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A Case for Using Service Availability to Characterize IP
Backbone Topologies
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Abstract: Traditional service-level agreements (SLAs), defined by
average delay or packet loss, often camouflage the instantaneous
performance perceived by end-users. We define a set of metrics for
service availability to quantify the performance of Internet pro-
tocol (IP) backbone networks and capture the impact of routing
dynamics on packet forwarding. Given a network topology and its
link weights, we propose a novel technique to compute the asso-
ciated service availability by taking into account transient routing
dynamics and operational conditions, such as border gateway pro-
tocol (BGP) table size and traffic distributions.

Even though there are numerous models for characterizing
topologies, none of them provide insights on the expected perfor-
mance perceived by end customers. Our simulations show that the
amount of service disruption experienced by similar networks (i.e.,
with similar intrinsic properties such as average out-degree or net-
work diameter) could be significantly different, making it imper-
ative to use new metrics for characterizing networks. In the sec-
ond part of the paper, we derive goodness factors based on service
availability viewed from three perspectives: Ingress node (from
one node to many destinations), link (traffic traversing a link), and
network-wide (across all source-destination pairs). We show how
goodness factors can be used in various applications and describe
our numerical results.

Index Terms: Interior gateway protocol (IGP) routing dynamics,
Internet protocol (IP) network goodness, service availability in IP
networks.

I. INTRODUCTION

Service-level agreements (SLAs) offered by today’s Internet
service providers (ISPs) are based on four metrics: End-to-end
delay, packet loss, data delivery rate, and port availability. The
first three metrics are usually computed network-wide and aver-
aged over a relatively long period of time. For the fourth met-
ric, the term “port” refers to the point at which a customer’s
link attaches to the edge of an ISP’s network. Port availability
therefore refers to the fraction of time this port is operational
and measures a customer’s physical connectivity to the ISP’s
network. None of these SLA metrics capture the ability of the
network to carry customer traffic to Internet destinations at any
point in time.

The main problem with the existing SLA specifications is that
they do not capture the effect of instantaneous network condi-
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tions like failures and congestions. A recent study [1] shows that
failures occur on a daily basis due to a variety of reasons (e.g.,
fiber cut, router hardware/software failures, and human errors)
and can impact the quality of service (QoS) delivered to cus-
tomers. When a link/node fails, all routers will independently
compute a new path around the failure. At that time, routers
may lack or have inconsistent forwarding information, resulting
in packet drops or transient routing loops [2], [3]. However, not
all failures impact the network equally. The failure of a critical
backbone link carrying heavy traffic may be more detrimental
than the failure of an access link connecting a single customer.
Yet, these service degradations are camouflaged by the average
parameters reported in current SLAs. Therefore, to measure In-
ternet protocol (IP) network performance, it is essential to con-
sider the network routing configuration and traffic pattern during
link or node failures.

Reports from various tier-1 ISPs suggest that IP backbone net-
works are usually over-provisioned where the link utilization of
backbone links is less than 50% of their total capacity [4], [5].
The reports also confirm that congestion due to link or router
overload is a very rare event in backbone networks. During a
link failure, event traffic on the failed link is rerouted and may
congest links along alternate paths. However, such congestions
are usually not significant for a single failure event. Heavy con-
gestions may occur when there are multiple failures, but such
events are relatively rare. Hence in our current work, we ignore
the effect of congestions on network performance and only con-
sider failures.

In this paper, we define a set of metrics for service availabil-
ity of IP backbone networks that capture the impact of routing
dynamics on packet forwarding. Instead of relying on active or
passive measurements, we propose a methodology to estimate
the service availability of a network in the presence of indepen-
dent link failures. Specifically, given a topology (nodes, links,
and connectivity) and routing information (link weights, link de-
lays, and border gateway protocol (BGP) peering points), we
are able to compute the potential impact on service due to link
failures. To achieve this, we carefully model the factors iden-
tified in the measurement based study by Iannaccone et al. [6]
that contribute to routing convergence. Convergence refers to
the amount of time it takes for traffic forwarding to resume cor-
rectly on the backup path after a link failure. We wish to point
out here that we focus mainly on single link failures for IP back-
bone networks since these are the dominant class of failures (i.e.,
over 70% of all failures in IP backbone networks) as observed
by Markopoulou et al. [1].

We use the novel concept of service availability to evaluate
known topologies, such as full-mesh, ring, and tier-1 ISP back-
bones. Our simulations show that the performance of a network
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not only depends on routing dynamics, but also on various other
factors like interior gateway protocol (IGP) link weight assign-
ment and BGP prefix distribution. This brings out a necessity
to identify new metrics that customers can use to differenti-
ate networks. There have been many attempts to characterize
the Internet topologies or to model their graph-theoretic proper-
ties [7]–[9]. The resulting models are useful for re-generating
topologies that best model real networks, such as GT-ITM [10]
and BRITE [11], but they do not provide any insights on the
QoS that a particular network can provide.

