize the maximum utilization over all links. Optimizing for min-max-
utilization avoids network bottlenecks that would otherwise act as points of
congestion due to unexpected spikes in traffic. The other performance metric
is the Fortz & Thorup metric [14], where the cost of a traffic engineering
solution is the sum of the costs of all links. The cost of a link is determined
by a piece-wise increasing linear convex envelope of a non-linear cost function
of link utilization. The Fortz & Thorup metric takes into account the load on
all links, rather than just the one with the maximum utilization.

We consider three different routing schemes:

• Optimal Routing (OR)
• Default Weight Optimized Routing (dWOR), e.g. achieved by current OSPF

implementations
• Interface-Split Routing (ISR)

OR gives us a theoretical bound on the best-case performance of routing with
link weights. The OR LP formulations for the min-max-utilization and the
Fortz & Thorup metrics can be found at [7] and [14] respectively. We use
CPLEX 10.0 to solve for OR. Both dWOR and ISR involve assigning link

16

weights to determine routing. In the case of dWOR, link weights are assigned
to optimally route the original traffic matrix on the original network. In the
case of ISR, link weights are assigned to optimally route the extended traffic
matrix on the extended network. A few common heuristics are setting link
weights to be the inverse of link capacity, identical link weights (minimum-hop
routing), and setting link weights proportional to delay or Euclidean distance.
We use the widely-cited local search meta-heuristic proposed in [14] to set
weights for both our metrics. Their search strategy avoids getting stuck in a
local loop and cycling by using hashing tables and random diversification. The
latter has been shown to be significantly superior and represents the state-
of art with respect to optimizing link weights. We, therefore, ignore these
simpler heuristics in our simulation study. Since the OR solution represents
the lower bound on the performance of traffic engineering, we wish to compare
the percentage difference of the dWOR and ISR schemes with OR.

(a) ISP A (b) ISP B

Fig. 5. Simulation Networks

We conduct our first set of experiments on two tier 1 POP-level topologies
ISP A and ISP B, shown in Figure 5. The link capacity for each link is set as
1200 units in each direction, modeling the capacity of OC-12 circuits. There
are 190 ingress-egress pairs in both the networks. The total demand to be
routed between an ingress-egress pair is drawn from a uniform distribution
with µ = 45k and σ = 0.3µ, where k is the scale factor. We vary k between 0
and 1 to change the amount of traffic on the network, with k = 1 representing
the greatest volume of traffic. For every k, we generate 10 traffic matrices.
For every traffic matrix, we run 10 independent iterations of the link weight
assignment heuristic for both dWOR and ISR. This translates into a total of
100 iterations of the weight setting problem for each value of the scaling factor
k. The results presented are averaged over the 100 run. The results for OR
are averaged over the 10 traffic matrices per value of the scaling factor k.

Figures 6 and 7 give the results for the min-max-utilization and the Fortz
& Thorup metrics respectively. We plot the percentage difference of dWOR
and ISR with OR. In case of the min-max-utilization metric, we observe that

17

the gap between dWOR and OR is almost twice that between ISR and OR.
The difference for the Fortz & Thorup metric is less pronounced when k is low.
This is because the link costs approximate a convex function of link utilization.
It is only when the overall network load is high that link costs vary sharply
with increased link utilization and the difference between the schemes becomes
significant. We see in Figure 7 that for k > 0.5 the gap between ISR and OR
is significantly lower than the corresponding gap between dWOR and OR.

