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ABSTRACT
Sampling techniques are widely used for traffic measure-
ments at high link speed to conserve router resources. Tra-
ditionally, sampled traffic data is used for network manage-
ment tasks such as traffic matrix estimations, but recently
it has also been used in numerous anomaly detection algo-
rithms, as security analysis becomes increasingly critical for
network providers. While the impact of sampling on traffic
engineering metrics such as flow size and mean rate is well
studied, its impact on anomaly detection remains an open
question.

This paper presents a comprehensive study on whether ex-
isting sampling techniques distort traffic features critical for
effective anomaly detection. We sampled packet traces cap-
tured from a Tier-1 IP-backbone using four popular meth-
ods: random packet sampling, random flow sampling, smart
sampling, and sample-and-hold. The sampled data is then
used as input to detect two common classes of anomalies:
volume anomalies and port scans. Since it is infeasible to
enumerate all existing solutions, we study three representa-
tive algorithms: a wavelet-based volume anomaly detection
and two portscan detection algorithms based on hypothe-
ses testing. Our results show that all the four sampling
methods introduce fundamental bias that degrades the per-
formance of the three detection schemes, however the degra-
dation curves are very different. We also identify the traffic
features critical for anomaly detection and analyze how they
are affected by sampling. Our work demonstrates the need
for better measurement techniques, since anomaly detection
operates on a drastically different information region, which
is often overlooked by existing traffic accounting methods
that target heavy-hitters.

Categories and Subject Descriptors
C.2.3 [Computer-Communication Networks]: Network
Operations—Network monitoring ; C.4 [Performance of
Systems]: Design studies
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1. INTRODUCTION
Accurate traffic measurement is essential for both network

management tasks and security forensics. To cope with in-
creasing link speed, sampling techniques are often deployed
at routers, e.g., Cisco’s NetFlow [1] and Juniper’s Traffic
Sampling [2], to reduce measurement overhead in terms of
router CPU, memory, and bandwidth. Traditionally, sam-
pled traffic data is used by network providers for capacity
planning and traffic engineering (TE) tasks, such as comput-
ing traffic matrices. In recent years, sampled traffic data has
also been used as input for anomaly detection [4,16,19], e.g.,
detecting denial-of-service (DoS) attacks or worm scans. It
is well known that sampling distorts traffic statistics such
as mean rate and flow size distribution. There have been
numerous studies on improving the estimation accuracy of
flow-level statistics from sampled data [7–9,13]. Alternative
traffic accounting methods have also been proposed to track
and improve measurement accuracy of heavy-hitters for TE
purposes. However, anomaly detection often operates on a
different region of information than TE metrics. For exam-
ple, information such as address access patterns, connection
status, or per source behavior of small flows is important
for portscan detection. Hence, the impact of sampling on
anomaly detection remains an open question.

On the other hand, conventional intrusion detection sys-
tems are typically deployed at network edges where detailed
payload data is available. It is not clear if similar solutions
can be effective in diagnosing network-wide anomalies us-
ing only sampled packet headers from high-speed backbone
networks. Nevertheless, monitoring at backbone transit net-
works offers a unique opportunity to study a more diverse
traffic mix from various vantage points. A more global traf-
fic view can better capture anomalous patterns and detect a
wider range of scanning activities [10]. It becomes increas-
ingly critical for Internet service providers (ISPs) to detect
anomalous traffic to ensure quality of service and provide
value-added services.

This paper focuses on the use of traffic measurements from
high-speed IP-backbone networks for anomaly detection and
seeks to answer this question: Does sampled data capture
sufficient information for effective anomaly detection?



Our initial work [17] shows that random packet sampling
indeed distorts traffic features that are critical for differ-
ent portscan detection techniques. This paper documents a
more thorough study that compares four popular sampling
methods: random packet sampling, flow sampling, smart
sampling [11], and sample-and-hold [9]. Packet traces cap-
tured from a Tier-1 IP-backbone are sampled using these
four methods and then used as input to detect two com-
mon classes of anomalies that are visible to ISPs: volume-
based change detection and portscan detection. Port scan-
ning [3, 14, 18, 19] is usually associated with worm or virus
propagation, while volume anomalies [4,5,21] can be due to
a variety of reasons, including DoS attacks and flash crowds.

Since it is not possible to evaluate and compare all the
anomaly detection algorithms that have been previously pro-
posed, we choose to study three representative techniques.
For volume anomaly detection, we evaluate a wavelet anal-
ysis approach previously proposed by Barford et al. [4]. For
portscan detection, we evaluate the Threshold Random Walk
(TRW) [14] and Time Access Pattern Scheme (TAPS) [19].
These three schemes differ in the ways they profile the traf-
fic for detection. The wavelet-based approach detects lo-
cal abrupt changes in volume “relative” to global statistics.
TRW follows the philosophy of doing stateful analysis of
the underlying traffic, while TAPS leverages the knowledge
of the “behavioral pattern” of port scanners. While these
algorithms merit evaluation in their own respect, more im-
portantly, they cover a reasonably wide range of metrics, e.g.
connection pattern, scanning rate, and volume changes that
are typically used in anomaly detection algorithms. We not
only evaluate the performance of these algorithms, but also
identify how the metrics used in decision making are affected
by the different sampling techniques and the sampling rate.
Since these metrics are commonly used in anomaly detec-
tion, we expect that our results will be widely applicable.

Our contributions and findings are summarized as follows:

• Through experiments using real traffic traces, we quan-
tify how four different sampling schemes (random packet
sampling, random flow sampling, smart sampling, and
sample-and-hold) affect the performance of a wavelet-
based volume anomaly detection method and two portscan
detection algorithms. We also perform sensitivity anal-
ysis with respect to different sampling rates and de-
tection parameters. Our results show that sampling
adversely impacts the ratio of successful detection for
both volume anomalies and port scans which are non-
volume based.