Using the concept of service availability, we derive good-
ness factors based on three different perspectives: Ingress node
(from one node to many destinations), link (traffic traversing
a link), and network-wide (across all source-destination pairs).
The goodness factors reveal how topologies with similar intrin-
sic graph properties, such as average out-degree or network di-
ameter, do not necessarily offer the same level of service avail-
ability.

Finally, we describe several applications for the goodness
factors in network planning and provisioning. For example,
goodness from an ingress node perspective allows customers
to choose the best place to connect to a network (or to choose
among different providers), while link-based goodness helps an
ISP to identify the set of critical links to be upgraded.

An earlier version of this work appeared in [12]. This journal
paper improves that work and extends it with additional mate-
rials, including (i) use of a packet-level simulator (as opposed
to a control-level simulator) to analyze service availability, (ii)
incorporation of realistic failure models obtained from an ISP
backbone network as reported in [1], and (iii) additional metrics
and results that capture the service availability of IP backbone
networks.

The rest of the paper is organized as follows. Section II iden-
tifies the importance of routing dynamics in estimating the end-
to-end performance of a network and motivates this work. In
Section III, we describe the proposed metrics and introduce the
concept of service availability to characterize network topolo-
gies. We also define a set of network goodness factors. We dis-
cuss our numerical results in Section IV. We show the various
applications of the goodness factors in Section V and conclude
our paper in Section VI.

II. ANALYZING IMPACT OF ROUTING DYNAMICS

Intra-domain routing protocols, such as IS-IS [13] and
OSPF [14], define how each node in the network responds to
changes in the topology. Such protocols are also known as link
state protocols where each node has complete knowledge of the
network topology including all the links present in the network.

Upon detection of a link/node failure or a configuration
change in the network, each node is responsible for dissemi-
nating the new topology description to all its neighboring nodes
and recomputing the forwarding information in its own routing
table. From the time of the failure or configuration change to the
time all nodes have been informed of the change and have up-
dated their routing tables, traffic disruptions (like packet drops
and routing loops) are possible as the nodes may have an incon-
sistent view of the network.

We define the “convergence time” (CT ) of a node due to a
failure event in the network as the time taken by the node to up-
date its routing and forwarding information in response to the
failure. A node that does not have to update its routing or for-
warding information has a convergence time of zero. The con-
vergence time for any node n (that has to update its routing or
forwarding information) due to a failure can be summarized as
a combination of 3 components:
• Detection time: This is the time taken by the adjacent

nodes to detect the failure. Today’s IP routers provide several
mechanisms to perform this function [15], but all of them are
based only on local information exchanged between neigh-
boring nodes. For example, hello messages at the IP layer or
alarms at the optical layer. Hence, detection time represents
a fixed price that is independent of the network topology or
configuration.

• Notification time: This represents the time taken by the rout-
ing update to propagate through the network to reach n. In
link state protocols, messages are flooded throughout the
network. Therefore, the notification time strongly depends
on the hop distance between n and the adjacent nodes. Each
node along the forwarding route needs to process the mes-
sage update before forwarding it, thus introducing a delay in
the propagation of information.

• Route computation and update time: This is the time spent
by node n to compute the new shortest path routing tree (that
incorporates the failure information) and then update its for-
warding information based on the new routing tree. The up-
date procedure involves applying the changes to all the net-
work prefixes that have been learnt via the BGP inter-domain
protocol. The result of this computation is a forwarding ta-
ble where each prefix is associated with a neighboring node
as the next hop.
The route computation and update time at any node heavily
depends on the number of prefixes for which the next hop
information needs to be changed. In turn, the number of
prefixes to be updated not only depends on the location of
the failure, but also on the distribution of prefixes to the next
hops in the forwarding table. Indeed, the closer the failure
occurs to a node, the larger will be the number of prefixes
affected. Similarly, if a large number of prefixes share the
same next hop node, a change in the topology close to that
node will result in long route update time for all nodes in the
network.

Based on the per-node CT , we define the “network conver-
gence time” as the maximum value of CT among all the nodes
in the network. This indicates the time at which all the nodes in
the network have learned about the failure, updated their routing
tables and have a consistent view of the network.

Service availability of a network depends on the convergence
time. Providers attempt to increase the overall availability of
their networks by reducing convergence time in order to speed
up the recovery after a failure. As we described above, con-
vergence time depends on (i) router technology used for failure
detection, (ii) network topology, (iii) routing protocol config-
uration such as IGP weights and timers, and (iv) location of
peering points with other networks that determines the distribu-
tion of network prefixes among egress nodes. Clearly, it is not
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Fig. 1. Example of convergence time and service disruption.

possible to look at a subset of the above mentioned factors to
derive the service availability of a network.

Consider the network illustrated in Fig. 1. The number on
each link indicates the IGP link weight. Let node A be the traf-
fic source and node D be the traffic sink. Consider the failure
of link E–D. We assume that the nodes and the links have simi-
lar characteristics with a detection time of 500 ms, a notification
time between neighboring nodes of 100 ms, and a node route
computation and update time of 400 ms (except for node C for
which we assume this to be 100 ms due to the fact that it does not
have to change its route to reach D after the failure of link E–D).
Consider the disruption observed for the traffic sent from node
A to node D following the failure event at time t0 = 0. Table 1
shows the routing events, changes in the traffic forwarding path,
and service availability from node A to node D. In this example,
we assume that a node notifies neighboring nodes only after it
has completed the update of its own routing table. However, it
is easy to verify that if the updates are sent before updating the
routing table, the example yields similar results.

