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Abstract— Packet sampling is commonly deployed in high-
speed backbone routers to minimize resources used for network
monitoring. It is known that packet sampling distorts traffic
statistics and its impact has been extensively studied for traffic
engineering metrics such as flow size and mean rate. However, it
is unclear how packet sampling impacts anomaly detection, which
has become increasingly critical to network providers. This paper
is the first attempt to address this question by focusing on one
common class of non-volume based anomalies, portscans, which
are associated with worm/virus propagation. Existing portscan
detection algorithms fall into two general approaches: target-
specific and traffic profiling. We evaluated representative algo-
rithms for each class, namely (a) TRWSYN that performs stateful
traffic analysis, (b) TAPS that tracks connection pattern of
scanners, and (c) Entropy-based traffic profiling. We applied these
algorithms to detect portscans in both the original and sampled
packet traces from a Tier-1 provider’s backbone network. Our
results demonstrate that sampling introduces fundamental bias
that degrades the effectiveness of these detection algorithms and
dramatically increases false positives. Through both experiments
and analysis, we identify the traffic features critical for anomaly
detection that are affected by sampling. Finally, using insight
gained from this study, we show how portscan algorithms can
be enhanced to be more robust to sampling.

Index Terms— sampling, portscan detection, TRW, TAPS,
entropy-based profiling.

I. INTRODUCTION

Traffic measurement and analysis are essential for effec-
tive traffic engineering (e.g., traffic matrix estimation, route
optimization), capacity planning, and more recently, network
security (e.g., anomaly detection). However, detailed payload
capture of backbone traffic does not scale with the high
link speeds. Therefore, packet sampling such as Cisco’s Net-
Flow [1] and Juniper’s Traffic Sampling [2], is often deployed
in the routers and the thinned traffic is taken as the input for
analysis. With the increasing impact of network wide attacks,
this thinned traffic is now being extensively used to detect
network anomalies. Two classes of anomalies that are most
studied in the intrusion detection literature are volume-based
anomalies, e.g., Denial-of-Service (DoS) attacks, and port
scanning, which typically precedes worm/virus propagation.
There are a number of reasons for detecting anomalies such
as worm scans in the backbone transit networks, as opposed
to at the stub networks. An Internet Service Provider (ISP) is
often interested in anomalous traffic originating from its peers.
A transit network carries a far more diverse traffic mix and can
detect a wider range of scanning activities than an individual
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stub network. For example, the study in [3] suggests that a
global view of the traffic could better capture the scanning
patterns. Finally, a stub network such as an enterprise may
out source the detection task to its upstream provider due to
lack of resources or expertise.

The impact of sampling has been extensively studied in
terms of well known statistical metrics, e.g., mean rate and
flow size distribution, from the perspective of determining
the volume characteristics of the traffic as a whole [4]–[7].
However, anomaly detection (e.g., worm scan detection) often
depends on a diverse set of metrics such as address access
pattern, connection status, and distinct per source behaviors.
How packet sampling impacts these traffic features has not
been previously addressed. This paper presents a first attempt
to address this important open question: Does packet sampling
distort or lose pertinent information from the original traffic
profile that affects the effectiveness of existing anomaly detec-
tion techniques? If so, by how much?

There is a rich set of literature on two general approaches to
anomaly detection: specialized detection algorithms that target
specific types of anomalies, and generalized traffic profiling
algorithms. Example target specific algorithms include [8]–
[10] designed primarily to detect portscans. On the other
hand, traffic classification algorithms, such as [11], [12], are
generalized algorithms that do not target a specific anomaly.
Instead they classify different traffic features and raise alarm
flags when they detect large variations. Algorithms from both
categories typically assume the availability of detailed packet
payload, e.g., at the network edge. However, it is not clear how
their performance is impacted if the same solutions utilize only
sampled packet header data.

We note that it is clearly infeasible to perform an exhaustive
study on the impact of sampling for every anomaly detection
algorithm presented in literature. Instead, we focus on one
common class of non-volume based anomalies, portscans,
which causes increasing security concerns. We choose repre-
sentative algorithms aimed at portscan detection from the two
categories of detection algorithms mentioned above. Specifi-
cally, this paper presents a detailed study that quantifies the
effect of packet sampling on two target-specific and one traffic-
profiling algorithms: (a) Threshold Random Walk (TRW) [9],
(b) Time Access Pattern Scheme (TAPS) [10], and (c) Entropy-
based behavior modeling proposed recently [11].

TRW performs stateful analysis of the traffic to identify
connection status, while TAPS exploits the knowledge of
the “connection patterns” of scanners. The general traffic
profiling algorithms compute entropy values of each of the
four “features” of the IP header in order to identify “significant
flows” and capture abrupt changes in the feature set. We
believe that these algorithms cover a wide range of anomaly
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pattern metrics like connection rate, scanning rate, address
range distribution, and flow number distribution that would be
typically used for anomaly detection. Our analysis not only
characterizes the impact of sampling on the performance of
these algorithms but also tries to identify how the critical
decision metric is affected. Hence, we expect our results to be
widely applicable in terms of inferring how other algorithms
would perform using sampled traffic.

Our data set consists of GPS-timestamped packet header
traces captured from Sprint’s backbone and wireless networks,
which are then sampled at different rates. Each of these
portscan detection techniques uses the original as well as the
sampled traffic traces as input. Further details of the methodol-
ogy are presented in Section II. By comparing the performance
of these three schemes under different sampling rates, we can
quantify the potential distortion introduced by sampling on
traffic “fingerprints” that are pertinent for anomaly detection.

The contributions of this paper are summarized as follows:

• Through experiments using real traces, we quantify how
sampling affects the performance of the portscan de-
tection algorithms as well as the entropy-based traffic
profiling techniques. We show that not only does the
successful detection rate drop as sampling interval in-
creases (which should be expected), but also that the false
positive rate increases for all the techniques studied. This
is undesirable from a network administrator point of view.
For example, in one of our case studies, the false positive
rate of TRW-based portscan detection increases by eight
fold when the input trace is sampled at rate 1/10.

• Through analysis, we pinpoint the specific “distortion” of
traffic features due to sampling that have adverse impact
on the effectiveness of different detection schemes. We
demonstrate that sampling causes the following funda-
mental bias in data: (a) flow thinning (smaller flow size
distribution) that causes high false positive and false neg-
ative rates for scanner detection that relies on statistical
hypotheses testing (Section III), and (b) traffic feature
set distortion towards either uniformity or biased towards
large sized flows, which reduces the number of significant
events detected and increases false positives (Section IV).

• We discuss the implications of our results on designing
anomaly detection and sampling algorithms. For portscan
detection, our analysis indicates that inferences based on
connection states and access patterns complement each
other under packet sampling. Utilizing this insight, we
were able to develop a TCP portscan detection algorithm
whose performance is robust to sampling.

The remainder of the paper is organized as follows. Sec-
tion II discusses related work, experimental data, and specific
algorithms we analyzed. In Section III, we compare the impact
of sampling on two target-specific portscan detection schemes
(TRW and TAPS). We also present detailed analysis to explain
the observed effect of sampling on the detection rate and
false positives and introduce a new TCP portscan detection
algorithm. Section IV explores the impact of sampling on
entropy-based traffic profiling algorithms. We discuss the
implications of this study in Section VI.