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

80

Scale Factor

%
 d

iff
er

en
ce

 w
ith

 O
R

ISP_A

dWOR
ISR

(a)

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

Scale Factor

%
 d

iff
er

en
ce

 w
ith

 O
R

ISP_B

dWOR

ISR

(b)

Fig. 6. Minimizing the Maximum Link Utilization

We conducted the same experiments as above for traffic matrices generated
in different ways. We generated ingress-egress traffic intensity using a Pareto
and a bimodal gaussian distribution. For the first case, the total demand to

18

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

Scale Factor

%
 d

iff
er

en
ce

 w
ith

 O
R

ISP_A

dWOR
ISR

(a)

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12
ISP_B

Scale Factor

%
 d

iff
er

en
ce

 w
ith

 O
R

dWOR

ISR

(b)

Fig. 7. Optimizing Fortz & Thorup

be routed between an ingress-egress pair is drawn from a Pareto distribution
with µ = 45k and exponent α = 3. As above, k is the scale factor. For the
second case, the total demand to be routed between an ingress-egress pair
is drawn from a gaussian N1(µ1 = 30, σ1 = 0.3µ1) with probability 0.8 and
from N2(µ2 = 105k, σ2 = 0.3µ2) with probability 0.2. These distributions
have been chosen to model actual traffic matrices [22]. Figure 8 presents the
result for the min-max-utilization metric for traffic matrices generated using
described distributions. Again, we see that ISR that the gap between ISR and
OR is half of that between dWOR and OR. We performed similar experiments
with different network topologies and traffic distributions and obtained similar

19

results.

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

80

Scale Factor

%
 d

iff
er

en
ce

 w
ith

 O
R

ISP_A

dWOR

ISR

(a) Pareto Distribution

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

80

Scale Factor

%
 d

iff
er

en
ce

 w
ith

 O
R

ISP_A

dWOR

ISR

(b) Bimodal Gaussian Distribution

Fig. 8. Minimizing the Maximum Link Utilization

In our last set of experiments we study the impact of average node degree on
ISR. We randomly generate 20 node topologies such that the probability of
an edge existing between two nodes is given by p. We only consider connected
topologies. Higher values of p represent higher average node degree. Table
1 shows that the percentage difference between ISR and OR (δ) decreases
as the average node degree (d) increases. The traffic matrix generation and
experiment methodology is similar to our first set of experiments with k = 0.5.
This result can be attributed to interface split routing since a greater number
of incoming interfaces afford greater degree of freedom in engineering traffic.

20

p 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

d 1.9 3.8 5.7 7.6 9.5 11.4 13.3 15.2 17.1 19

δ 30.2 29.5 28.9 26.9 21.2 14.9 5.7 2.7 2.8 2.5
Table 1
ISR Performance as a function of Average Node Degree

7 Conclusions

We presented Interface Split Routing (ISR) that allows greater flexibility in
routing traffic by configuring independent forwarding tables at each interface.
This lends itself well to router architectures that maintain separate forward-
ing tables per interface for performance efficiency. The interface-specific for-
warding tables serve to relax the ECMP constraint allowing greater flexibility
in traffic engineering. We showed how the information required to configure
interface-specific forwarding tables can be disseminated using a link-state rout-
ing protocol. We further set the ISR weight computation problem in way that
any algorithm for computing optimal link weights for legacy IP routing can be
adapted to compute link weights for ISR. Our simulation results show that ISR
significantly reduces the gap between legacy IP routing and optimal routing.

References

[1] Y. Wang, Z. Wang, and L. Zhang, “Internet traffic engineering without full
mesh overlaying,” in Proceedings of IEEE Infocom, 2001.

[2] A. Elwalid, C. Jin, S. Low, and I. Widjaja, “MATE: MPLS adaptive traffic
engineering,” in Proceedings of IEEE Infocom, 2001.

[3] K. Kar, M. Kodialam, and T. Lakshman, “Minimum interference routing of
bandwidth guaranteed tunnels with MPLS traffic engineering applications,”
IEEE Journal on Selected Areas in Communication, vol. 18, no. 12, pp. 2566–
2579, 2000.

[4] X. Xiao, A. Hannan, B. Bailey, and L. Ni, “Traffic engineering with MPLS in
the Internet,” IEEE Network, vol. 14, no. 2, pp. 28–33, 2000.