Interestingly, as the message update propagates across the
network, the forwarding path from node A to node D changes
four times. Some of these intermediate paths are valid thus
restoring service between A and D, while some are not, caus-
ing packet drops (or traffic black-hole) and routing loops. For
example, packets are dropped until node E has computed a new
forwarding path to reach D and routing loops occur when nodes
B and F have conflicting forwarding information.

Based on the example, we can derive some initial observa-
tions:

• The network convergence time provides a rough upper
bound on service disruption time (i.e., the time for which
service is not available). The service is not available when
the packets cannot reach their destinations due to the lack of
forwarding information. Given that traffic forwarding may
resume even if all the nodes in the network have not updated
their routing table, there may be a significant lack of correla-
tion between network convergence and service availability.
For example, in our illustration above, the cumulative time
for which the service is not available amounts to 1.1 s while
the network takes 1.9 s to converge. Therefore, network con-
vergence time does not capture the entire routing dynamics.

• The network topology by itself does not help in understand-
ing the service availability of a network. Additional informa-
tion such as the location of peering points and size of routing
tables needs to be considered in characterizing service avail-
ability. The time taken to update the routing table depends on

the number of prefixes that are affected. Table 2 shows the
impact of varying the number of prefixes that have D as the
next hop node on convergence time and service availability.
Even with the same topology and identical failure scenario,
increasing route update time may lead to significant differ-
ences in service availability.

In the following section, we introduce a new topology metric
that exploits the knowledge of routing dynamics to define and
compare the goodness of topologies. It is based on the algorithm
to compute the cumulative time for which service is not avail-
able (i.e., the service disruption time as presented in Table 1).
The details of this algorithm are presented in Table 3.

III. SERVICE AVAILABILITY TO CAPTURE
NETWORK ROUTING DYNAMICS

A. Service Availability

Service availability is an important concept for both ISPs and
their customers. From an ISP’s point-of-view, it is important
to determine the overall service availability of its network so as
to provide guarantees to all its customers. This is typically ex-
pressed as an average (or a summary) for all the customers con-
nected to the network. It is also important for an ISP (and its cus-
tomer) to understand the guarantees that are actually provided to
customers connected to the network at a particular ingress node.
Hence, we define service availability in three perspectives. The
first perspective tries to capture service availability as seen by a
customer connected to the ISP network at a given ingress node,
while the other two perspectives try to capture service availabil-
ity as seen by the ISP.
• Ingress node perspective: This is a measure of the network

performance as seen by a particular ingress node where the
traffic enters the network. It provides an insight about the
level of service to expect when a customer connects to differ-
ent ingress nodes of a network. It also helps an ISP to ensure
that it can meet SLA specifications for customers connecting
to different ingress nodes.

• Link perspective: The performance of a network should not
heavily depend on the reliability of a few links in the net-
work. In other words, the network should not have critical
links whose failure results in serious performance degrada-
tion. Service availability from a link perspective evaluates
the importance of various links for network performance.

• Network perspective: This measures the performance of the
entire network from the perspective of an ISP. This is useful
in designing a network to achieve high end-to-end perfor-
mance.

We propose four metrics that capture routing dynamics in a
network due to single link failures for analyzing service avail-
ability:
• Service disruption time (SD time): This represents the time

for which service between a particular source-destination
(OD) pair is disrupted. From the point of view of an ingress
node, it indicates the loss in connectivity with all/some parts
of the Internet due to a link failure.

• Traffic disruption (TD): This metric captures the total traffic
disrupted between a particular source and destination node
due to single link failures. The TD for a OD pair is computed
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Table 1. Summary of routing events (with a route update time of 400 ms). Network convergence time = 1.9 s; service disruption time = 1.1 s.

Time Event Forwarding path (A–D) Service from A to D Notes
0 s Failure of link E–D A-F-E-D No
0.5 s D, E: Failure detection A-F-E-D No
0.9 s D, E: Route update A-F-E-C-D Yes Forwarding is restored
1.0 s C, F: Notified of failure A-F-E-C-D Yes
1.1 s C: Route update A-F-E-C-D Yes Path C to D is not affected
1.2 s B: Notified of failure A-F-E-C-D Yes
1.4 s F: Route update A-F-B-F-· · · No Routing loop B–F
1.5 s A: Notified of failure A-F-B-F-· · · No Routing loop B–F
1.6 s B: Route update A-F-B-C-D Yes
1.9 s A: Route update A-B-C-D Yes Network convergence

Table 2. Convergence time depends on routing update time in nodes.

Routing update time 100 ms 200 ms 300 ms 400 ms 500 ms 1000 ms
Convergence time 1.0 s 1.3 s 1.6 s 1.9 s 2.2 s 3.7 s
Time-service not available 0.8 s 0.9 s 1.0 s 1.1 s 1.2 s 1.7 s

Table 3. Algorithm to calculate service disruption time from node x to node y due to a single link failure.