II. BACKGROUND AND METHODOLOGY

A. Sampling

Sampling is typically used in network measurements to
avoid large memory and CPU processing requirements on
routers as well as the high bandwidth required to transport
flow records [7]. Two types of sampling that have been
widely discussed in literature are: packet sampling and flow
sampling. Packet sampling is simple to implement with low
CPU power and memory requirements. However, extensive
research has shown it to be inaccurate for inference of flow
statistics like size distribution of the original flows [4], [5].
Adaptive packet sampling techniques that change the sampling
rate to further reduce memory consumption and limit loss
of existing accuracy have been presented in [13], [14]. The
former improves the performance of NetFlow, while the latter
proposes techniques for varying sampling rate to control the
variance. Flow sampling has been proposed as an alternative
to overcome the limitations of packet sampling. It is shown
to improve accuracy [5] but suffers from prohibitive memory
and CPU power requirements. Though reduced complexity
flow sampling techniques like Sample-and-hold [15] have
been proposed, they are still too complex for high speed links.
Consequently, in practice, packet sampling is the predominant
method of choice for high speed backbone links. We focus on
packet sampling for the rest of our discussion in this paper.

B. Portscan Detection

Several portscan detection techniques have been proposed
in literature. Snort [8] is a flexible rule language that issues
alerts based on user-defined connection patterns and rates.
Hence we view Snort as more of a system rather than
technique. SPICE [16] is a complex off-line technique based
on Bayesian analysis that can detect stealthy portscans. The
focus of this paper, however, is on two “on-line” portscan
detection techniques: TRW [9] (Threshold Random Walk) and
TAPS [10] (Time Access Pattern Scheme), which can process
traffic in real-time to identify portscans and have been shown
to be highly effective. In addition, we will also evaluate an
entropy-based portscan detection technique proposed in [17].
We describe the three algorithms in more detail below.

TRW and TRWSYN: TRW performs hypotheses testing
on the observed connection status of each source to decide
whether it is more likely to be a scanner or a benign host.
Specifically, let H0 represent the hypothesis that a source is
a benign host, and H1 be the hypothesis that a source is a
scanner. Each potential observable event is assigned a different
likelihood probability under the two different hypotheses. For
example, in TRW, the observation used is the connection
status. Let

Yi =
{

0 if connection successful
1 if connection failed

denote the event variable associated with each connection.
Each of the two probable events is given a specific probability
under each given hypothesis Hj , j = 0, 1, e.g., θ0 = Pr[Yi =
0|H0] and θ1 = Pr[Yi = 0|H1]. For each observed event
i = 1, 2, . . ., the test updates the likelihood ratio defined as:
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Λ(Y ) =
n∏

i=1

Pr[Yi|H1]
Pr[Yi|H0]

. (1)

As the likelihood ratio increases/decreases with each ob-
served event i, it may cross either one of the pre-specified
thresholds η0 < 1 < η1. If Λ(Y ) > η1, the source IP belongs
to set H1; else if Λ(Y ) < η0 it is in set H0. The choice
of the two thresholds defines the accuracy of the test. It has
been shown that TRW only requires a low number (∼ 6) of
observed events to detect scanners successfully [9]. Note that
for the test to yield quick results, θ0 must substantially differ
from θ1.

The authors of [10] adapted TRW to the backbone scenario
by modifying the definitions for connection “success” and
“failure”. The new definition marks flows consisting of a
single TCP SYN packet as failed connections. Otherwise,
the flows are considered successful connections. We refer to
this adaptation as TRWSYN, and evaluate its ability to detect
portscans in the backbone trace.

TAPS: TAPS, proposed in [10], is a rate limiting scheme
that is designed for portscan detection in the backbone.
Specifically, it utilizes the access pattern of each source for
hypotheses testing. The intuition behind this approach is that
scanner access a larger spread of destination IP addresses
(or ports) as compared to non-scanners. To quantify this
notion, let CDstIP (or CDstPORT) be the cardinality of the set
of addresses (or ports) accessed by a source in a given time
bin t. The number of distinct connections, approximated by
max

( CDstIP
CDstPORT

, CDstPORT
CDstIP

)
, is À 1 for scanners and quite

small for non-scanners (see [10] for empirical evidence).
TAPS utilizes time bins as the event generation mechanism

for its hypotheses testing, i.e., the event variable Yt is asso-
ciated with a time bin t. At the end of each time bin (say
t), the CDstIP

CDstPORT
ratio (or its reciprocal, whichever is larger)

is calculated for each source IP. Yt is then accordingly set to
either 0 or 1 depending on whether or not the ratio exceeds a
predefined threshold k. The likelihood ratio, Eqn. (1), for the
source is then updated with the corresponding probabilities
of the observed event Yt under hypotheses H0 and H1. In
TAPS the time bin setting plays a crucial role in defining the
detection success rate, while the choice of the threshold is
important in deciding the false positive rate.

Entropy-based Scan Detection: Recently, entropy-based
techniques have been proposed [11], [12] to profile traffic
and detect anomalies. These techniques are motivated by the
observation that a majority of anomalous and interesting events
induce a change in the distribution of traffic communication
pattern, which can be captured by the sample entropy. We will
explain in detail how sample entropy is computed and applied
to portscan detection.

Let X be a discrete random variable that is observed N
times and takes values from the set {xi} of cardinality M .
Let ni denote the number of times it takes value xi during the
observation window. The sample entropy is then defined as:

H(X) = −
M∑

i=1

p(xi) log2 p(xi), (2)

whereN =
∑M

i=1 ni, and p(xi) = ni/N stands for the sample
probability of X = xi. Note that 0 ≤ H(X) ≤ log2 M .
H(X) = 0 if X always takes the same value and H(X) =
log2 M if X is uniformly distributed, i.e., p(xi) = 1/M, i =
1, . . . ,M . For traffic analysis purposes, X represents the
number of flows with a particular traffic feature, or dimension.
Four typical “dimensions” are the number of flows for a given
source IP address (SrcIP), destionation IP address (DstIP),
source port number (SrcPORT), and destination port number
(DstPORT), respectively.

Both [11], [12] share the same entropy definition,
but they take different approaches to profiling and
mining the traffic data. In [12], the entropy time series
along each of the four dimensions mentioned above
(SrcIP, DstIP, SrcPORT, DstPORT ) is constructed
across network-wide traffic, and principal component analysis
(PCA) is applied to expose unusual traffic behavior. The
authors of [11] emphasize the analysis of communication
patterns for significant clusters (SCs), which are defined as
entities that contribute a large mass to the sample distribution
along each dimension.

Below, we summarize the method of [11] and the guidelines
in [17] on using entropy to detect portscans. To extract signif-
icant clusters, the set {xi, 1 ≤ i ≤ M} is first rearranged in
decreasing order as {x′i} according to probability distribution
p(xi). The Relative Uncertainty (RU) is then defined as:

RU(X) =
H(X)

Hmax(X)
=
−∑M

i=1 p(xi) log p(xi)
log2 |M | . (3)

RU is actually a relative entropy and normalizes the degree of
uniformity of the distribution. This is because 0 ≤ RU(X) ≤
1, with RU(X) = 0 if X takes a single value, and RU(X) =
1 if X has a uniform distribution over the sample space. The
top ones in the set {x′i} are then extracted one by one and
labeled as SCs until the remaining set Xr has an RU(Xr)
close to 1, i.e., almost uniformly distributed and hence not
significant. The threshold that indicates RU(Xr) ≈ 1 is
denoted as β, and the default value of β picked for SC
extraction is RU(Xr) > β = 0.9 [11].

