
News-feed Subscription Management for

Intermittently Connected Environments

Jason LeBrun1, Chen-Nee Chuah1, Supratik Bhattacharyya3, and Jean Bolot2

1 University of California, Davis
2 Sprint ATL

3 SnapTell, Inc.

Abstract. Polling-based subscription technologies (like RSS and Atom)
have quickly become popular forms of information summary, due to the
ease of their creation, and their use of already widespread technologies,
XML and HTTP. However, for mobile devices, where extraneous data
transfer is particularly undesirable due to power concerns and bandwidth
constraints, current newsfeed management methods are insufficient. In
this work we present the NOOS system, a proxy-based newsfeed man-
agement system that allows mobile devices to monitor a large number of
feeds without over-taxing system resources.

1 Introduction

XML-based newsfeed technology has quickly become a popular form of content
summary publication on the Internet because of the ease of use of the formats for
both content providers and content subscribers. There are a number of different
feed formats, like RSS[9] and Atom[1]. However, they all convey data in a sim-
ilar fashion: content is presented in a headline-summary fashion, with optional
metadata, using an XML schema of some sort.

At the same time, data-capable mobile devices are moving from the realm
of specialized business tool into the realm of ubiquitous consumer devices. The
ability to carry a networked computing device with us anywhere opens up new
opportunities for data consumption—we no longer have to wait until we are
sitting at our desks, or near some sort of WiFi/Ethernet connectivity. We can
take advantage of short bursts of free time (waiting for the elevator, riding the
bus, waiting for a latte) to read and process small bits of information.

Unfortunately, the combination of these two trends is not co-optimized.
While the constant polling of newsfeed updates on a system with constant, high-
speed connection to the Internet works sufficiently, small power- and resource-
constrained mobile devices are much more noticeably strained by the polling
and fetching behaviors required by newsfeed-style data management. There are
a number of factors that contribute to this. First, each of the interfaces on a
mobile device will gain and lose connectivity as a user moves. Second, many
mobile devices are equipped with more than one wireless interface, and these
interfaces each exhibit different connection availability patterns. The task of



monitoring and managing all of these interfaces for all applications can strain
resource-limited mobile wireless devices. Furthermore, there is no way to tell
whether new data is available in a feed without the device actively polling the
feed. While this issue is mitigated slightly by using techniques such as HTTP
“If-Modified-Since” header, not all hosts implement it. Even if they do, the wire-
less radio still needs to wake up and query the remote host, which wastes energy.
Finally, newsfeeds from the same source contain redundant information (old ar-
ticle summaries) if they are close together in time. Based on these observations,
we believe that newsfeed management systems should take an opportunistic ap-
proach rather than a brute-force polling approach, and should minimize the
sending of redundant information.

In this paper, we present a system called NOOS: Newsfeeds Obtained Op-
portuniStically. NOOS is a system that solves the problems mentioned above
for applications that require periodic information retrieval—like RSS feeds. It
is designed to perform well in the disruptive environment of mobile communi-
cations. The high-level goal of NOOS is to make newsfeeds of interest available
for reading on-demand, without requiring intervention from the user to fetch
the feeds, and without placing undue strain on energy and bandwidth resources
of the mobile device. NOOS adapts client activity to the publication rate of
the newsfeeds, rather the desired polling rate of the client. This means elimi-
nating unnecessary connections to internet hosts, and reducing the transfer of
redundant information. Furthermore, we want the system to be able to easily
take advantage of all interfaces on the system. Finally, the design of NOOS also
ensures that existing newsfeed aggregation software can be used, and that the
newsfeed providers do not need to be changed.

The paper is structured as follows: first, we look at related work in news-
feed management on mobile devices. Next, in section 3 we present a detailed
design overview of the newsfeed management system, the primary contribution
of this work. Then, section 4 explains our prototyping and experimentation , and
shows the gain that can be achieved by using the system. Finally we present a
conclusion in section 5 with future directions for the work.

2 Background and Related Work

The world wide web has created a venue for publishing that allows huge amounts
of information to be generated every day. As the number of sources of information
grew, it became clear that the number of sources was too large to be efficiently
managed without a compact and standard form of presentation. As a result,
formats were created that allow information providers to present a summary of
the information on their page in a consistent, low-overhead format. The most
popular of these summary technologies is known as RSS. All popular newsfeed
formats today are structured XML files that contain a series of items. Each item
consists of a title, a link to a main story, and usually a summary.