Step 1: Initialize the service disruption time, φl(x, y), for the path from x to y due to the failure of the link
l to 0, i.e., φl(x, y) = 0. If the original path from x to y does not contain link l, then QUIT.

Step 2: Find the convergence time (CT ) for each node and list the nodes in the increasing order of conver-
gence time. Let the convergence time of the first node in the list be CT1, second node be CT2, and so on. In
general, the convergence time for the n-th node in the list is CTn. Note CT1 ≤ CT2 ≤ CT3 ≤ · · · ≤ CTn.
Set the current node, k, (which is the node number on the sorted list) to 0.

Step 3: Increment k to 1. Set φl(x, y) = CT1. At the time instant CT1 after the failure event, find the
path that a packet from the source node x, follows to reach the destination node y, taking into account
that the first node in the list has converged and others have not. If the path has a routing loop or
black-hole, then set previousDisruption = true, else set previousDisruption = false.

Step 4: Increment k by 1. At the time instant CTk after the failure event, find the path that a packet
from the source node x, follows to reach the destination node y, taking into account that the intermediate
nodes might have converged or not.

Step 5: If the path that the packet follows does not contain the failed link l and has no routing loop, then
set previousDisruption = false. Go to Step 7. Else go to Step 6.

Step 6: If the path that the packet follows contains the failed link l or has a routing loop, then the path
from x to y is still disrupted. If previousDisruption = false, then do not update the service disruption
time but set previousDisruption = true else if previousDisruption = true, then update the service
disruption time in the k-th iteration as, φl(x, y) = φl(x, y) + CTk − CTk−1.

Step 7: If there are more nodes in the list then go to Step 4. Else QUIT.

as the product of traffic rate between the OD pair and the
service disruption time (as calculated in Table 3) for the OD
pair. TD for an OD pair with no SD time (i.e., the failed link
does not affect the OD pair) is 0. Similarly, TD for a OD
pair that do not exchange any traffic is also 0.
Note that from the perspective of an ISP, TD is more im-
portant than SD time because of the fact that customers are
usually compensated for the amount of traffic lost, irrespec-
tive of the duration for which the service is disrupted.

• Number of delay parameter violations (DV): In a well-
designed network, the end-to-end delay along alternate paths
found after a link failure is generally higher than the original

path. We define delay parameter as the maximum end-to-
end delay that can be tolerated by delay sensitive traffic in
the network. If the end-to-end delay along the alternate path
exceeds the delay parameter, then there is a delay parameter
violation. DV measures the number of such delay parame-
ter violations from the perspective of an ingress node due to
single link failures. DV is calculated by first computing the
alternate paths between all OD pairs after a link failure. The
end-to-end delays along these alternate paths are then com-
puted and compared with the delay parameter to determine
if there is a delay parameter violation. The cumulative num-
ber of such violations from the perspective of a node results
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in the value for DV. Since backbone networks rarely experi-
ence congestions, we ignore the impact of queueing delays
while calculating DV.

• Number of OD pairs affected (ODA): This metric denotes
the number of source-destination pairs whose connectivity
is affected by single link failures. The number of source-
destination pairs affected by a failure does not indicate the
magnitude of the failure either from the perspective of an
ISP or its customer due to the elephant and mice phenomena
in backbone network traffic. Although an ISP can use ODA
as a metric for service availability, in the rest of the paper we
do not consider this metric due to the fact that it ignores the
actual amount of traffic that gets affected by the failure, but
instead counts the number of affected pairs. However, we
consider TD (which represents the total traffic affected be-
tween all source-destination pairs in the network and hence
is more relevant to both ISPs and customers) instead of ODA
to capture the impact of failures on service availability.

Note that SD time and TD capture the effect of a link failure
during service disruption, while DV is a post-convergence ef-
fect. However, given complete network topology specifications
(i.e., nodes, links, connectivity, link weights, link delays, and
delay parameter), BGP prefix distribution and traffic rate in the
network, all the metrics can be pre-computed and used to char-
acterize the end-to-end performance of a network.

B. Goodness Factors

To use the notion of service availability in characterizing net-
work topologies, it is necessary to capture it using a quantita-
tively measure. Intuitively, this measure should yield a numeri-
cal value that can estimate the end-to-end performance of a net-
work and help in differentiating various topologies. In order to
accomplish this, we define a set of goodness factors based on
different perspectives of service availability. It is important to
note that these factors can be defined differently depending on
the specific scenario (for example, it could be driven by the cost
involved, SLA specifications defined by ISP, etc.). The rest of
the paper presents one specific example of such definitions.

We first introduce the notations that we use in the rest of this
section. Consider a network with N nodes and M links. Let Γ
and Λ represent the set of nodes and links, respectively. For any
node i, there are (N − 1) different destinations in the network
and hence (N − 1) different paths with node i as the ingress
node. For the failure of link j, all/some/none of (N − 1) paths
could be affected. Let Qihj and Tihj denote the SD time and
TD for the source-destination pair i − h, due to the failure of
link j. Similarly, let Sij denote the number of delay parameter
violations from ingress node i along all (N −1) paths due to the
failure of link j.