• Through analysis, we pinpoint important traffic “fea-
tures” that are distorted due to sampling and have ad-
verse impacts on different anomaly detection schemes.
We demonstrate that sampling causes the following
fundamental bias in data: (a) a decrease in the de-
viation of local variance from global variance, which
diminishes the effectiveness of the wavelet-based vol-
ume anomaly detection method (Section 3), and (b)
a shortened flow size distribution, which causes high
false positive and false negative ratios for scanner de-
tection schemes that rely on source access patterns
(Section 4).

• Among the four sampling schemes, random flow sam-
pling introduces the least amount of distortion to the

traffic features critical for volume anomaly and portscan
detections. Since random flow sampling was origi-
nally proposed to improve estimation accuracy of flow
statistics, it seems to be an ideal solution that works
well for both traffic engineering and anomaly detec-
tion purposes. However, its heavy resource require-
ments and poor scalability will continue to prohibit
its wide-spread deployment. On the other hand, ran-
dom packet sampling performs the worst whereas it is
the easiest to implement. Packet sampling decreases
the deviation of local variance from global variance in
the flow arrival time series, hence adversely impact-
ing the wavelet-based volume detection method. Its
strong flow shortening effect introduces a high number
of false positives in portscan detection, which is un-
desirable from a network administrator point of view.
Smart sampling and sample-and-hold are less resource-
intensive than random flow sampling, but they per-
form poorly in the context of anomaly detection. Being
’biased’ towards accurate estimation of heavy-hitters,
they fail to capture small-sized flows, which are often
the sources of many attacks.

The remainder of the paper is organized as follows. Sec-
tion 2 provides background discussion on the sampling schemes,
anomaly detection algorithms, and data set we analyzed. In
Section 3, we demonstrate and analyze the effect of sam-
pling on wavelet-based volume change detection technique.
Section 4 compares the impact of sampling on two specific
portscan detection schemes TRW and TAPS. We discuss
the implications of this study and some future directions in
Section 5.

2. BACKGROUND AND METHODS

2.1 Sampling
Sampling has been introduced in network measurement

to alleviate large memory and CPU power requirements on
the routers as well as high bandwidth usage in the network
to transport the collected data records [7]. Two categories
of sampling have been widely discussed in literature: packet
sampling and flow sampling. Packet sampling is simple to
implement with low CPU power and memory requirements.
However, extensive research [8,13]has shown it to be inaccu-
rate for inference of flow statistics such as the original flow
size distribution. Adaptive packet sampling techniques that
adjust the sampling rate to traffic load to further reduce
memory consumption [10] or to improve accuracy [6] have
also been presented.

Flow sampling emerges as an alternative to overcome the
limitations of packet sampling. It is shown [13] to improve
accuracy but still suffers from prohibitive memory and CPU
power requirements. To partially address these issues, espe-
cially to reduce memory and bandwidth requirements, tech-
niques like smart sampling [8] and sample-and-hold [11] have
been proposed as two variants of flow sampling with a fo-
cus on accurate estimation of heavy-hitters. In this study,
we evaluate how the performance of anomaly detection al-
gorithms is affected by these sampling algorithms. In par-
ticular, we focus on random packet sampling and its flow
equivalent, random flow sampling as well as the two afore-
mentioned variants: smart sampling and sample-and-hold.
Below we briefly describe the four sampling techniques.



Random packet sampling Random packet sampling sim-
ply samples a packet with a small probability r <
1. The sampled traffic is then classified into flows
based on the five-tussle: (Source IP address, destina-
tion IP address, source port, destination port, proto-
col). Flows are terminated by either a default timeout
of 1 minute or explicit TCP protocol semantics. This
process emulates the behavior of the NetFlow [1] ran-
dom sampling process.

Random flow sampling Random flow sampling first clas-
sifies packets into flows based on the flow construction
rules mentioned above. It then samples each flow with
some probability p < 1.

Smart sampling Proposed by Duffield et al. [8], this tech-
nique is a size-dependent flow record selection algo-
rithm and applies to complete flow records. Given a
set of flows of sizes S = {xi : i = 1, · · · , n}, smart sam-
pling selects a flow of size x with a probability p(x) to
form a set of selected flows of S′. The goal is to achieve
an unbiased estimator X ′ =

P
x′∈S′ x′/p(x′) of the to-

tal byte count X =
P

x∈S x. The following solution
was shown to be optimal in terms of balancing the op-
posing constraints of keeping the variance of X ′ small,
while reducing the sample size N ′ = |S′|:

p(xi) = pz(xi) =


xi
z

if xi < z
1 if xi ≥ z

where z is a threshold that trades off accuracy for re-
duction in bandwidth requirement.

Sample-and-hold (S&H) Sample-and-hold [11] performs
a flow table lookup for each incoming packet to see if a
flow entry for it exists. If found, the entry is updated.
Otherwise, the packet is randomly sampled and a flow
entry created with a probability hs. hs is chosen as if
each byte is sampled with a probability h. Thus the
sampling probability for a packet of size s is given by
hs = 1− (1− h)s ≈ h · s. Unlike random packet sam-
pling, a flow entry gets updated by all the subsequent
packets once it is created in S&H. Hence, it requires
flow table lookups for all incoming packets, though the
memory size for the flow table is reduced due to its
non-uniform sampling biased toward “elephant” flows.

As mentioned earlier, network operators are increasingly
utilizing sampled traffic data for detecting anomalies such as
denial-of-service attacks or zero-day attacks. These attacks
can be broadly classified into two categories: volume anoma-
lies which capture the former type of attack, and portscan
anomalies which characterize the latter. We describe them
in detail below and also discuss the detection algorithms for
each class that we utilize in our evaluation.