Clusters are then categorized based on similarity or dissim-
ilarity of communication patterns into behavior classes (BCs).
For example, for each SC in SrcIP dimension, we calculate
RU(SrcPORT ), RU(DstPORT ), and RU(DstIP ), and
mapped the values to three levels: 0 (low), 1 (medium),
and 2 (high) denoted by LRU . The clusters can be cat-
egorized into different BCs represented by a vector of
[LRU(SrcPORT ), LRU(DstPORT ), LRU(DstIP )]. Sources cor-
respond to BCs of [∗, 2, 0] or [∗, 0, 2] are scanners that send
probes to a large number of random ports on a few IP
addresses, or to a few particular port numbers on lots of
random IP addresses.

C. Trace Data and Experiment Setup

Our experiments used packet traces collected on two links
in a Tier-1 ISP’s backbone network: (BB-West) an OC-48
link between two backbone routers on the west coast, and
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(Wireless) a link from a gateway router to a nation-wide
cellular network. These traces are collected by IPMON [18],
a passive monitoring system that captures the first 44 bytes
of the IP header of every IP packet traversing a monitored
link. The Wireless trace has a relatively low traffic volume but
contains a large percentage of scanning traffic, making it an
interesting trace for portscan analysis. Statistics of the traces
are presented in Table I.

TABLE I
TRACE DATA STATISTICS

Trace Date Average Rate Duration
BB-West 03-08-2003 55 Mbps 1 hour
Wireless 04-01-2004 7 Mbps 3 hours

We generated sampled traces from the original traces using
both systematic packet sampling and simple random packet
sampling [19], [20]. Experiments where the same detection
algorithm is applied to traces sampled with the two different
techniques did not result in noticeable differences. Hence
we present the results only for the simple random sampling
scheme, where a packet is selected with probability p =
1/N from the original trace to form the sampled trace. We
use a set of average sampling intervals N chosen from the
vector [10, 20, 50, 100, 200, 500, 1000]. Similar to NetFlow,
traffic was classified into flows based on the well-known five-
tuple: (source IP address, destination IP address, source port,
destination port, protocol). Flows were terminated by either a
default timeout of 1 minute or the TCP protocol semantics.

III. TRWSYN AND TAPS UNDER PACKET SAMPLING

We begin by studying the impact of packet sampling on the
performance of TRWSYN and TAPS since they share similar
features. Both algorithms have been shown to work very well
in their respective target environments when complete packet
traffic capture is possible. However, packet sampling may
distort traffic fingerprints used by such algorithms, resulting
in fundamental inaccuracies. In the following subsections, we
validate this through experimental evaluation of TRWSYN and
TAPS using traffic traces sampled at different rates and analyze
the source of such inaccuracies.

We quantify the performance of these algorithms using the
following metrics, which were previously defined in [10]:

Success Ratio Rs = No. of true scanners detected
No. of true scanners

False Negative Ratio Rf− = No. of true scanners missed
No. of true scanners

False Positive Ratio Rf+ = No. of false scanners detected
No. of true scanners .

The success ratio Rs measures the effectiveness of a detection
algorithm, while the false positive ratio Rf+ indicates its
correctness. High Rs and low Rf+ are desirable properties
of an anomaly detection algorithm. Since Rs + Rf− = 1, we
only discuss the success and false positive ratios.

Note that these metrics are not specific to any particular
detection technique, hence can be used to evaluate different al-
gorithms under various sampling rates. However, computation
of the metrics requires a priori knowledge of the true scanners,
which is a challenging task. Given the immense variation

in Internet traffic patterns and protocol state, it is virtually
impossible to guarantee that any current portscan detection
algorithm can correctly identify all scanners in a traffic stream.
Consequently, one must resort to an approximation of the
ground truth (true scanners) through bootstrapping.

In [10], for each traffic trace, the authors applied several
portscan algorithms with various parameter settings to identify
a superset of potential scanners. Each source from this superset
was then manually verified by checking its flow size, scanning
rate, and destination address spread against the intuitive notion
of how a scanner should behave. We use the final list of
scanners generated by this process as the ground truth. The
scanner list returned by any specific portscan algorithm is
compared against this ground truth to determine the successful
detections, false negatives, and false positives. We note that
similar bootstrapping methods have also been used previously
in [21] and [9]. Even though the ground truth is an approxi-
mation of the actual set of scanners, we believe it suffices for
the purpose of this work. This is because our focus is on the
relative performance of an algorithm as a function of packet
sampling rather than its absolute accuracy.

To validate our inferences, we have also conducted a con-
trolled experiment where artificial scanners were generated
using Nmap [22] and combined with the BB-West trace using
TReplay [23]. For these experiment, the ground truth was
assumed to comprise of the artificially injected scanners only
and the performance of TRWSYN and TAPS was evaluated
on the mixed trace sampled at different rates.

A. Impact of Sampling on TRWSYN

Recall that TRWSYN associates a probability 1 − θ1 (1 −
θ0) of a failed connection with a scanner (benign host), as
described in Section II. As we vary the sampling rate, the
hypotheses test parameters 1 − θ1 = 0.8 and 1 − θ0 = 0.2
used for non-sampled traffic [9], [10] are kept unchanged. This
was done primarily to observe how an algorithm designed for
non-sampled traffic performs under packet sampling. Later in
this section, we analyze how these parameters are affected by
sampling and explain why even modifying them may not yield
the desired results.

Tables II and III summarize the Rs and Rf+ ratios at
different sampling intervals N for the Wireless and BB-West
traces, respectively. Surprisingly, for both traces, the success
ratio Rs of TRWSYN initially increases (albeit by a small
amount) for low sampling intervals before dropping off for
larger values of N as the traffic is increasingly thinned. For
example, Rs for Wireless trace initially increases from 77% for
the non-sampled trace to 95.4% with N = 10, 20, 50 before
dropping off to 70% at N = 10001. While this may seem
advantageous, we observe that the false positive ratio Rf+

also follows similar behavior but on a much larger scale.
It increases from 30% for the original trace to 250% for
the sampling interval N = 10, then drops back to 30% at
N = 1000. Specifically, the false positive ratio increases by

1The Wireless trace contains a large number of scans, comprising up to
30% of the instantaneous flow rate. Hence, even with N = 1000, we do not
see a severe degradation in results as seen in the BB-West Trace.
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TABLE II
TRWSYN DETECTION RESULTS FOR THE Wireless TRACE (GROUND TRUTH = 65)

Sampling Rate Original N=10 N=20 N=50 N=100 N=200 N=500 N=1000
Total Detections 70 229 196 134 120 94 82 65

Success (Rs) 50 (76.9%) 62 (95.4%) 62 (95.4%) 62 (95.4%) 57 (87.7%) 55 (84.6%) 53 (81.5%) 45 (69.2%)
False + (Rf+) 20 (30.8%) 167 (256.9%) 134 (206.2%) 72 (110.8%) 63 (96.9%) 39 (60.0%) 29 (44.6%) 20 (30.8%)

TABLE III
TRWSYN DETECTION RESULTS FOR THE BB-West TRACE (GROUND TRUTH = 447)

Sampling Rate Original N=10 N=20 N=50 N=100 N=200 N=500 N=1000
Total Detections 679 1362 1033 687 528 388 247 152

Success (Rs) 356 (79.6%) 367 (82.1%) 356 (79.6%) 340 (76.1%) 309 (69.1%) 276 (61.7%) 203 (45.4%) 136 (30.4%)
False + (Rf+) 323 (72.3%) 995 (222.6%) 677 (151.5%) 347 (77.6%) 219 (49.0%) 112 (25.1%) 44 (9.8%) 16 (3.6%)

a huge factor for low sampling intervals, indicating a large
number of sources erroneously tagged as scanners, before
decreasing with higher values of N .