B.1 Goodness from Ingress Node Perspective

Typically, many customers are connected to a network at an
ingress node. TD represents the total traffic affected for all the
customers connected to the ingress node due to a link failure and
does not provide valuable information to individual customers.
Instead, we use SD time and DV to measure the goodness of a

network from an ingress node perspective. We define

GIi = f(Qi, Si) (1)

where GIi is the goodness factor of the network from the per-
spective of ingress node i. Qi is the average SD time for node i
across all (N − 1) paths and M possible single link failures

Qi =
1

M(N − 1)

∑

∀h∈Γ,h�=i

∑

∀j∈Λ

Qihj . (2)

Similarly, Si is the average of the number of delay parameter
violations from node i, to all other nodes in the network due to
various single link failures

Si =
1
M

∑

∀j∈Λ

Sij . (3)

The function f depends on SLA specifications between ISP
and customers. For simplicity, we assume that goodness is in-
versely proportional to various metrics. Hence,

GIi =
C

(Qi)q(Si)p
(4)

where C is a constant. The exponents q and p are SLA depen-
dent. In our simulations, we assume the exponent values to be
1.

B.2 Goodness from Link Perspective

The impact of a link failure on the network performance di-
rectly depends on total TD and total DV (i.e., sum of DV for all
nodes) due to the failure. High values of these metrics for a link
implies that the link is critical to network performance. We de-
fine the goodness factor from a link perspective based on similar
assumptions on f as in (4)

GLj =
C

(Tj)t(Sj)p
(5)

where GLj is the goodness from the perspective of link j. Sim-
ilar to (4), the exponents t and p can be defined based on SLA.
In our current work, we assume these values to be 1. Tj is the
total TD due to the failure of link j

Tj =
∑

∀h∈Γ,h�=i

∑

∀i∈Γ

Tihj . (6)

Similarly, Sj is the total number of delay parameter violations
due to the failure of link j, i.e.,

Sj =
∑

∀i∈Γ

Sij . (7)

To find critical links in a network, it is more useful to com-
pute the badness of a link rather than its goodness. Hence, we
define the badness of link j in the network as the inverse of it’s
goodness

BLj = C(Tj)t(Sj)p. (8)
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Fig. 2. ISP-A topology.

B.3 Goodness from Network Perspective

We define the goodness of the entire network as the sum of
link goodness factors for various links in the network

GN =
∑

∀j∈Λ

C

(Tj)t(Sj)p
(9)

where the exponents t and p are SLA-dependent and we assume
these values to be 1 in this work.

IV. RESULTS AND DISCUSSION

In this section, we use the metrics proposed in Section III
to quantify the impact of link failures on service availability of
a network. First, we illustrate how the algorithm presented in
Section II is used to compute SD time, TD, and DV for dif-
ferent classes of network topologies. Then, we examine how
traditional graph properties such as out-degree, network diame-
ter, increase in tree depth, and disconnecting sets correlate to
QoS offered by the network. We will show the effectiveness
of goodness factors in differentiating various network topolo-
gies by capturing the routing dynamics that affect traffic for-
warding performance. Lastly, we will discuss the implication of
the graphs and how goodness factors can be used in evaluating
“quality” of connectivity and network design applications.

A. Simulation Setup

We built a Java-based simulator to emulate intra-domain rout-
ing dynamics in the presence of link failures and to implement
the algorithm presented in Table 3. The inputs to the simula-
tor are complete network topology specifications, BGP prefix
distribution, and traffic load along different links in the net-
work. In our simulations, each node in the network topology is
mapped to a geographic location. The delays for individual links
are then calculated based on the geographical distance between
the nodes that the link connects. We categorize the nodes in a
network as large, medium, and small depending on the amount
of traffic they generate. We consider 20% of the nodes as large
nodes, 30% as medium nodes, and the rest as small nodes. This
classification and distribution of nodes (i.e., large, medium, and
small nodes) in a network is based on real-world observations
in point of presence (PoP) level network topologies of various
tier-1 ISPs. Also, based on our observations in a tier-1 ISP, the

Fig. 3. ISP-B topology.

average traffic (both ingress and egress) carried by large nodes
is about four times that of small nodes, while medium nodes
carry twice as much traffic (on an average) as the small nodes.
In our simulations, we used these observations to generate the
traffic matrix.

We distribute BGP prefixes proportional to the traffic between
nodes. Large traffic flow from a source node to destination node
implies that the source node reaches a large number of prefixes
in the Internet through the destination node. Our results with
different assumptions for prefix distributions yielded interesting
results. We will discuss this further in Section V.

Based on these inputs, the simulator runs Dijkstra’s SPF al-
gorithm to find the shortest path from every node to all other
nodes in the network. It then simulates single link failures and
executes Dijkstra’s SPF algorithm again, to find new paths in
the network. The SD time for various OD pairs are calculated
based on the algorithm in Section II. TD is then calculated us-
ing SD time and network traffic distributions between different
source-destination pairs. DV is determined using the link delay
values and delay parameter specification. We assume that the
maximum tolerable delay to be 100 ms in our simulations.