2.2 Volume Anomaly Detection
Network traffic anomalies such as DoS attacks or flash

crowds often manifest themselves as abrupt changes in packet
or flow count measurements. In other words, they cause vol-
ume anomalies. This has drawn enormous attention over
the years and a number of detection schemes have been
proposed [4, 5, 15, 21]. Signal processing techniques [4, 21]
have been adopted to detect this type of anomaly. Bar-
ford et al. [4] applied wavelet filters to both SNMP MIB

data and IP flow data to detect sudden increase in the local
variance of the time series, while Thottan and Ji [21] used
an auto-regressive (AR) process to detect abrupt changes
in a few MIB variables. Wavelet analysis facilitates multi-
resolution analysis (MRA) of time-frequency traffic charac-
teristics, and has proved to be effective at detecting volume
anomalies. We focus our evaluation on a discrete wavelet
transform (DWT) based detection procedure [4] and briefly
discussed below.

DWT-based detection is an off-line algorithm that ap-
plies wavelet decomposition to either the packet or flow rate
time series obtained from traffic traces to detect volume
changes at various time scales. It basically comprises of
three steps: decomposition of the time series, re-synthesis,
and detection.

Decomposition: Broadly speaking, the goal of this step is
to decompose the original signal so as to be able to
identify changes taking place at various time scales.
This is done as follows. The DWT calculates wavelet
coefficients at dyadic scales and can be treated as fil-
tering operations. The original signal {X[n]} of length
N is passed through a real-valued wavelet filter (high
pass) {hl} of even width L. The output is a set of
wavelet coefficients {W1,t} at the original time scale
(first level) with length N

2
. Similarly by filtering the

signal with the corresponding scaling filter (low pass)
{gl = (−1)l+1hL−1−l}, we obtain the first level scaling
coefficients {V1,t} of length N

2
. By applying the inverse

DWT on {W1,t} and {V1,t} independently, we separate
the first level detail D1 from approximation A1. The
decomposition process is then repeated using A1 as an
input, which yields D2 and A2 at the second level. The
maximum level of DWT we can perform is j ≤ log2 N .

The MRA thus satisfies X =
Pj

i=1 Di+Aj . Each level
j represents the strength of a particular frequency in
the signal, with a higher value of j indicating a lower
frequency.

Re-synthesis: Once various frequency levels (or decompo-
sition levels j) in the signal have been identified, they
are aggregated into low, mid and high bands. The low-
band signal Xlow =

Pj
i=l Di +Aj consists of the high-

est (j − l + 1) levels of decompositions and identifies
slow-varying/long-term trends. The high-band signal

Xhigh =
Ph

i=1 Di is the sum of the lowest h levels of
details and highlights sudden variations in the volume
of the traffic. The mid band is the sum of the rest.

Detection: Volume anomalies are detected as follows. The
local variance of the high and mid-band signals is com-
puted over a time interval determined by a sliding win-
dow. A metric called the deviation score, which is the
ratio between the local variance within the window and
the global variance is computed for each such window.
Windows with deviation scores higher than a prede-
fined threshold are marked as volume anomalies. It
was shown [4] that the technique is quite effective at
capturing different types of volume anomalies.

2.3 Portscan Detection
Several portscan detection techniques have been proposed

in literature. For instance, Snort [3] is a flexible open-source
intrusion detection system that issues scan alerts based on



user-defined connection patterns and rates. SPICE [20] per-
forms a complex off-line Bayesian analysis to detect stealthy
port scans. In this paper, however, we focus on two ef-
fective “on-line” portscan detection techniques: Threshold
Random Walk (TRW) [14] and Time Access Pattern Scheme
(TAPS) [19]. Both algorithms are described briefly below.
A summary with more details can be found in our previous
paper [17].

TRW and TRWSYN TRW forms two hypothesis, H0 that
a source is a “benign” host and H1 that a source is a
“scanner”, characterized by the likelihood of the suc-
cess or failure of a connection. The rationale for this
definition is that a benign host is far more likely to
have successful connections than a scanner which ran-
domly probes the address space. Hence H0 is the hy-
pothesis associated with high connection success prob-
ability and H1 with failure. The technique performs
hypotheses testing on a sequence of observed events,
which in this case is connection status, to determine
which hypothesis is more likely for the source. In par-
ticular, let Y = {Y1, Y2, . . . , Yi} represent the random
vector of connections observed from a source, where
Yi = 0 if the ith connection is successful and Yi = 1
otherwise. For each observed value Yi, the likelihood
ratio defined as:

Λ(Y ) =

nY
i=1

Pr[Yi|H1]

Pr[Yi|H0]
(1)

gets updated. It is not hard to see that the behavior of
Λ(Y ) is similar to a random walk where the ith jump
is governed by the status of the ith connection. When
Λ(Y ) crosses either one of two predefined thresholds,
the corresponding hypothesis is selected as the most
likely. It was shown [14] that TRW only requires ∼ 6
observed events to detect scanners successfully.

TRWSYN [19] is the backbone adaptation of TRW to
accommodate the fact that observed aggregate traf-
fic on backbone links is usually uni-directional, which
makes predicting whether a connection “failed” or “suc-
ceeded” much more difficult. The modified oracle marks
a single SYN-packet flows as failed connections, while
others are assumed to be successful. Therefore TR-
WSYN can detect TCP portscan only.

TAPS Unlike TRW, which traces the state of connections,
TAPS [19] utilizes the the access pattern to separate
scanners from benign hosts. This is based on the ob-
servation that a scanner often initiates connections to
a larger spread of destination IP addresses (horizontal
scan), or port numbers (vertical scan). In other words,
the ratio γ between distinct destination IP addresses
and port numbers (or its reciprocal, whichever is big-
ger) for a scanner is far larger than a non-scanner.