The observed behavior can be attributed to flow thinning at
small sampling intervals, which do not reduce the number of
flows dramatically for TRWSYN to make a decision. However,
small sampling intervals can substantially thin the flow size
(in number of packets), thus increasing the likelihood of
a multi-packet flow being reduced to a single packet flow.
Recall that TRWSYN associates a single SYN-packet flow
with a failed connection attempt, which is assumed more
likely for scanners. The increase in single SYN-packet flows
after sampling has a twofold impact. First, some ground truth
scanners that may have transmitted multi-packet flows will be
initially missed by TRWSYN applied to the original trace.
After sampling, these multi-packet scanners would be thinned
and are now more likely to be detected, which explains the
slight increase in the success ratio of TRWSYN. Secondly,
sampling causes a significant increase in false positives be-
cause flow thinning results in large number of single SYN-
packet flows, that are now erroneously tagged as scanners.

When the sampling interval N increases, the decrease of Rs

and Rf+ is to be expected. Specifically, the number of flows
observed from a source itself decreases for large values of N
and becomes the dominant factor. Consequently, the algorithm
makes fewer decisions and hence both Rs and Rf+ decrease.

The effect of flow thinning and the reduction in the number
of flows is empirically demonstrated by showing how sampling
changes the flow characteristics of (a) the detected scanners
and (b) the false positives (i.e., benign hosts erroneously
tagged as scanners). Towards this end, we calculate two
metrics for each SrcIP in these two groups: (1) flow size
change ratio Rfs, defined as the average flow size (in number
of packets) after sampling over the mean size in the original
trace, and (2) number of flows change ratio Rfn, similarly
defined to describe how the number of flows changes after
sampling.

Figures 1 and 2 show Rfs and Rfn for each source in
the BB-West trace with sampling intervals of N = 10 and
N = 100, respectively. The top half of each graph marks
the flow size change ratios Rfs, while the bottom half shows
Rfn. We observe that Rfs ≈ 0.9 for the detected scanners.
This validates the hypothesis that scanners comprise mostly of

single packet flows whose flow size is largely unaffected by
sampling. With a sampling interval of N = 10, there are still
sufficient flows to make decisions, resulting in higher success
ratio.

In the case of false positives, Rfs ≈ 0.3 at N = 1/10
(as shown in Fig. 1(b)), indicates substantial thinning of
flows even for low sampling intervals. In other words, multi-
packet flows originating from these sources have a large
likelihood of being reduced to single packet flows. At N =
1/100 (Figs. 2(a) and 2(b)) the number of flows is reduced
significantly, which lowers the detection and false positive
ratios. The following analysis shows that such flow thinning
has a significant impact on the likelihood ratio computed
by TRWSYN, causing it to erroneously tag the sources as
scanners.

1) Impact of Sampling on Connection-Inference: TRWSYN
assumes that a failed connection is more likely to be generated
by a scanner, which is true in the original traffic, but may not
hold for sampled traffic. We are interested in the amount of
error introduced by packet sampling and how it affects the
likelihood ratio under the different hypotheses in Eqn. (1).
Note that the likelihood ratio for the alternate event, a multi-
packet flow, is not adversely affected by sampling. It is still
more likely for a multi-packet flow originated from a benign
host rather than a scanner in sampled traffic.

We begin by defining some notations:

1) Let {f} be the flow size distribution of a source in the
original traffic; f (n) be the probability that the source
generates a flow with n packets in the original trace.

2) Let p = 1
N be the probability that a packet is sampled.

3) TRWSYN associates a source with a hypothesis Hi, i ∈
{0, 1} where i = 0 indicates a benign host and i =
1 a scanner. Consequently, we shall also index the
flow size distribution {f} with the hypotheses under
consideration, i.e., the flow size distribution of a source
under hypothesis Hi is labeled as {fi}.

We first look at the specific case of TCP portscans. A TCP
connection is associated with a failed connection if we observe
a single SYN-packet. Let this event be denoted by S−SY N .
The probability of observing this event for a benign host (i.e.,
under hypothesis H0) when traffic is sampled with parameter
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Fig. 1. The BB-West Trace: Flow size change ratio (Rfs) and number of flows change ratio (Rfn) after 1/10 sampling.
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Fig. 2. The BB-West Trace: Flow size change ratio (Rfs) and number of flows change ratio (Rfn) after 1/100 sampling.

p is given by:

Pr{S−SY N |H0} = p · f (1)
0 + p

∞∑
n=2

f
(n)
0 (1− p)n−1. (4)

The first term f
(1)
0 is the probability of a benign host gen-

erating a single-packet flow, which is quite small in practice
(see Fig. 3). The summation on the right side of Eqn. (4)
represents the probability of observing a single SYN-packet
flow due to thinning of a multi-packet TCP flow. In other
words, it represents the factor that induces false positives.

For small sampling probabilities, the term (1− p)n decays
slowly. Hence, if the distribution {f0} has most of its mass
in the small flow size region (i.e., small n), there would be
relatively little distortion of the original distribution function
f (n). To demonstrate this effect, we have plotted the original
TCP flow size distribution f (n) of non-scanners (identified
using the ground truth) as well as the distorted function
f (n)(1− p)n−1, in Fig. 3 for the BB-West trace with p = 0.1
and 0.01. The distorted function f (n)(1− p)n−1 still captures
45% of the original distribution mass with p = 0.1, while
with p = 0.01, it almost overlaps with the original flow size
distribution. Consequently, the contribution of the summation

term in Eqn. (4) can be quite significant when the original
flow size distribution mass is concentrated at small flow sizes.
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Fig. 3. The BB-West Trace: Flow size distribution for non-scanners

Under these conditions, we can approximate Eqn. (4) by

p(f (1)
0 +

∞∑
n=2

f
(n)
0 (1− p)n−1) ≈ p

∞∑
n=1

f
(n)
0 ≈ p. (5)
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For a scanner, the flow size distribution is concentrated
almost exclusively at f

(1)
1 ≈ 1. Hence the probability of

S−SY N is given by:

Pr{S−SY N |H1} ≈ p · f (1)
1 ≈ p. (6)

Therefore, for small values of p, we have :

Pr{S−SY N |H0} ≈ Pr{S−SY N |H1}. (7)

The relation indicates that at low sampling rates and when
benign hosts have relatively small flows, it is nearly impossible
to distinguish between the likelihood of a single SYN-packet
under the two different hypothesis. In other words, both scan-
ner and benign hosts are almost equally likely to be associated
with failed flows by TRWSYN under packet sampling. As an
example, for the BB-West trace, we obtained the likelihood
ratio Eqn. (1) in the event of a single SYN-packet to be:

Pr{S−SY N |H1}
Pr{S−SY N |H0} ≈

0.99
0.96

≈ 1.03. (8)

The above analysis also sheds some light on the impact
of the TRWSYN hypothesis test parameters θ0 and θ1. If the
parameters θ0 and θ1 were corrected for sampling, Eqn. (8)
indicates we must have θ0 = θ1, in which case the TRWSYN
hypotheses test would be inconclusive in detecting scanners.
On the other hand, using the parameters for non-sampled
traffic (θ0 = 0.8, θ1 = 0.2) will result in a large number
of false positives since it artificially inflates the probability
of observing a failed connection. This is precisely what we
observed in our evaluation of TRWSYN.