Currently, there are two popular ways to manage and read newsfeed sub-
scribtions. The first uses a newsfeed aggregater on the user’s machine. There are



many of these applications, a popular example being the built-in feed aggrega-
tion capability of Mozilla Thunderbird[3]. An aggregater periodically checks the
remote newsfeed sites for updates, and stores and presents the articles to the
user. The other option is to use an online reader like Google reader[6]. In this
case, the feeds are managed on a remote machine, and the user reads the feed via
an online interface, e.g., through the web. The NOOS system combines desirable
features from both of these options: feeds are managed by a resource-rich remote
device, but the feed data is available for viewing on the client’s device regardless
of connectivity status at the time that the user would like to read.

A system for managing intermittent connectivity was recently published[2].
In this system, arbitrary web snippings can be monitored and sent to a mobile
device using a special client-side application. However, our system works with
legacy newsfeed aggregation applications, and requires only minimal setup.

The Haggle project, a joint endeavour between Intel Research, Cambridge
and the University of Cambridge, addresses the problem of content distribution
in environments which exhibit intermittent connectivity[4, 7]. However, the Hag-
gle project is a longer-term project, and does not apply to currently deployed
wireless systems without major modifications.

The OCMP project[8], born from joint work between the University of Wa-
terloo and Sprint ATL, provides a framework for mobile devices that allows
management of multiple wireless interfaces with different characteristics and
intermittent connectivity. We use OCMP as a basis for a prototype implemen-
tation. It is described in more detail in section 3.1.

3 Design of NOOS

The NOOS system provides seamless information retrieval for devices that have
multiple wireless network interfaces with an inconsistent internet connection.
The plugin splits the management of feeds into two asynchronous tasks. A remote
proxy fetches feeds from remote hosts, and the client daemon fetches feeds from
the remote proxy. The client proxy holds the feeds in local storage until they
can be fetched by a news aggregation application. The goal of the system is to
retrieve news feed items in a timely fashion, without requiring excessive polling
or user interaction on the mobile client side. Figure 1 shows an overview of the
system architecture of NOOS.

NOOS works using a configuration file that contains information about feeds
to be monitored. This configuration file can be created/modified in a number
of ways. The creation of this file is beyond the scope of this report; we simply
assume that it already exists. The file simply contains a lists of feeds and the
frequency at which they should be polled.

3.1 The Opportunistic Communications Management Protocol -

OCMP

Our reference implementation of the NOOS system uses OCMP—the Oppor-
tunistic Communications Management Protocol—framework as a substrate. OCMP



Fig. 1. NOOS & OCMP Architecture

provides a proxy-based architecture for management of disconnection and effi-
cient use of multiple interfaces. OCMP also works for legacy applications. These
features make it ideal for the implementation of NOOS. It should be noted that
OCMP is not required to implement NOOS, we have just chosen it to help us
with prototyping. In this section, we describe characteristics of OCMP that are
relevant to the NOOS system.

System Capabilities The OCMP framework works by augmenting a state-
management and connection-management system with a number of application-
specific plugins that control the flow of data between a remote host and a proxy,
as well as between the proxy and mobile client. The application plugins allow
legacy applications on the client device to co-exist with the OCMP framework.

The system works by passing all client application data through a client-side
proxy, via a local socket. This local proxy can perform arbitrary processing on
the data, if it is required for the application in question. The data is passed on to
the remote proxy, via a single logical connection that is maintained between the
mobile client and the proxy (if the mobile device is not currently connected to the
proxy, then a connection is established). The remote proxy fetches the requested
data on behalf of the mobile client, and can also perform arbitrary processing on
the data if necessary, via a proxy-side application plugin. The proxy then sends
the requested data back to the mobile client’s local proxy, which forwards the
data on to the application program.

The OCMP proxy and client are connected through one logical connection.
However, this connection can consist of multiple underlying transport layer con-
nections. If the mobile device has multiple interfaces, then a connection is estab-
lished between the proxy and mobile client on each interface, one transport per
interface. Application data is then distributed appropriately over these multiple
interfaces, based on various policies. If the mobile device loses connectivity on
one pipe, there is no disruption of service, just a change in quality of service. If
connectivity is lost completely, the client and remote proxies retain enough state
to continue data transfer once connectivity is re-established.

The Filesystem Plugin Framework A recent addition to the OCMP toolset
is the filesystem-based plugin creation system. With the new system, it is not
necessary to write complicated Java application handlers for every new applica-
tion that you want to write. Instead, the proxy passes internet data to and from
arbitrary handlers in the form of file objects.