Instead of using a simple threshold like Snort (which
also utilizes connection pattern behavior), TAPS com-
bines a rate limiting scheme for event generation with
a sequential hypotheses test similar to TRW in order
to achieve fast detection as well as lower false positive
rate. In order to be protocol agnostic, TAPS associates
a single packet flow with a failed connection. The al-
gorithm works as follows. In each time bin (say i), for
each source, the ratio γ is computed and compared to

a predefined threshold k. The event variable Yi associ-
ated with that time bin is then set to 0 or 1 depending
on whether γ exceeds or lies below the threshold. The
likelihood ratio is then updated in the same manner as
for TRW based on the value of Yi and a decision re-
garding which hypothesis applies to the source is made
based on which of the two thresholds is crossed first.
It is clear from the above discussion that the threshold
k affects the accuracy of detection, while time bin size
controls the promptness of decision making.

2.4 Trace Data
Our experiments used packet traces collected on three

links in a Tier-1 ISP’s backbone network: BB-West and
BB-East were from two OC-48 links between backbone
routers on the west coast and east coast respectively, while
the Wireless trace was collected from a link connecting
gateway routers to a nation-wide cellular network. These
traces were collected by IPMON [12], a passive monitoring
system that captures the first 64 bytes of the IP header of ev-
ery IP packet traversing a monitored link. The large volume
BB-East trace contains know DoS attacks and is ideal for
evaluating the wavelet-based anomaly detection algorithm.
The BB-West trace and the Wireless trace have a relatively
low traffic volume but contain a large percentage of scan-
ning traffic, making them interesting for portscan analysis.
Statistics of the traces are presented in Table 1.

Table 1: Trace Data Statistics
Trace Date Average Rate Duration

BB-East 04-07-2003 207Mbps 17h
BB-West 03-08-2003 55Mbps 1 hour
Wireless 04-01-2004 7Mbps 3 hours

2.5 Methodology
We generated sampled traces from the original traces us-

ing the four sampling schemes, namely random packet sam-
pling, random flow sampling, smart sampling and sample-
and-hold which were then used as inputs for the anomaly
detection algorithms.

Since all the four sampling schemes use different parame-
ters for sampling, we require a common metric that allows
us to obtain a fair comparison. A possible choice could be
based on resource consumption, namely CPU utilization or
the required storage memory. However, for the purposes of
this work, we chose the percentage of sampled flows as the
common metric. Specifically, we set the parameters of each
sampling algorithm such that they sampled approximately
the same number of flows. We now motivate our choice of
the number of sampled flows for the purposes of normaliza-
tion. First and foremost, the focus of this work is on evalu-
ation of these sampling algorithms within the framework of
anomaly detection which is heavily based on flow measure-
ment. In particular, flow arrival time series are utilized by
the wavelet-based volume anomaly detection, and exported
flow records are required for TRWSYN and TAPS, respec-
tively. The anomaly detection results for different sampling
schemes would not be comparable unless the total number of
flows sampled are the same. Secondly, it can be argued that
memory requirements for these algorithms (at least the slow
DRAM memory) is dominated by the storage requirements



for the sampled flow records and hence also normalized since
we normalize the number of sampled flows. Third, the CPU
utilization (as well as fast SRAM memory access) is strongly
influenced by the complexity of flow-table lookups for each
selected packet. This can be highly dependent on vari-
ous algorithmic implementations, CPU configurations etc.,
hence potentially hard to normalize. For example, flow ta-
ble lookups need be performed only for the sampled packets
in packet sampling, but need to be done for every packet in
all other schemes. Packet sampling is clearly the least CPU
intensive, but the other three schemes would have to be dif-
ferentiated based on algorithms and data structures used in
their respective implementations. In any case, for complete-
ness, we list the fraction of sampled packets in Table 2 for
each sampling scheme which loosely reflects the comparative
CPU usage.

Guided by this metric, the parameters for the various
sampling schemes were chosen as follows. We first gen-
erated sampled traces with the random packet sampling,
where each packet is sampled with probability r = 1/N
and the average sampling interval N takes values from the
set {10, 20, 50, 100, 200, 500, 1000}. The parameters for the
flow-based sampling schemes were then chosen as follows.
Assume the probability of a flow having n packets in the
original trace is f(n), and the maximum flow size is M pack-
ets. For smart sampling with a threshold z, the ratio of flow
selection is given by:

z−1X
n=1

f(n) · n

z
+

MX
n=z

f(n).

In sample-and-hold, the flow sampling ratio can be calcu-
lated as:

MX
n=1

f(n)(1− (1− hs)
n) ≈ f(n)nhs,

where s is the average packet size. In each case, the flow
sampling ratio was chosen such that it resulted in the same
number of flows as with packet sampling. The choice of the
sampling parameter for random flow sampling is straightfor-
ward: it is simply the ratio of the number of sampled flows
(with packet sampling) to the original number of flows in the
trace. Table 2 lists the parameters setting in various sam-
pling methods for the BB-West trace. Note that although
the proportions of the exported flows are fixed, smart sam-
pling and sample-and-hold sampled much higher percent-
ages of packets due to their bias toward heavy-hitters.

To compare the impact of these schemes on anomaly de-
tection, the wavelet-based volume change detection and portscan
detection algorithms were applied to both the original and
sampled traces and their performance compared.