The situation is exacerbated even further if we try to
extend the (single-packet flow → failed connection) analogy
to protocols that do not keep state (this will be useful when we
analyze the impact of flow thinning on TAPS). For a benign
host we have:

Pr{S−PKT |H0} = f
(1)
0 p +

∞∑
n=2

f
(n)
0 np(1− p)n−1. (9)

If we compare the likelihood ratios, we have:

Pr{S−PKT |H1}
Pr{S−PKT |H0} ≈

f
(1)
1

f
(1)
0 +

∞∑
n=2

f
(n)
0 n(1− p)n−1

. (10)

For n < 1/p, the term n · (1 − p)n−1 increases with
n and hence amplifies the distribution for flow sizes less
than 1/p = 100. This implies that for small flow sizes, it
is more likely that a sampled single packet flow is from a
successful multi-packet flow than a failed connection attempt.
To illustrate this, we compute the likelihood of observing a
single-packet flow under the two different hypotheses for the
BB-West trace, which yields:

Pr{S−PKT |H1}
Pr{S−PKT |H0} ≈

2.05
14.9

. (11)

The above equation demonstrates the bias introduced by
sampling towards the non-scanner hypothesis H0 under the
assumption of small flow sizes. In other words, a single packet
flow is much more likely to be thinned from a multi-packet
flow than a failed flow.

B. Impact of Sampling on TAPS

As with TRWSYN, we compared the performance of TAPS
applied to traffic traces sampled at various rates. In each case,
we also varied the size of the time bin over a range of values
in order to understand how Rs and Rf+ changes as a function
of the time bin and sampling interval.

Figures 4(a) and 4(b) show the success and false positive
ratios respectively of TAPS with different time bin sizes for
the BB-West trace. Each curve represents Rs or Rf+ for a
particular sampling interval as a function of the time bin size.
We first discuss the relation between the time bin size and
sampling interval. Fig. 4(a) indicates that there is an optimal
time bin at which Rs is the highest for each sampling interval.
Furthermore, the value of the optimal time bin size is an
increasing function of the sampling interval. This is not al-
together surprising since for a fixed time bin, packet sampling
reduces the number of observed events. Consequently, the size
of the time bin must be increased as a function of the sampling
interval to compensate for this aspect2. This explains the rise
in Rs when we initially increase the size of the time bins
for each sampling interval. However, beyond a certain size,
we run into edge-effects because we are using finite length
traces, which reduces the success ratio.

Observe that Rf+ also increases with time bin size. Al-
though large time bin sizes compensate for sampling by
increasing the number of observed events, flow thinning can
severely distort the observed events, which increases the
probability of an erroneous decision. We will evaluate the
impact of sampling on Rs and Rf+ next.

One can infer from Fig. 4(a) that the success ratio for
TAPS monotonically decreases with the increasing sampling
intervals (the curves for different N do not overlap or cross
each other). TAPS has an extremely high success ratio for
the original traffic, detecting almost all scanners. Hence, even
moderate sampling causes only a reduction in its efficacy
(unlike TRWSYN, whose success ratio increased initially).
This behavior is also illustrated in Fig. 5 where we plot the
Rs and Rf+ curves for TAPS as a function of the sampling
intervals. For each sampling interval we chose the time bin
value that yields the highest success ratio. Observe that the Rs

curve monotonically decreases as a function of the sampling
interval.

The behavior of Rf+, shown in Fig. 4(b) is similar to
TRWSYN. Specifically, low values of N result in high false
positive ratio. To see this, note that in Fig. 4(b) the Rf+

curves for small values of N lie above the Rf+ curve of
the original traffic. This can also be seen from Fig. 5 where
the Rf+ curve for TAPS initially increases with sampling.
At large sampling intervals, the false positive ratio decreases.
The reasoning for the behavior of Rf+ is also similar to that
for TRWSYN since TAPS also associates single packet flows
with failed connections. Specifically, at low sampling intervals,
flow thinning rather than reduction in the volume of flows
is a dominant factor, resulting in increased false positives.
At larger sampling intervals, the reduction in flow volume

2A quantitative relationship between the time bin size and sampling interval
is presented in [24].
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becomes dominant. This results in fewer observed events and
hence fewer false positives.

Figure 5 compares the performance of TRWSYN and TAPS
under sampling. We note that TRWSYN yields a far higher
Rs compared to TAPS on sampled traffic. However, in terms
of Rf+, which is often more critical, we see that the reverse is
true. Specifically, although flow thinning adversely affects both
TRWSYN and TAPS, a comparison of these two techniques in
Fig. 5 indicates that TAPS results in far fewer false positives
than TRWSYN. We shall delve further into the comparison
between TRWSYN and TAPS under sampling in Section III-D.
Before that, we analyze the impact of sampling on TAPS and
show that the additional metrics related to the access pattern
it uses is robust to sampling, which can explain the low rate
of false positives.

1) Impact of Sampling on Source Access Pattern: As in
Section III-A.1, we analyze the impact of flow thinning on the
“event” that is used to differentiate a scanner from a benign
host in the original traffic and show how this bias changes
with sampling.

In case of TAPS, the “event” refers to a source transmitting
at least k single packet flows to distinct addresses or ports. A
simplified expression for the likelihood of this event, which
we denote as E, can be derived as follows. For the purpose
of analytical tractability we assume that the threshold (see
Section II) is set to k = 2, i.e., at least two distinct failed
connections are required to favor the scanner hypothesis. In a
given time bin, let gM denote the probability that a source s
generates M connections. Let P (p, Hi) denote the probability
under the hypothesis Hi and the sampling probability p, that
exactly one packet is sampled from any of the M flows3. Then
the probability that the source sampled only one packet from
exactly K flows, given that M flows were generated in a time
bin, can be approximated by the binomial distribution with
parameters (M,P (p,Hi)).

We assume that the source picks addresses (or ports) for
each of the M connections uniformly from a set {N} with
probability 1/N , where N =‖ N ‖. Under these assumptions,
if K single packet flows were observed in the time bin, the
probability that at least two of the K flows have distinct
addresses (or ports) is simply 1− (1/N)K−1.

Combining the above arguments, we obtain the probability
of the event E under hypothesis Hi to be:

Pr{E|Hi} =
∞∑

M=K

gM

(
1−

( 1
Ni

)K−1)(
M

K

)
·

Ps(p,Hi)K(1− Ps(p,Hi))M−K .