In order to implement a plugin in this system, you simply create a directory
structure which designates an ’inbound’ and ’outbound’ directory for both the
proxy and the client, associated with a particular application. The OCMP dae-
mon monitors the ’outbound’ directories, and when new files appear, it sends
them to the proxy on the other side. When a proxy receives a file, it places
it in the ’inbound’ directory, and calls an arbitrary handler, which can be any
program or script that will run on the machine.

3.2 NOOS Proxy Operation

The proxy will perform the following functions:

– Periodically scanning the configuration file for new entries.
– Polling news feeds at the frequency specified in the configuration file
– Caching and managing news items in the proxy database
– Notifying mobile clients via various out-of-band methods, when new news

arrives that the user is interested in.

Proxy Implementation The proxy communicates with the client by placing
files in an outbound OCMP Directory-API location. The action to perform is
specified by adding one header line to the file. The header contains one of three
commands:

– CONFIG - Indicates that the files is a new feed configuration file. The client
should update its feed configuration list as necessary. The configuration file
has a very simple format. The first line is the word CONFIG. The subsequent
lines start are of the format FEED <url> <polling rate> <keyword>.

– SEED <URL> - Indicates that the file is a complete newsfeed file. The URL is
a unique indicator for the feed.

– FEED <URL> - Indicates that the file is a diff against the previous feed file that
the client received (or the aggregation of a SEED and a number of previous
diffs). The URL is a unique indicator for the feed.

The feed polling component is implemented in python. The first time a feed
is downloaded, the entire file is sent with a SEED instruction header via the
outbound directory. If the difference option is not used, then all feed reports
from the proxy to the client will be SEED messages, containing the entire text of
the feed. If the difference option is enabled, then updates are sent to the client
in a file that begins with FEED. This file is a unified diff file representing the
differences between the latest feed file and the last feed sent to the client.

The difference-only option only makes sense in very controlled feed-retrieval
environments, so that the differences do not get out of sync. The feed differences
are in “unified difference” format[10], so if a difference does not apply correctly,
the client can repair the situation by requesting and entire feed file.

3.3 Client Operation

The client-side proxy performs the following functions:

– Opportunistic download in the background.
– Listening for out-of-band messages to trigger data retrieval.
– Local storage of feed items to serve to applications.
– Legacy application compatibility



Client Implementation The client plugin for OCMP is a simple shell script
that parses files that appear in the inbound client-side directory associated with
the newsfeed plugin. The shell script reads the header of the file that appears,
and parses it as described in the previous section. When new feed information is
received, it is copied into a local repository, where it is held until a feed reader
application requests it. If a FEED diff is received, the diff is applied to the feed that
exists in the repository directory. If the diff fails for any reason, a SYNC command
is sent to the proxy (via a file containing one line: SYNC <URL>), which triggers
the proxy to re-send the entire feed in question (using a SEED file).

The actual fetching of the files is triggered by messages received by some
out-of-band means. This could be an SMS message, an email, or a notification
piggybacked on other application data, if such support is available.

4 Prototyping and Experiment

In this section, we present our analysis of the NOOS approach to newsfeed
management, as compared to an approach in which the mobile client must man-
age the newsfeed itself4. We examine two metrics: bandwidth consumption, and
power. There is a pretty strong correlation between bandwidth usage and power,
however when we model power, we try to also take into account the overhead
associated with failed connection attempts, out of band messages, and the need
to wake up the interface from sleep.

We compare three different scenarios:

– No-proxy: The management of feeds is handled by the mobile device.
– Proxy: The NOOS system is used, but full feeds are sent with every update.
– Proxy-Diff: The NOOS system is used with the difference option enabled.

4.1 Experimental Method

To analyze the behavior of the NOOS system, we use two methods. First, the
system is validated functionally on a short-term scale. During the functional
validation, we record the amount of data sent and received at each endpoint in
the cases above. We can use the data collected in this stage to more accurately
model components of the simulation that we use in larger-scale simulation.

We performed the small-scale validation using the implementation based on
OCMP as discussed in the previous section. During the validation, information
was collected about the amount of data sent and received to the client, via both
wireless and “out of band” interfaces, as feeds were managed. The data collected
in this step was used to adjust parameters of the simulator.