3. IMPACT OF SAMPLING ON VOLUME
ANOMALY DETECTION

Our measurement data used for volume anomaly detection
consists of the flow arrival rate time series. We obtained the
time series by counting the number of new flows in each time
interval. For ease of exposition, we shall refer to the time
series extracted from the original trace as the original time
series, and that from a sampled packet trace file by sampled
time series. We apply wavelet analysis to detect volume
anomalies in the original time series, and use the result as

the baseline to compare detections from the sampled time
series. Note that we have not attempted to identify the root
causes of those anomalies, since our focus is on studying the
impact of sampling schemes on the efficacy of wavelet-based
abrupt change detection method.

In our experiment, we use the BB-East Trace, which con-
tains about 17 hours of packet headers on a backbone link.
The “db5” wavelet family we choose has a support length of
9 and vanishing moments of 5, a good trade-off between time
and frequency localizations for our purpose. We decompose
the signal with a 12-level DWT as explained in Section 2.2.
To re-synthesize it, we set h = 5 and l = 10 so that the high
band signal details short-term (∼ seconds) changes, the mid
band displays variation on a scale of a minute, and the low
band shows trend over 15-minute intervals. The sliding win-
dow size for computing local variance at high and mid bands
is one minute. We set the average deviation threshold at 4.5,
simply to make sure that every single obvious spike will be
detected in the original time series. Thus detection results
from the sampled time series can be easily compared.

3.1 Volume Anomaly Detection Results
Figures 1 shows the volume anomalies detected in between

the dotted lines across high and mid-bands from the original
time series. There are a total of 21 abrupt changes in the
flowing arrival process.
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Figure 1: The BB-East Trace: Detection from the
original trace, 21 volume anomalies found.

Table 3 summarizes the number of volume anomalies de-
tected from various sampling techniques. The percentage of
flows sampled corresponds to sampling interval of 10, 100
and 1000 in random packet sampling. As is to be expected,
the number of detections goes down as sampling interval
increases. Our results indicate that random flow sampling
performs the best over all sampling rates amongst all sam-
pling schemes. For example, it experiences no performance
degradation at a sampling interval N = 10. Detection re-
sults from smart sampling and sample-and-hold drops much
faster, and when the sampled flow percentage drops below
10%, they can only detect one or two volume surges. We



Table 2: Sampling Parameters and Sampled Packet Percentage for the BB-West Trace

% flows
random packet sampling random flow sampling smart sampling sample-and-hold

r % pkts p % pkts z % pkts h % pkt

34.4% 0.1 10.0% 0.344 34.4% 11 84.5% 1.26× 10−3 75.9%
22.3% 0.05 5.00% 0.223 22.6% 19 77.7% 5.38× 10−4 68.7%
11.7% 0.02 2.00% 0.117 11.5% 41 68.9% 1.70× 10−4 58.8%
6.91% 0.01 1.00% 0.691 6.96% 75 62.7% 7.10× 10−5 51.5%
3.90% 0.005 0.500% 0.0390 4.15% 145 56.6% 3.16× 10−5 44.7%
1.73% 0.002 0.201% 0.0173 1.78% 364 49.3% 1.10× 10−5 36.1%

note that there are no false positives in detection for any
of the sampling methods. Next, we attempt to identify
the causes behind the differing performance of the sampling
schemes.

Table 3: Number of Volume Anomalies Detected
under Various Sampling Methods

Sampling interval 10 100 1000
Percentage of flows (%) 36.7 8.03 1.47

Random packet sampling 19 6 1
Random flow sampling 21 18 13
Smart sampling 18 1 1
Sample-and-hold 18 2 1

Figure 2 shows the detected anomalies from the random
packet sampling under increasing sampling intervals. Fig-
ures 3(a), 3(b), and 3(c) presents the results from random
flow sampling, smart sampling, and sample-and-hold under
effective sampling interval N = 100, respectively.

3.2 Feature Variation Due to Sampling
Even though random flow sampling generates the highest

number of successful detections as shown in Table 3, the
number of anomalies detected actually decreases when sam-
pling interval increases. We observe also that signals become
much noisier, especially at the high frequency band. Since
the original technique is based upon utilizing the local vari-
ance and sampling reduces the number of observed events,
we hypothesize that sampling introduces distortion in the
variance of the time series.

To help explain the source of this distortion, we provide
a simple, approximate explanation based on random flow
sampling. We consider the flow arrivals as belonging to a
stationary i.i.d point process, given by {Xt} = N(t−1, t], t =
0, 1, 2, . . ., where N(t− 1, t] is the number of incoming flows
in a unit time interval. Denote the variance of this process
by σ2

X and the average rate by E[N(t− 1, t]] = λ.
Now, if we were to model the impact of sampling as sim-

ply scaling down the original time series {Xt} by a fraction
p, it is easily seen that the variance of the new scaled-down
process {pXt} should be σ2

pX = p2σ2
X , i.e., scaling should

reduce the variance. However, in practice, sampling involves
removal of discrete points from the process rather than sim-
ple scaling. In other words, we sample the original point
process binomially in each time unit. We assume that this
process adds a variance term given simply by that of a bino-
mial random variable. In particular, if there were n flows in
a time unit, then the variance is given by np(1− p). Hence,
on an average we approximate the variance term added by
E[n]p(1− p) = λp(1− p).

Therefore, the total variance of the sampled process be-
comes

σ2
X(p) = p2σ2

X + λp(1− p) (2)

The extra part of the variance in Eqn. (2) is due to the
random sampling process. Therefore we call it the sampling
variance σ2

S = p(1 − p)λ. It depends only on the sampling
probability and flow arrival rate of the original trace.

Intuitively, after random flow sampling, each point in the
flow counting process Ns(t − 1, t] varies around the cen-
ter value pN(t − 1, t]. Although the mean scales down to
E(Ns(t− 1, t]) = pE(N(t− 1, t]), the variance may increase
as shown above. To illustrate how much increase is observed,
we plot the ratio of σ2

S/σ2
pX in Fig. 4. We find that the

percentage of the sampling variance in the total variance in-
creases with the sampling interval, and almost reaches 80%
at the sampling interval of 1000.