We consider the following two sets of topologies.
Set I: The first set of topologies represent standard topologies
which includes ring, full-mesh, and two PoP-level tier-1 ISP
topologies (ISP-A and ISP-B in Figs. 2 and 3). We use these
topologies to show that the metric values calculated from our
simulations are intuitively correct. All the topologies consid-
ered in the first set have 20 nodes in their networks. ISP-A and
ISP-B have 44 links each while the ring and mesh topologies
have 20 and 190 links, respectively.
Set II: For the second set of topologies, we consider 10 topolo-
gies which are “similar” in terms of their intrinsic properties like
average out-degree and network diameter. The diameter refers
to the maximum depth of all routing trees in the network. One of
the topologies considered here is ISP-A (Fig. 2) from Set I. The
other 9 topologies were generated by changing link connectiv-
ity in ISP-A. Each topology was generated using the following
procedure:

• Randomly delete x links from ISP-A topology. We consider
10 ≤ x ≤ 15 in our simulations.

• Randomly add x links back into the topology while honor-
ing the following rules: (i) The minimum out-degree of any
node in the network is 2. (ii) The resulting topology is con-
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Fig. 4. cdf of traffic disruption due to single link failures.

nected, i.e., a spanning tree for the resulting topology has 19
links.

All the topologies considered in Set II have 20 nodes and 44
links with an average out-degree of 4.4 per node. We found that
the network diameter for the topologies lie in the range of 4–6.

In all cases, we assign equal weights to all the links in a net-
work, thus making it a minimum-hop routing scheme. In real-
ity, different IGP link weight assignment schemes yield different
metric values and we will further explore this in Section V. To
achieve a fair comparison, we consider the same traffic distribu-
tions in all the topologies. Traffic rate to/from large, medium,
and small nodes remain the same in all the topologies. Finally,
we want to point out that the values of goodness factors are nor-
malized to 1 in all the results presented.

B. Service Availability for Known Topologies

In this section, we use the metrics proposed for service
availability to study the performance of four known topologies
(Set I). Intuitively, a mesh topology should perform the best
among all the networks with the same number of nodes while
a ring topology should perform the worst. Fig. 4 shows the cu-
mulative distribution (cdf) of the total TD in each of the four
networks for various single link failure scenarios. Every link
in the mesh topology carries traffic between a single OD pair,
thus resulting in small values of total TD for single link failures
while every link in a ring topology carries traffic between multi-
ple OD pairs resulting in very high values of total TD. These two
topologies are the extreme cases for any topology with the same
number of nodes. TD values for other topologies, like ISP-A
and ISP-B, lie in-between these extreme values.

Fig. 5 shows the cdf of total DV for single link failures. There
are no delay parameter violations for the mesh topology after
single link failures while ring topology is significantly worse
compared to other topologies for obvious reasons.

Fig. 6 shows the cdf of total number of OD pairs affected
by single link failures. In the ring and mesh topologies, from
the perspective of connectivity between various OD pairs, in-
tuitively, we can see that all the links in the network should
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Fig. 5. cdf of number of delay parameter violations due to single link
failures.
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be equally important. In other words, a failure on any link in
the network should affect the same number of OD pairs. From
Fig. 6, we can see that in the ring topology each link failure
affects 100 OD pairs, while in a mesh topology each link fail-
ure affects a single OD pair. ODA for ISP-A and ISP-B lie in-
between the extreme values of the ring and mesh topologies.

C. Goodness Factors vs. Static Graph Properties

The following case studies illustrate the limitations of static
graph properties (like out-degree distributions or network diam-
eter) to evaluate the performance of a network. This provides
the motivation to characterize network graphs using goodness
factors, which are directly derived based on estimated perfor-
mance, i.e., service availability. All the following results are for
topologies in Set II.

In the past, out-degree of a node has been used as a metric
for characterizing a source node [16]. Fig. 7 shows the maxi-
mum, minimum, and average goodness factor values for various
source nodes as a function of their out-degree. The goodness
factors for source nodes with the same out-degree are consid-
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Fig. 7. Goodness factor from an ingress node perspective vs. out-degree
in various topologies with normal prefix distribution.
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Fig. 8. Goodness factor from an ingress node perspective vs. out-degree
in various topologies with extreme prefix distribution.

erably different. Also, higher out-degree does not always result
in higher goodness factor values. The main problem in using
out-degree to estimate the performance of a source node is that
it does not capture the effect of various network characteris-
tics such as BGP prefix distribution and link weight assignment
scheme which have a significant impact on source node perfor-
mance. To show this, we repeat the simulations by distributing
BGP prefixes such that all the prefixes have a single exit point
in the network (we refer to this as extreme prefix distribution).
None of the other topology properties were altered. The graph
in Fig. 8 shows that changing BGP prefix distribution in the net-
work changes the source goodness factor for various nodes. This
implies that out-degree is not an appropriate metric to measure
the performance of source nodes.