Based on the data gathered from the short-term experiments, we run simu-
lations that generate data based on expected long-term performance. In order
to simulate long-term performance, a number of feeds were collected over the
period of about 3 days (68 hours). We then wrote a simulator in Python that

4 Supplementary information, including simulation/implementation code is available
for viewing: http://www.jasonlebrun.info/Research/OCMPFeeds



simulates the fetching of the collected feeds at different polling rates, and using
each of the different systems discussed above. The simulator allows us to test
over many different parameters spaces quickly.

We model the wakeup and failure probabilities using a simple model. Since
the feed connection attempts are spaced fairly far apart in time, and occur in
the background we make the assumption that they are more or less independent
of any other events. So, we can decide whether or not an interface was asleep
or awake when a feed fetch attempt occured by simply randomly deciding that
the interface with probability Psl each time a fetch occurs. Similarly, we just
randomly decide that the connection was available or not with Pc probability
each time a fetch occurs.

Our simulator is implemented in Python, using the SimPy simulation frame-
work. Each interface (net, wireless and out-of-band), as well as the proxy, the
client, and the internet, are represented as a SimPy process. The process that
drives the simulation is the Proxy process, since it does the periodic polling of the
remote newsfeeds. Connections between the proxy, client, and internet are mod-
eled using an interface process. These interface objects provide a simple model
of connectivity, and the ability to monitor the amount of data sent and received,
as well as the number of time the interface was forced to wake up, and the num-
ber of failed connection attempts. The situation in which there is no proxy is
modeled by treating the proxy as a mobile device, and using wireless interface
parameters on the network interface object. For the proxy based experiment, we
assume that the land-line network is always on and always available.

As the simulation executes, each interface keeps information about the amount
of data sent, the amount of data received, the number of time that the interface
was woken up on behalf of the feed application, and the number of times that a
failed connection attempt occurred on behalf of the feed application.

4.2 Results: Bandwidth

The first exploration examines the improvement in wireless interface usage gained
by using a proxy, and a proxy that sends only feed differences. We fix the prob-
ability of connection at 1, and the probability of a sleeping interface at 0, and
assume that the user is monitoring 10 feeds. The polling rate is varied with the
values 10,30,60,180, and 360. Figure 3 shows how many connection attempts are
made by the wireless client over the course of the experiment. The number of
connection attempts influences the number of times that the interface will need
to wake up, as well as the number of failed connection attempts. At any polling
rate, the proxy-based method consistently reduces the number of times that the
mobile client needs to attempt to wake up to receive data.

Figure 2 shows similar results, and also motivates the addition of the differ-
encing feature. While there is a consistent improvement for the non-differencing
proxy, the use of feed differences adds up to substantial savings in bandwidth,
even at low polling rates. For example, at a polling rate of 30 minutes per check,
the proxy method provides a 62% reduction in bandwidth compared to the
client managing the feeds on its own. The proxy with feed differencing provides



a slightly better reduction of 89%. However, at a slower polling rate of 6 hours,
the proxy method only provides a 12% reduction in bandwidth usage, while the
proxy method with differencing provides a 59% reduction in bandwidth usage.

Fig. 2. Bandwidth vs. Polling Rate Fig. 3. Number of connection attempts

Next, in Figure 4 we look at how many out-of-band (SMS) messages are sent
as the polling rate is increased. We consider the case where Tpoll = 60, because
a 1 hour feed polling rate is a common default setting in desktop aggregators.
The out-of-band messages add a small amount of overhead to the proxy-based
system. However, it is insignificant, compared to the savings gained. Since the
out-of-band messages are typically sent through a different channel than the
data itself, we do not compare this metric directly to the bandwidth metric.

Figure 5 shows scaling of bandwidth usage as the number of feeds increases.
For these experiments, we set Tpoll = 30 again, and and Pavail = 1 to avoid the
affect of a failed interface. Although only 1-10 feeds were tested, we can see that
using a proxy significantly improves the scaling of newsfeed management as the
number of feeds increases. The bandwidth requirements of both systems grows
linearly as the number of feeds increases, but when using the proxy system, the
growth is only 1.9 megabytes per feed, as opposed to 5 megabytes per feed for
the client-managed system. Using the proxy with the feed differencing feature
adds only 0.5 megabytes per feed, an even bigger savings.

Fig. 4. OOB Messages Sent Fig. 5. Bandwidth vs. Feed Count



4.3 Results: Energy Consumption

There are a number of factors that contribution to the energy consumption of
newsfeed management. These factors are shown together in table 1.

Pwu The power needed to activate the interface if it was in a sleep mode.
Prx The power needed to receive a given number of bytes.
Ptx The power needed to send a given number of bytes.