After some re-arrangement this can be written as

Pr{E|Hi} = (1−
( 1

Ni

)K−1

)Ps(p,Hi)K ·
ΓK(p,Hi), (12)

where

ΓK(p, Hi) =
∞∑

M=K

(
M

K

)
gM (1− Ps(p,Hi))M−K . (13)

3Strictly speaking P (p, Hi) is also a function of the flow sizes and
sampling probability, but we ignore this dependency for tractability.

Plugging Eqn. (12) in Eqn. (1), the ratio of the likelihood of
event E under two different hypotheses, is given by:

(
1−

(
1

N1

)K−1)

(
1−

(
1

N0

)K−1) ·
Ps(p,H1)K

Ps(p,H0)K
· ΓK(p,H1)
ΓK(p,H0)

. (14)

Observe that the first fraction depends only on Ni and is
invariant to sampling, while the second and third fractions do
depend on the sampling probability p. In the case of TAPS,
which makes its decision based on single packet flows, we
have from Eqn. (9) that

Ps(p,Hi) = p ·
∞∑

n=1

f
(n)
i n(1− p)n−1.

For reasonably small values of p, Ps(p,Hi) is quite
small for both hypotheses and hence from Eqn. (13) we
have ΓK(p,H1) ≈ ΓK(p,H0). However, as observed from
Eqn. (11) in the previous sub-section, due to flow thinning we
can have the ratio (Ps(p,H1))K/(Ps(p, H0))K ¿ 1 for small
p. This relation tells us that one is more likely to observe K
single-packet flows in sampled traffic from a benign host that
originally had multi-packet flows than from a scanner. This is
the factor that contributes to the increase in the false positive
ratio.

On the other hand, the first metric, which captures the
communication patterns has the property that N1 À N0, i.e.,
scanners access a far larger set of addresses (or ports) than
benign hosts [10]. In other words, observation of k distinct
identifiers is more likely to be associated with a scanner. Hence
we have

1− (
1

N1
)K−1 À 1− (

1
N0

)K−1.

Therefore, by also requiring this condition to identify a
scanner, TAPS counter-balances the negative impact of flow
thinning.

The impact of both factors, flow thinning and the address
range metric, are evident in Fig 5. Flow thinning due to
packet sampling increases the false positive ratio of TAPS.
However, compared to TRWSYN, which relies exclusively on
single-packet flows, the incorporation of an additional metric
in TAPS based on the address range distribution reduces
the impact of flow thinning, resulting in far lower false
positives than TRWSYN. We use the insight from the above
analysis to propose a simple modification to TAPS for TCP
portscan detection (described in the next sub-section), which
reduces false positive ratios even further in a packet sampling
environment.

C. Making Portscan Detection Robust to Sampling

Our analysis of the impact of sampling on TRWSYN and
TAPS can be summarized into two key observations :

1) Packet sampling induces Flow Thinning which impacts
the inference related to single packet flows in two ways.
For TCP flows, the event that a single SYN-packet
came from a failed connection is nearly indistinguishable
statistically from the case where a multi-packet flow got
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Fig. 4. The BB-West trace: Ratio of successful detection and false positive under various sampling rate and time bin size for TAPS.

thinned, as shown in Eqn. (7). However, for non-TCP
flows, Eqn. (11) indicates that a single-packet flow in
the sampled traffic is much more likely to be associated
to a multi-packet flow than a failed connection attempt.

2) The address range distribution metric used by the TAPS
algorithm is invariant (in terms of bias) to sampling as
shown by the first component of Eqn. (14). Hence, it is
a desirable indicator to use in a sampling environment.

Motivated by these two observations, we propose a simple
modification to the TAPS algorithm to detect TCP portscans,
called TAPS-SYN. As the name suggests, it is essentially a
simple modification of TAPS, with the aim of further reducing
false positives under packet sampling.

TAPS-SYN works as follows. Similar to TAPS, it per-
forms hypotheses testing on events observed in a time bin.
Furthermore, it sets its hypotheses parameters θ0, θ1 such
that an event comprising at least k failed connections to
distinct addresses (or ports) is more likely to originate from
a scanner. However, to identify failed connections attempts, it
borrows from TRWYSN that only single SYN-packet flows
are associated with failed TCP connections.

We now explain the rationale for the above technique. As
observed previously, with sampling, the likelihood of a single
SYN-packet coming from a failed TCP flow is almost the
same as from a thinned multi-packet flow, i.e., P (p, H1) ≈
P (p,H0). Plugging this relation in Eqn. (14) yields:

P (p, H1)KΓK(p,H1) ≈ P (p,H0)KΓK(p,H0).

Consequently, the likelihood ratio in Eqn. (14) is dominated
by only the address distribution metric. Since this metric is
unaffected by sampling, it correctly reflects the association of
k failed TCP flows to distinct destination addresses (or ports)
with a scanner. In comparison, TAPS associates any single-
packet flow with a failed connection, which increases the
negative impact of flow thinning, as observed from Eqn. (11).
Based on these arguments, we expect TAPS-SYN to yield
lower false positives in a sampled environment.

This was indeed found to be true by comparing the per-
formance of this algorithm with TRWSYN and TAPS applied
to the BB-West trace. The results for all three algorithms are
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shown in Fig. 5. It is apparent that TAPS-SYN has almost the
same detection rates as TAPS but extremely low false positive
rates, making it eminently feasible to use with sampled traffic.
Similar results were observed for the Wireless trace [24]
(which are omitted due to space limitations). We however note
that this algorithm is limited to detecting only TCP portscans
as opposed to TAPS which is much more broadly applicable.
Our current work involves extending these observations to
develop detection algorithms for non-TCP portscans that are
robust to sampling.

D. Evaluation with Artificial Scanners

Finally, we evaluated TRWSYN and TAPS in a controlled
environment where artificial scanners were injected into the
BB-West trace. Note that for this experiment, the ground truth
was the set of artificially injected scanners, which are precisely
known. This allowed us to verify inferences made with the
approximate ground truth derived from the original trace.

The Rs curves of both algorithms plotted in Fig. 6 for
the artificial scanners show similar behavior as that for the
approximate ground truth in the sampled BB-West traces
(Fig. 5). In particular both the Rs curves drop along with the
sampling rate, with TRWSYN maintaining a higher detection
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ratio than TAPS for sampled traffic. Furthermore, the Rs (with
respect to artificial scanners) for TRWSYN declines at a much
slower rate than TAPS as a function of the sampling interval,
again similar to the behavior observed previously with the
approximate ground truth (Fig. 5). This is because TRWSYN
makes decisions based on each individual connection and
hence requires only a few connections to classify a source.
TAPS, on the other hand requires a certain minimum number
of connections in each time bin to arrive at a decision, i.e
many more connections than TRWSYN. Hence, Rs for TAPS
is more sensitive to sampling.

For completeness, we also show the Rf+ curves for both
algorithms. Due to the fact that we did not inject any benign
traffic, the number of false positives did not change from
those observed in the BB-West trace. Specifically, both Figs. 5
and 6 show that TAPS is far superior to TRWSYN from
the perspective of false positives, maintaining a low rate
of erroneous decisions in sampled traffic. The analysis in
Section III-B.1 demonstrated that this is because the address
pattern metric used by TAPS is invariant under sampling.
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IV. IMPACT OF SAMPLING ON ENTROPY-BASED PORTSCAN
DETECTION

A few recent studies [11], [12] have proposed to use
entropy as a summarization tool to describe traffic and detect
a wide range of abnormal behaviors, including portscans.
In this section, we present a study to assess the impact of
packet sampling on the entropy-based traffic profiling tech-
nique applied to portscan detection. The results show that
the reliability of using entropy as an indicator for anomaly
decreases significantly under packet sampling.