Interestingly, the simple analysis above also highlights
why we see no false positives (unlike those observed for
portscan detection in Section 4) relative to the original time
series. Specifically, if we detect a spike in traffic volume in
the sampled time series, it must have existed in the original
time series also and is not an artifact of sampling. Let the
local variance over any time window in the sampled time
series is given by v′L and the global variance by σ2

pX . Based
on the algorithm, if we choose a threshold t, then we detect
anomalies whenever, v′L ≥ t · σ2

pX .

If we were to replace v′L and σ2
pX with their counterparts

in the original time series from Equation 2, we obtain:

vL ≥ t · σ2
X + (t− 1)λ(

1− p

p
). (3)

The above equation states that the local variance for the
original time series would also exceed the threshold com-
pared to the original global variance.

Finally, we discuss potential reasons for the the difference
in performance observed in Table 3. Most of the volume
spikes observed in our traces are caused by a sudden in-
crease in small packet flows. Note that random flow sam-
pling is completely unbiased by flow size, while packet sam-
pling, sample-and-hold and smart sampling are biased to-
wards sampling large flows. Given the unbiased nature of
flow sampling, it is able to sample a sufficient number of such
small flows thereby providing good detection results. Smart
sampling and sample-and-hold are specifically designed to
track heavy hitters and hence are even more biased towards
heavy flows than packet sampling. This explains their rel-
atively poor performance compared to packet sampling in
terms of detecting volume anomalies.
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Figure 2: The BB-East Trace: Detection results
from random packet sampling with sampling inter-
val N = 10, 100, and 1000.
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Figure 3: Detection results from random flow sam-
pling, smart sampling, and sample-and-hold at ef-
fective sampling interval N = 100.
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4. IMPACT OF SAMPLING ON PORTSCAN
DETECTION

In this section, we evaluate the impact of the four differ-
ent sampling schemes described in Section 2.1 on the efficacy
of portscan detection. As mentioned earlier, TRWSYN and
TAPS are chosen as examples of portscan detection algo-
rithms. One of our goals is to empirically investigate how
much (if any) do the various sampling schemes distort traffic
fingerprints used by detection algorithms such as TRWSYN
and TAPS, which rely on metrics other than traffic volume.
We have previously explored how packet sampling affects the
performance of TRWSYN and TAPS [17], and some of the
results and discussions are included here to compare against
three other sampling schemes: flow sampling, sample-and-
hold, and smart sampling. We adopt the same methodology
and metrics [17], which is described here for completion.

We performed the experiments using both Trace BB-West
and Trace Wireless, which are known to contain portscan
traffic (Section 2.4). Due to space limitations, we only in-
clude the results based on Trace BB-West, with the sampling
parameters listed in Table 2. Similar results are observed in
the case of Trace Wireless.

We use the following metrics previously defined by Srid-
haran et al. [19] to quantify the performance of the portscan
detection algorithms:

Success Ratio:Rs =
#(true scanners detected)

#(true scanners)

False Negative Ratio:Rf− =
#(true scanner missed)

#(true scanners)

False Positive Ratio:Rf+ =
#(false scanner detected)

#(true scanners)
.

The success ratio Rs indicates the effectiveness of the de-
tection algorithm, while the false positive ratio Rf+ mea-
sures the relative error. It is desirable for an anomaly de-
tection algorithm to have high Rs and low Rf+. we only
need to discuss the success and false positive ratios because
Rs +Rf− = 1. These metrics are generic to be used for eval-
uating different algorithms under various sampling schemes.

A challenging task in the computation of the above met-
rics, however, is to catch the true scanners. We use the
final list of scanners manually generated by Sridharan et

al. [19] as the ground truth. Even though the ground truth
is an approximation of the actual set of scanners, it is suf-
ficient for the purpose of our study since we are less inter-
ested in the absolute accuracy of these detection algorithms.
The approximated ground truth allows us to study the rel-
ative performance of the portscan detection algorithms as
a function of sampling scheme and sampling rates. Sim-
ilar bootstrapping methods have also been used by other
researchers [4, 14].

4.1 TRWSYN under Sampling
First, we discuss how TRWSYN performs when its input

data is sampled using four different methods. In particular,
we are interested in identifying the potential sources of inac-
curacy in estimating traffic features that can affect its per-
formance. Note that throughout our evaluation, we retain
original values of the hypothesis test parameters, θ0 = 0.8
and θ1 = 0.2, which were used for TRWSYN on non-sampled
traffic. This is because we wish to evaluate how different
sampling schemes affect the performance of algorithms de-
signed to work on non-sampled traffic.

Figure 5 plots the Rs and Rf+ ratios for the BB-West
trace as functions of effective sampling rates for all four sam-
pling schemes. We first discuss random packet sampling as
the base case for comparisons, since results with this partic-
ular scheme were previously obtained [17], where potential
causes of distortion were presented and analyzed in detail.

Figure 5(a) indicates that the success ratio Rs of TR-
WSYN initially increases slightly for low sampling intervals
before dropping off for larger values of N as the traffic is
increasingly thinned. For example, Rs increases from 79.6%
for the non-sampled trace to around 81% with N = 10, 20
before dropping off to 45.6% at N = 500. While this may
seem advantageous, the false positive ratio Rf+ also fol-
lows similar behavior but on a much larger scale. Specifi-
cally, the false positive ratio increases by a factor of 3 for
low sampling interval of 10, indicating a large number of
sources erroneously tagged as scanners, before dropping at
large sampling intervals.