Pfail The power used when the device tries to connect to a remote host, but fails.
Psms The power used by short-message services used for out-of-band communication.
psleep Probability that the interface is asleep when it’s time to fetch data.
pavail Probability of connection available when a connection attempt is made.
Nrx Number of bytes received.
Ntx Number of bytes sent.
Noob Number of out of band messages sent.

Table 1. Modeling Parameters

Using these parameters, we can calculate the energy required for a given
system over the duration of the simulation using equation 1

E = Prx ∗Nrx + Ptx ∗Ntx + psleep ∗Pwu + (1− pavail) ∗Pfail + Psms ∗Noob (1)

Using this equation, we examine the energy usage of newsfeed management
for the various systems, as a function of the polling rate, as well as of the number
of feeds managed. The actual energy consumption of the various systems will
vary depending on the hardware platform that is used. For our analysis, we base
the energy results on the Atheros 5001x 802.11b chipset[5].

Fig. 6. Energy vs. Polling Rate Fig. 7. Energy vs. Feed Count

Figures 6 and 7 show us the energy consumed by the feed management system
over the course of the experiment, plotted against polling rate, and number of
feeds monitored, respectively. The shape of the energy consumption curves looks
similar to the bandwidth curves, because bandwidth is the dominating term of
the energy calculation. Based on our energy consumption result, we see that
users of the proxy-based system with feed differencing will be able to monitor
more feeds, more often. For example, for the energy cost of monitoring 10 feeds
every 3 hours with no proxy, we could monitor 10 feeds every 10 minutes with
the proxy system with differencing.



5 Conclusion

Newsfeed publication technologies such as RSS provide a succinct and consis-
tent way for content providers to summarize the information that they provide.
Because of the ease of content providing and summarizing, users often discover
a large number of feeds that they’d like to follow. As the number of feeds grows,
it is difficult for a resource-constrained mobile device to manage the feeds effi-
ciently.

In this paper, we present the design and evaluation of a newsfeed manage-
ment system, NOOS, for mobile devices. We build the system on the OCMP
framework which provides basic support for managing multiple interfaces and
intermittent connectivity. As a result, the system allows a mobile client to fully
utilize multiple network interfaces, and combat the problems of intermittent
connectivity, to make information feeds available promptly to the user. Through
simulation studies based on real-world data, we show that the NOOS system can
help a user manage newsfeeds in a much more efficient way than a naive polling
scheme.

The explorations in this system only scratch the surface of the flexibility pro-
vided by the NOOS system. A number of future directions exist for this system.
The feed configuration file creates much potential for user-programmable feed
management. In addition to the polling rate examined in this work, users might
specify keywords to monitor or relative importance of feeds. Users might also
prioritize feeds such that certain feeds are only sent when low-cost connections
are available. Using a common proxy also presents an opportunity for optimiza-
tion because the proxy can put all newsfeeds (RSS, Atom, etc.) into the same
format, so that the mobile client’s feed aggregator can be simpler. We plan on
exploring a number of these possibilities in future work, as well as testing actual
deployments of the system to verify its real-world performance.

References

1. RFC 4287: The Atom Syndication Format. http://www.ietf.org/rfc/rfc4287.txt.
2. T. Armstrong, O. Trescases, C. Amza, and E. de Lara. Efficient and transparent

dynamic content updates for mobile clients. In Proceedings of the 4th international

conference on Mobile systems, applications and services, 2006.
3. Mozilla Thunderbird. http://www.mozilla.com/en-US/thunderbird.
4. A. Chaintreau, P. Hui, J. Crowcroft, C. Diot, R. Gass, and J. Scott. Impact of hu-

man mobility on the design of opportunistic forwarding algorithms. In Proceedings

of 25th IEEE Conference on Computer Communications, 2006.
5. Atheros Communications. Power Consumption and Energy Efficient Comparisons

of WLAN Products. 2003.
6. Google Reader. http://google.com/reader.
7. P. Hui, A. Chaintreau, J. Scott, R. Gass, J. Crowcroft, and C. Diot. Pocket switched

networks and the consequences of human mobility in conference environments. In
Proceedings of the SIGCOMM 2005 Workshop on Delay Tolerant Networking, 2005.

8. OCMP - Opportunistic Communications Management Protocol.
http://blizzard.cs.uwaterloo.ca/tetherless/index.php/OCMP.

9. RSS 2.0 Specification. http://validator.w3.org/feed/docs/rss2.html.
10. GNU Diff Manual. http://www.gnu.org/software/diffutils/manual.