Following the methods in [11], [17], and the process
described in Section II-B, we analyze traffic flows across
four feature space dimensions: SrcIP , SrcPORT , DstIP ,
and DstPORT . A feature value therefore refers to either
an IP address or port number. As an intermediate step, we
demonstrate the effects of sampling on entropy and relative
uncertainty (RU) calculation, as well as significant cluster
(SC) extraction, for each five-minute time bin, using the
same parameter settings in [11]. Due to page limits, we only

show the results from the 1st hour of the BB-West trace.
We also present the analysis of post-sampling entropy, which
gives insights to the portscan detection results. Finally, we
evaluate the performance of portscan detection using entropy,
by comparing the sources that fall into scanner behavior
classes against the ground truth scanner set.

A. Impact of Sampling on Entropy and RUs
Figure 7 plots the time series of the entropy values before

and after sampling, respectively. We observe that both the
entropy values and RU of the sampled trace are higher
than those of the original trace, with the RU in particular
monotonically increasing with the sampling interval N . For
instance, at 1/500 sampling, RU(SrcIP ) averages at 0.96, a
20% rise from the original value 0.8. We will show shortly that
the scaling-up of the RUs has a huge impact on the significant
cluster extraction.

We now discuss the reason behind the change in entropy
values under packet sampling. Recall that packet sampling has
an inherent bias towards big flows, i.e., flows with big sizes are
more likely to be sampled than those of small sizes. Entropy,
which summarizes the distributions of the number of flows
across feature dimensions, will differ after packet sampling
distorts the distributions. Let p be the probability that a packet
is sampled, where 0 < p < 1. Then a flow of n packets is
sampled with probability:

pn = 1− (1− p)n ≈
{

p · n if n ¿ 1
p

1 otherwise.

Thus for any flow with size larger than 1/p packets, e.g. 10
packets for p = 0.1, at least one packet will be sampled and
the flow recorded with a very high probability. A smaller flow,
however, may only be sampled with a probability proportional
to its size. In the extreme case of the single packet flows, each
flow is randomly sampled at rate p. To evaluate the the impact
of sampling on entropy, let f(m) represent the probability
distribution of source m (1 ≤ m ≤ M) along the SrcIP
dimension, with average flow size of sm. If there are N flows
originally, the number of flows after sampling becomes:

N ′ ≈ N ·

 ∑

sm< 1
p

f(m)psm +
∑

sm≥ 1
p

f(m)


 = N · ρ < N ,

where

ρ =
N ′

N ≈
∑

sm< 1
p

f(m)psm +
∑

sm≥ 1
p

f(m) < 1 (15)

is the sampling factor. From Eqn. (2) the original SrcIP
entropy Hm = −∑

f(m) log2 f(m), one can obtain the
entropy after sampling as:

H ′
m ≈ −

∑

sm< 1
p

f(m)psm

ρ
log2

f(m)psm

ρ

−
∑

sm≥ 1
p

f(m)
ρ

log2

f(m)
ρ

. (16)



11

 9

 9.2

 9.4

 9.6

 9.8

 10

 10.2

 0  2  4  6  8  10  12

E
nt

ro
py

Time Bin Index

original
N=10
N=50

N=200
N=500

(a) H(SrcIP )

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0  2  4  6  8  10  12

R
U

Time Bin Index

original
N=10
N=20
N=50

N=100
N=200
N=500

(b) RU(SrcIP )

Fig. 7. Time series of SrcIP entropy and RU for the BB-West Trace (1st hour)

There are two approximations made to estimate the entropy
at different sampling rates in Eqn. (16). First, we use the
average flow size sm to simplify the flow size distribution
of the source m. Second, we replace the flow sampling
probability with p · sm for any sm < 1/p. Nonetheless, after
plugging in the empirical flow count distribution f(m), the
estimation results match closely to those of the sampled traces.
Fig. 8 illustrates the changes of sampling factor ρ, entropy
H(SrcIP ), and RU(SrcIP ) at different sampling intervals
N = 1/p for time bin 6 in the BB-West trace.
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BB-West Trace (time bin 6)

Since most flows are short and only a relatively small
number of flows have large sizes, the entropy of this non-
uniform distribution is smaller than 1. The number of flows
sampled is not proportional to the packets sampling rate,
because large-sized flows are less likely to be missed by
packet sampling compared to small flows. The first item on
the right of Eqn. (15) shows the portion of flows with relative
small sizes that will be heavily affected by sampling. Initially
this portion contributes to a large percentage, however it gets
reduced as the sampling interval increases. As a result, the sum
distribution becomes more uniform. As the sampling interval
increases even further, the distribution is strongly biased by

the few large flows (i.e., the second item on the right of
Eqn (15)), which reduces entropy. That explains why the
entropy value goes up then drops in Fig. 8. The RU curve
increases monotonically due to the faster decline of source M
sampled compared to the drop of entropy.

B. Impact of Sampling on Portscan BCs
We now focus our study on the impact of sampling on pro-

filing scanners based on the entropy distribution [11]. Recall
from Section II, it takes two steps to classify a source as a
scanner. First, significant clusters (SCs) of sources in each time
bin are extracted, according to a threshold β. Second, each
SrcIP cluster is categorized into different behavior classes
(BCs). Sources correspond to [∗, 2, 0] or [∗, 0, 2] (referred to
as scanner BCs) are profiled as scanners that probes a large
number of random ports or random IP addresses. To ensure the
portscan detection result is comparable to the ground truth in
Section III, we filter out any web traffic on port 80 and other
non-TCP flows. We mark those sources belonging to either of
these two BCs (in each time bin) as scanners and combine the
results from all 12 time bins into a scanner list.

Table IV lists the number of scanners found in the SCs
of scanner BCs, before and after sampling. We observe that
the total number of detections declines with sampling. With
sampling rate ≤ 1/50 and default β value of 0.9, we detect
no scanners at all. This is mainly due to the diminishing
number of the SCs. After sampling, the majority of the original
scanners are below the “clustering” threshold, resulting in
fewer SCs. This is also shown in the increase of RU values
with sampling in Fig. 7(b). Recall that RU close to 1 indicates
that the distribution of flows generated by each IP is close to
uniform rather than cluster-like. Since the number of flows
generated by the scanners are no longer significant compared
to other non-scanner traffic, there are very few SCs. When the
remaining SCs are classified, some have changed from scanner
BC to a non-scanner BC, simply because RU(DstIP ) or
RU(DstPORT ) are also escalated by sampling. This further
reduces the number of scanner BCs after sampling.