In our previous work [17], we have identified two key ef-
fects of packet sampling: flow-reduction, where the number
of flows observed are reduced, and flow-shortening, wherein
a multi-packet flow is reduced to a single packet flow by ran-
dom packet sampling. Recall that the TRWSYN algorithm
associates a single SYN packet flow with a failed connec-
tion attempt, which indicates a potential scanners. At small
sampling intervals, the number of flows is not dramatically
reduced and hence the algorithm can observe enough failed
connections to retain the success ratio. However, it was
shown [17] that even small sampling intervals can substan-
tially shorten the flow size (in packets), thus increasing the
number of single packet flows. This has a twofold impact.
First, some ground truth scanners that may have transmit-
ted multi-packet flows, but initially missed by TRWSYN,
are now ’shortened’ and hence ’detected’, which explains the
slight increase in the success ratio. On the other hand, flow
shortening converts a large number of regular multi-packet
flows into single SYN packet flows, that are now erroneously
tagged as scanning traffic. This results in a dramatic in-
crease in Rf+. When the sampling interval N increases,
flow-reduction dominates, i.e., the number of flows observed
from a single source falls off substantially. Consequently,
the algorithm makes fewer decisions and hence both Rs and
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Figure 5: The BB-West Trace: TRWSYN detection results Rs and Rf+ under different sampling intervals.

Rf+ decrease.
We apply the same reasoning principles to the other three

sampling schemes. Since random flow sampling, smart sam-
pling and sample-and-hold are all effectively flow sampling
methods, flow-shortening does not apply to the TRWSYN
algorithm. This is because sampling decisions are based
on the entire flow, not the individual packet. It is worth
noting that sample-and-hold does hold an exception and a
mid-flow-shortening does happen. Flows are only possibly
shortened from a mid-flow packet to the end of the flow. If
the first (SYN) packet is sampled, the entire flow will be
kept. Since TRWSYN algorithm only makes decision on
SYN packet flows, no new false positives or new detection
can be introduced. Therefore flow-reduction is solely respon-
sible for producing fewer samples with increased sampling
interval and reduces. Evidence of our hypothesis can be seen
in Figure 5, where both Rs and Rf+ decrease almost mono-
tonically for the three flow-based sampling schemes when the
sampling interval N increases. More importantly, all three
schemes result in extremely low false positives compared to
packet sampling. As shown previously, packet sampling suf-
fers from extensive flow shortening, generating high false
positives in TRWSYN. This is not desirable from network
administrative point of view. Hence, the flow-based sam-
pling schemes clearly claim an advantage in producing low
false positives over packet sampling.

Though all three remaining sampling schemes seem to af-
fect portscan detection by TRWSYN in a similar manner,
their relative impact on the performance degradation is quite
different. Random flow sampling is the most robust in terms
of Rs: it drops by only 15% from N = 1 to N = 500, and
it outperforms other schemes when N ≥ 100. The suc-
cess ratio for sample-and-hold drops by more than 75% at
N = 500, while the performance from smart sampling lies
in the middle.

Interestingly, random packet sampling outperforms both
smart sampling and sample-hold for all sampling rates in
terms of the success ratio. As mentioned earlier, the latter
two schemes favor large traffic flows and sample short flows
at a lower sampling rate compared to large flows. Since
most flows emitted by a scanner are single packet flows,
they suffer more from flow-reduction in the same sampling

interval as random flow sampling. However, since random
flow sampling is not biased by flow size, it performs better
than random packet sampling at larger sampling intervals
where even packet sampling is biased towards large flows1.
This is shown in Table 4.

Table 4: Percentage of single SYN-packet flows sam-
pled from the BB-West Trace

N Prp Prr Prz Prh

10 18.1% 34.4% 9.10% 6.98%
20 9.89% 22.3% 5.27% 3.06%
50 4.24% 11.7% 2.42% 0.987%
100 2.15% 6.90% 1.32% 0.414%
200 1.09% 3.88% 0.695% 0.186%
500 0.449% 1.72% 0.278% 0.0624%

4.2 TAPS under Samplings
We also evaluated the performance of TAPS when applied

to traffic traces sampled using the four different schemes.
Recall from Section 2.3 that time-bin is a critical parameter
for TAPS. Hence, for each scheme, and for each sampling
rate, we also varied the size of the time bin over a range of
values in order to understand how Rs and Rf+ changes as
a function of the time bin and sampling interval. It was
empirically shown [17] that for random packet sampling,
there is an optimal time bin t for each sampling interval that
maximizes Rs. Furthermore, the value of the optimal time
bin size is an increasing function of the sampling interval.
We found this to be true for the other three flow-sampling
schemes as well.

Results of portscan detection with TAPS for the Trace
BB-West are shown in Fig. 6 for all of the four sampling
methods. For each scheme and each sampling rate, we show
results using optimal time bin size that maximizes Rs. The
behavior of TAPS under all four schemes is similar to that
of TRWSYN. Specifically, Fig. 6(a) shows that the success
ratio Rs of TAPS decreases for all four sampling schemes

1At small sampling intervals packet sampling leverages flow
shortening to actually perform better.
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Figure 6: The BB-West Trace: TAPS detection results Rs and Rf+ under different sampling intervals.

with random flow sampling performing the best and the
most robust. Furthermore, random packet sampling per-
forms nearly as well as the remaining two flow-based sam-
pling schemes. Our reasoning for this behavior is similar to
that for TRWSYN. Specifically, since smart sampling and
sample-and-hold favor sampling of large flows, they miss out
on small flows that are critical to identifying scanners.