Network diameter gives an estimate of the maximum con-
vergence time in the network. One would expect that a net-
work with a small diameter would exhibit small convergence
time and hence offer better service availability. The top graph
of Fig. 9 shows the network goodness factor for various topolo-
gies against network diameter. However, our results show that
topologies with smaller diameter do not always result in higher
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Fig. 9. Top graph shows the variation of network goodness factor with
network diameter while the bottom graph shows the variation of net-
work goodness with average increase in tree depth due to single link
failures.

goodness factors. Also, topologies with same diameter exhibit
different network goodness factor values. Like out-degree, net-
work diameter does not account for several characteristics of a
network and hence is not a good metric for predicting its perfor-
mance.

Another metric related to network diameter is the increase in
tree depth due to single link failures. In a well-designed net-
work, the end-to-end delay depends directly on the depth of the
routing tree from source to destination. Hence, DV depends on
the increase in tree depth after a failure. Typically, lower values
of increase in tree depth due to single link failures should result
in better topologies. From our simulations, we find that this is
not true. The bottom graph in Fig. 9 shows the average increase
in tree depth for various topologies against the network good-
ness factors. Even though increase in tree depth can be used
to roughly estimate DV, we find that it is not a good metric for
predicting network goodness.

Another important traditional metric used to estimate net-
work performance is the number of disconnecting sets in a net-
work [7]. Disconnecting set of a topology is defined as a set of
links, whose cardinality (i.e., the number of elements in the set)
is less than the minimum node out-degree in the network and the
removal of all the links in the set from the topology disconnects
it into two or more smaller topologies [17]. The topologies that
we consider here, have nodes with out-degree of two. Hence,
by the definition above, the cardinality of the disconnecting set
should not be more than 1. Since this definition yields a null set
for all the topologies, we define a disconnecting set, D, with the
following modifications:
• D partitions a topology into 2 parts with each part having at

least 2 nodes.
• Exclude supersets: If D1, D2, · · · , Dn are n disconnecting

sets for a network, then Di �⊆ Dj when i �= j.
There are numerous solutions to the above definition of D,

but we consider only those sets for which the cardinality of D
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Fig. 11. Network goodness factors for different topologies.

is less than 3, i.e., sets with at most 3 links removed. Discon-
necting sets determine links that have a big impact on network
performance when they fail. The failure of links in the discon-
necting set could potentially result in high TD and DV. As the
cardinality of the disconnecting set increases, the criticality of
the links in the set decreases. For example, a single link con-
necting two sub-topologies is more critical than two links con-
necting two sub-topologies. Fig. 10 shows the number of dis-
connecting sets with different cardinalities for various topolo-
gies and Fig. 11 shows the network goodness factor for various
topologies. Comparing the two figures we can easily see that
even though topology-4 and topology-8 have no disconnecting
sets, they do not result in the best network goodness factor val-
ues. Hence, similar to the other traditional metrics, disconnect-
ing sets are not good metrics to capture service availability of a
network.

Fig. 11 shows that even though the topologies are similar, the
end-to-end performance based on service availability is signifi-
cantly different. ISPs can take advantage of this network differ-
entiation to design their networks to provide high service avail-
ability to customers. It is also helpful in estimating the cost of
compensating the customers for SLA violations of the network.

V. APPLICATIONS OF GOODNESS FACTORS

This section explores the various applications of the proposed
goodness factors, and present our initial numerical results using
topologies in Set II as case studies.

A. Goodness Factors from Ingress Node and Link Perspectives

Given an ISP network, Fig. 12 shows the performance that a
customer can expect when connected to different ingress nodes.
This helps a customer to choose an ideal location to get con-
nected to the network. It also helps the ISP to ensure that it
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Fig. 12. Goodness factors from the perspective of various ingress nodes
in topology-6.
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Fig. 13. Link badness factor for various links in topology-6.

can meet the SLA specifications for customers at a given source
node.

Fig. 13 shows badness factors of all the links for one specific
network topology (topology-6). The graph shows that there are
a handful of critical links (e.g., link-4 and link-14) that have a
big impact on network performance when they fail. The rest of
the link failures only result in minor service degradation. The
ability of the badness factors to clearly distinguish the critical
links in the network is extremely useful for capacity planning
and traffic engineering purposes of an ISP. For example, this
information allows the ISP to make an informed decision about
bringing down a link for maintenance to minimize the impact on
network performance. ISPs can also re-negotiate peering rela-
tionships to divert traffic away from critical links. With a better
picture of how the failure of individual links can impact perfor-
mance, the ISP can better estimate whether certain SLAs can be
met.