Since the primary factor that affects portscan detection is the
low number of SCs extracted when the default value of the
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TABLE IV
NUMBER OF SCANNER BCS DETECTED BY THE ENTROPY-BASED METHOD WITH β = 0.9 (GROUND TRUTH = 447)

Detections Original N = 10 N = 20 N = 50 N = 100 N = 200 N = 500

Total 443 166 35 0 0 0 0
Success (Rs) 384 (85.9%) 155 (34.7%) 31 (6.9%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)

False + (Rf+) 59 (13.2%) 11 (2.5%) 4 (0.9%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)

clustering threshold β is used, we explore how performance
changes with higher β values. We show the changes in the
number of SCs for time bin 6 in Table V. For each sampling
rate, β is raised from 0.9 in steps of 0.01, until the number of
SCs found exceeds that of the original trace (61). We notice
a side effect: the number of false positives (shown inside the
parenthesis) increases with the β value. This further proves
that packet sampling distorts distribution of the SrcIP flow
counts and makes it more uniform.

TABLE V
NUMBER OF SrcIP SCS IN TIME BIN 6 FOR INCREASING THRESHOLD β

VALUES

β Original N = 10 N = 20 N = 50 N = 100

0.90 61 8 0 0 0
0.91 - 19(1) 4 0 0
0.92 - 41(6) 13(1) 0 0
0.93 - 81(30) 33(7) 4 0
0.94 - - 76(30) 15(3) 2
0.95 - - - 44(15) 13(2)
0.96 - - - 113(71) 38(15)
0.97 - - - - 116(75)

Figure 9 shows that as β increases, the successful detec-
tion ratio increases, but so does the false positive ratio. For
instance, if we set β = 0.99, Rs = 0.94, while Rf+ = 2.24
at sampling rate of p = 1/10. At sampling rate of 1/500,
the Rf+ is close to Rs, which makes the detection results
very undesirable. The high false positive ratio is caused by
the increasing number of false SCs extracted when raising the
β value, i.e., benign BC types are altered to become scanner
BCs, especially at lower sampling rates.

In summary, we have shown in this section that packet
sampling affects the entropy-based portscan detection, and the
impact of sampling comes from two main sources:
• Abstraction using entropy condenses flow distribution

into a single value. It summarizes the uniformity of the
number of flows per address or port, and ignores the flow
size information.

• Packet sampling is biased towards large sized flows,
whose significance gradually grows as the sampling rates
decrease, resulting in a more uniformed, as opposed to
heavy tailed, distribution of flow counts across different
flow sizes.

V. PERFORMANCE COMPARISON UNDER SAMPLING

In this section, we compare the performance of TRWSYN,
TAPS, and the entropy-based portscan detection methods un-
der packet sampling. Recall that high successful detection (Rs)
and low false positive ratios (Rf+) are desirable properties
for a portscan detection algorithm. However, as shown in this

study, all three algorithms experience a trade-off between Rs

and Rf+. For example, in Section III-D, it was shown that
TRWSYN has high success ratios but suffers from high false
positive ratios, while TAPS has the opposite characteristics.
Section IV shows that increasing the value of β improves the
success ratio of the entropy-based algorithm, but at the price
of increased false positives.

Therefore, for comparison purposes, one must utilize a
metric that accounts for both the success ratio (Rs) and
false positive ratio (Rf+). While there are several ways of
doing so, we propose a simple metric of the form R(α) =
αRf− + (1 − α)Rf+, where 0 ≤ α ≤ 1. Note that the false
negative ratio Rf− = 1 − Rs. A low value of R implies
low false negative and false positive ratios which, as indicated
before is the desired goal. By specifying α, one can decide
the importance of either ratio.

In the previous sections, we independently evaluated the
special cases α = 1 which corresponds to R(1) = Rs and α =
0 (R(0) = Rf+) for each algorithm. We now compare their
performance directly with equal weight given to both Rs and
Rf+, i.e., α = 0.5. Fig. 10 plots R(0.5) for TRWSYN, TAPS,
and the entropy-based method at various sampling rates. For
each sampling rate, we picked the optimal β value for the
entropy-based portscan detection, and the optimal time bin
size for TAPS such that R is minimized.

An interesting observation from the figure is the near-
identical performance from TAPS and the entropy-based
portscan detection. This is not altogether surprising since
both TAPS and the entropy-based detection utilize the access
pattern of scanners, i.e., spread of destination IP addresses or
port numbers. Indeed, in Section IV, it was shown that a choice
of β such that Rs of the entropy-based technique matches that
of TAPS also results in similar Rf+ for both. However, while
a simple relation between the time bin size and sampling rate
exists [24] for TAPS, identification of the optimal β for the
entropy-based portscan detection is not straightforward. This
implies that a priori configuration of the time bin for TAPS
is feasible to optimize its detection performance, while such
tuning is difficult for the entropy-based schemes.

For sampling rates lower than 1/100, Fig. 10 indicates that
both TAPS and the entropy-based portscan detection outper-
form TRWSYN. This is primarily due to the large volume
of false positives, which results in a high R for TRWSYN.
However, at higher sampling rates, TRWSYN performs best
because it still maintains a high success ratio while those of
the other two algorithms drops rapidly.

VI. CONCLUSIONS

Packet sampling is commonly deployed in high-speed back-
bone networks to reduce the measurement overhead. Not
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Fig. 9. The BB-West Trace: Portscan detection results Rs and Rf+ with increasing threshold β
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only is the measurement data used for accounting and billing
purposes, it is also important to security-related tasks such as
anomaly detection. There is a common belief that detection
methods based on volume information are by nature sensitive
to packet sampling. This paper investigates how packet sam-
pling also affects the detection of non-volume-based anomalies
like portscans. Portscan detection is a crucial component of
security defense systems adopted by network operators, since
portscans typically precede virus/worm propagation.

Using real packet traces sampled at different rates, we
compared the performance of three specific algorithms: (a)
TRW for detecting TCP scanners based on connection-based
inference, (b) TAPS, which performs statistical hypotheses
testing based on scanner access patterns of destination ad-
dresses/ports, and (c) an entropy-based profiling method ap-
plied to portscan detection. Our results demonstrated that
sampling distorts various traffic features and degrades the
performance of all three algorithms in terms of success detec-
tion ratio and false positives. Specifically, portscan detection
based on connection inference (e.g., detecting single TCP SYN
packet in TRW) are effective only if the flow size distributions
for scanners and benign hosts are different enough to overcome

the sampling distortion. We showed that the thinning effect of
sampling introduces significant errors for practical sampling
rates lower than 1/100. On the other hand, techniques such
as TAPS that exploits access pattern of scanners, e.g., spread
of destination IP addresses or ports, work well even if flow
size distributions of scanners and non-scanners are similar, and
hence is more robust to sampling. Based on this insight, we
designed a hybrid algorithm TAPS-SYN that achieves lower
false positives while maintaining a reasonably high success
rate under packet sampling.

The authors of [11], [17] proposed a portscan detection
algorithm based on profiling a source using entropy of the
destination IP addresses and ports. We applied this method on
the original trace and the sampled traces. Results showed that
as the sampling rate decreases: (a) both the success and false
positive ratios drop, and (b) the performance is equivalent to
that of TAPS since both algorithms identify scanners based
on access patterns. Through analysis, we demonstrated that
packet sampling can introduce fundamental bias by changing
distributions of traffic features such as flow size. This has
serious implications on traffic profiling algorithms such as [11]
that rely on these traffic features in identifying significant
clusters.

We believe that the lessons learned in this paper can be
leveraged to address the accuracy, efficiency, and scalability
trade-offs in designing better sampling techniques. Another
open challenge is to design anomaly detection algorithms that
are effective at relatively low sampling rate to avoid the need
for detailed packet trace collection.
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