[5] D. Awduche, “MPLS and traffic engineering in IP networks,” IEEE
Communications Magazine, vol. 37, no. 12, pp. 42–47, 1999.

[6] A. Sridharan, R. Guerin, and C. Diot, “Achieving near-optimal traffic
engineering solutions for current OSPF/IS-IS networks,” IEEE/ACM
Transactions on Networking, vol. 13, no. 2, pp. 234–247, 2005.

[7] H. Abrahamsson, B. Ahlgren, J. Alonso, A. Andersson, and P. Kreuger, “A
Multi Path Routing Algorithm for IP Networks Based on Flow Optimisation,”
Intl Workshop on Quality of Future Internet Services, 2002.

21

[8] C. Villamizar, “OSPF optimized multipath OSPF-OMP,” February 1999,
internet-draft: draft-villamizar-ospf-omp-01.txt.

[9] S. Srivastava, G. Agrawal, and D. Medhi, “Dual-based link weight determination
towards single shortest path solutions for OSPF networks,” in Proceedings of
International Teletraffic Congress, 2005.

[10] M. Ericsson, M. Resende, and P. Pardalos, “A Genetic Algorithm for the Weight
Setting Problem in OSPF Routing,” Journal of Combinatorial Optimization,
vol. 6, no. 3, pp. 299–333, 2002.

[11] A. Nucci, B. Schroeder, S. Bhattacharyya, N. Taft, and C. Diot, “IGP Link
Weight Assignment for Transient Link Failures,” in Proceedings of International
Teletraffic Congress, 2003.

[12] B. Fortz, J. Rexford, and M. Thorup, “Traffic engineering with traditional IP
routing protocols,” IEEE Communications Magazine, vol. 40, no. 10, pp. 118–
124, 2002.

[13] B. Fortz and M. Thorup, “Optimizing OSPF/IS-IS weights in a changing
world,” Selected Areas in Communications, IEEE Journal on, vol. 20, no. 4,
pp. 756–767, 2002.

[14] ——, “Internet Traffic Engineering by Optimizing OSPF Weights,” in
Proceedings of IEEE Infocom, Mar. 2000.

[15] S. Lee, Y. Yu, S. Nelakuditi, Z.-L. Zhang, and C.-N. Chuah, “Proactive vs
Reactive Approaches to Failure Resilient Routing ,” in Proceedings of IEEE
Infocom, 2004.

[16] D. Katz, K. Kompella, and D. Yeung, “Traffic Engineering (TE) Extensions to
OSPF Version 2,” RFC 3630, Tech. Rep., 2003.

[17] H. Smit and T. Li, “Intermediate System to Intermediate System (IS-IS)
Extensions for Traffic Engineering,” RFC 3784, Tech. Rep., 2004.

[18] P. Narvaez, K. Siu, and H. Tzeng, “New dynamic SPT algorithm based on a
ball-and-string model,” IEEE/ACM Transactions on Networking, vol. 9, no. 6,
pp. 706–718, 2001.

[19] ——, “New dynamic algorithms for shortest path tree computation,”
IEEE/ACM Transactions on Networking, vol. 8, no. 6, pp. 734–746, 2000.

[20] G. Iannaccone, C.-N. Chuah, S. Bhattacharyya, and C. Diot, “Feasibility of IP
Restoration in a Tier-1 Backbone,” IEEE Network, Mar. 2004.

[21] R. Keralapura, C. Chuah, G. Iannaccone, and S. Bhattacharyya, “Service
Availability: A New Approach to Characterize IP Backbone Topologies,” in
Proceedings of International Workshop on Quality of Service, 2004.

[22] A. Medina, N. Taft, K. Salamatian, S. Bhattacharyya, and C. Diot, “Traffic
Matrix Estimation: Existing Techniques and Future Directions,” in Proceedings
of ACM Sigcomm, Aug. 2002.

22