B. Network-Wide Goodness Factors

Our results from the previous sections have established the
importance of characterizing topologies based on meaningful
performance metrics such as service availability. The proposed
network-wide goodness aims to capture the impact of routing
dynamics on service degradation measured in terms of TD and
DV across all source-destination pairs. This goodness metric
forms the basis for optimizing network design decisions. We ex-
plore three such applications in the following discussion.
IGP link weight assignment: IGP link weights determine the
routing trees and hence can significantly influence the service
availability of a network. We explore how goodness factors can
be used to “evaluate” different link weight assignment schemes
in Fig. 14. We consider the same ten topologies in Set II but
with three different link weight assignments: (i) Weights pro-
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Fig. 14. Network goodness for topologies with different link weight as-
signment scheme.

portional to link delays, (ii) equal weights, and (iii) random
weights. Fig. 14 shows that the same topology can behave quite
differently when different link weights are used. As part of our
future work, we will explore how goodness factors can be used
as an optimization metric for selecting link weights to provide
the best service availability.
BGP peering points: As discussed in Section IV-C, the location
of BGP peering points determine the prefix distribution size at
different nodes, and hence also influences service availability. In
Fig. 15, we compare network goodness for topologies with three
ways of distributing BGP prefixes across different nodes: (i)
Equal distribution, (ii) extreme distribution where all the BGP
prefixes are located at one exit point, and (iii) typical prefix dis-
tribution (or unequal prefix distribution) observed in a tier-1 ISP.
Depending on the network topology, different locations of BGP
peering points result in different network goodness in terms of
overall service availability. This illustration shows that good-
ness factors can be a useful metric in determining “ideal” BGP
peering points that result in the most desired network perfor-
mance.
Network upgrade: To cope with customer demands and meet
SLAs, an ISP may have to schedule network upgrade to intro-
duce a new node or link into its network. Deciding where in
the existing network to connect this new node/link to, becomes
a design challenge. In this case study, we consider adding a new
node with 3 links into ISP-A network (Fig. 2). Fig. 16 shows
five possible solutions and compares the resulting network-wide
goodness of the new network. Solution-2 clearly shows the best
network goodness in terms of the offered service availability in
the presence of failures.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

In this work, we examined the importance of incorporating
network dynamics in characterizing topologies. Our simulations
show that traditional metrics like out-degree, network diameter,
and disconnecting sets that disregard network dynamics do not
effectively capture the performance of a network. Hence, it calls
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Fig. 15. Network goodness for topologies with different prefix distribution
schemes.
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various solutions.

for a new approach to characterize topologies. To fill this void,
we proposed a novel methodology based on the concept of ser-
vice availability and demonstrated its effectiveness using simu-
lations.

To the best of our knowledge, this is the first work to consider
network dynamics in characterizing topologies. The approach is
the first step in the right direction and is appealing to both ISPs
and customers alike. We have identified numerous applications
for goodness factors in capacity planning, network design, and
upgrade, but their detailed analysis is a part of our future work.

A. Directions for Future Work

In this paper, we have characterized various networks based
on their service availability assuming that all link failures in
backbone networks are equally likely with a uniform proba-
bility. In fact, recent studies (like [1]) have shown that differ-
ent links exhibit different failure characteristics. Some links fail
more often while others do not fail as frequently. In addition,
some link failures last for a longer duration when compared to
some others. In particular, the authors in [1] empirically show
that in the sprint north American backbone network:
• A majority (70%) of the unplanned failure events are iso-

lated, i.e., only affect a single link at a time, and hence can
be modeled as independent link failures.

• Links are highly heterogeneous, i.e., some links fail sig-
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nificantly more often than others. This motivates the clas-
sification of the links into two categories—high-frequency
and low-frequency links, and model them separately. Within
each class, the number of failures, n(l), for link l follows
roughly a power-law, i.e., n(l) ∝ l−k, where k is found
to be −0.73 for high-frequency links and −1.35 for low-
frequency links.

• The empirical cumulative distribution function (cdf) for
time between any two failures can be approximated by a
Weibull distribution. For example, Fig. 17 shows the em-
pirical cdf for the network-wide time between failures for
low-frequency links. The Weibull parameters can be derived
for each set of empirical data based on maximum-likelihood
estimation, e.g., in this case, α = 0.046 and β = 0.414. The
cumulative distribution of the duration of failures observed
over the same period show that most failures are transient
(i.e., short-lived): 46% last less than a minute and 85% last
less than ten minutes.

It is important to note that link failures in different networks
can follow different distributions, and hence their goodness fac-
tors not only depend on the topology and operational network
conditions, but also on the link failure model of the network.

Fig. 18 shows the cumulative distribution function of the traf-
fic disruption in the ISP-A network using the failure model ob-
served in [1]. The entire simulation time was eight hours. Dur-
ing each simulation run, different links were associated with dif-
ferent failure probabilities that were generated from a Weibull
distribution (as in [1]). Every simulation run resulted in a curve
in Fig. 18. We can see that changing association between failure
probabilities and links results in very different distributions of
traffic disruption implying that goodness factors depend heav-
ily on the correct association of failure probabilities with net-
work links. As a part of our future work, we plan to use a
measurement-based approach to explore the sensitivity of good-
ness factors to link failure models in different networks.

In addition, much work remains in extending this work to in-
corporate multiple simultaneous link failures. As a complement
to simulations, we plan to validate our results through experi-
ments on a test-bed or measurements in real world networks.
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