The false positive ratio Rf+, shown in Fig. 6(b), ini-
tially increases in the case of packet sampling due to flow-
shortening before dropping off at large sampling intervals
due to flow reduction. Since flow shortening is not a major
factor for the remaining schemes, all of them exhibit ex-
tremely low false positives that monotonically decrease with
sampling interval. Although sample-and-hold does generate
mid-flow-shortening, it does not produce a significant num-
ber of single packet flows to increase Rf+ significantly. It
was shown [17] that TAPS uses the address range distri-
bution in its detection technique. As a result, TAPS with
random packet sampling yields 1/10 of the Rf+ observed
by TRWSYN (a comparison of Fig. 5(b) and 6(b) confirms
that). The same behavior is also seen with the other sam-
pling schemes, in that they also yield far lower false positives
under TAPS compared to that with TRWSYN. This is to be
expected, since all of them are “insensitive” to the address
range distribution and hence do not introduce any distortion
in that aspect.

In summary, for both TAPS and TRWSYN portscan de-
tection, flow-based sampling schemes do well in generating
low false positives compared with random packet sampling.
Random flow sampling overall is the most desirable scheme
under large sampling intervals (> 1/100), since it performs
well on both success ratio and low false positives. Under low
sampling intervals, random packet sampling does the best in
success detections and smart sampling does the best in low
false positives. The main source of performance degradation
for TRWSYN and TAPS in sampling environment is the in-
accuracy in classifying single SYN-packet flows for the case
of random packet sampling [17].

5. CONCLUSIONS AND FUTURE WORK
Various sampling techniques have been proposed for traf-

fic measurements in high-speed backbone networks to reduce
storage and processing overhead. There are well-studied
trade-offs between the accuracy, efficiency, and scalability in
choosing a specific sampling method or rate for traffic engi-
neering purposes. However, the question of whether sampled
data is sufficient for anomaly detection, which has become
increasingly critical to network providers, remains an open
question.

This work is among the first effort to measure and ana-
lyze the impact of sampling on traffic features critical for
anomaly detections. Real packet traces collected from a
Tier-1 backbone network were sampled using four popular
methods: random packet sampling, random flow sampling,
smart sampling, and sample-and-hold. The sampled data
was then used as input to the following three representative
anomaly detection algorithms: (a) a wavelet-based volume
change detection, (b) TRWSYN for detecting TCP scan-
ners based on inference of connection status, and (c) TAPS,
which performs statistical hypothesis testing based on scan-
ner access patterns of destination addresses/ports. Our re-
sults show that the sampling schemes degrade the perfor-
mance of all three anomaly detection algorithms in terms of
success detection and false positive ratio. All four sampling
methods introduce varying degrees and forms of distortion,
which we characterize based on the sampling technique, to
traffic features such as traffic variance and flow size distri-
butions.

5.1 Implications of our results
Through comprehensive study and analysis, we identify

specific fundamental bias due to sampling that has signifi-
cant implications on both classes of anomaly detection al-
gorithms.

The Wavelet-based approach for volume anomaly detec-
tion utilizes a deviation score based on the relative differ-
ence between the local and global variance in the flow vol-
ume intensity at different time scales. Our evaluation indi-
cates that both packet and the flow-based sampling schemes
compress this difference mainly by inducing lossy data, thus
weakening the ability of the algorithm to detect abrupt changes
in volume. We expect to see similar effect on other volume-
change detection schemes.



With respect to portscan detection, while all sampling
schemes introduced degradation, they did so through differ-
ent mechanisms. Random flow sampling, which performed
the best, introduced degradation primarily through lossy
but distortion free data. Packet sampling causes severe
“shortening” of flows resulting in benign multi-packet flows
getting tagged as scanner flows. Sample-and-hold and smart
sampling are biased towards large flows and thus ignore
small flows characteristic of scanners. We now discuss re-
sults for each sampling scheme in more detail below :

• Random flow sampling has been proposed to improve
the accuracy in estimating flow statistics. We show
that it is also performs better for both volume anomaly
and portscan detections compared to other sampling
methods. It introduced the least amount of distor-
tion in the global variance of the flow arrival time se-
ries, flow size distribution as well as access patterns
of IP sources. This can be attributed to the fact
that it is neither biased towards particular flow sizes
(like sample-and-hold and smart sampling), nor does
it cause flow size degradation like packet sampling.
Both these properties are highly desirable for anomaly
detection. However, this performance comes at the
expense of very demanding and hence prohibitive re-
source requirements.

• As expected random packet sampling causes signifi-
cant deterioration in performance of both the volume
anomaly and portscan detection algorithms. The vol-
ume anomaly detection algorithm is affected by lossy
data caused due to flow omissions thus resulting in an
increase in false negatives, i.e., a loss of detectability.
Port scan detection however, suffers from both lossy
data and erroneous data, the latter caused by the well-
known flow shortening due to packet sampling. This
not only increases the false negative rate but also in-
duces false positives. This particular result was also
previously observed by the authors [17].

• Smart sampling and sample-and-hold are designed for
accurate estimation of heavy-hitters with reduced com-
plexity. They are not meant for anomaly detection and
not suitable for the job either. Both methods degrade
volume anomaly and portscan detection dramatically
since many attacks of both classes usually comprise of
small-sized flows, which are ignored by these biased
sampling methods. Interestingly, this bias actually
causes them to perform poorer than packet sampling
in terms of volume anomaly detection.

5.2 Future Work
We believe that the lessons learned in this paper can be

leveraged to address these accuracy and efficiency trade-
offs in designing better sampling techniques. Anomaly de-
tection operates on a significantly different information re-
gion, which is often overlooked by existing traffic account-
ing methods that target heavy-hitters. Better measurement
techniques need to adapt to the needs of anomaly detections
as well as traffic engineering, whether it be flow statistics
or access patterns. On the other hand, anomaly detection
algorithms can be improved under sampling if the informa-
tion loss and distortions is compensated or better avoided.
Another relevant open question is whether correlating sam-
pled traces from multiple vintage points could improve the

anomaly detection process at relatively low sampling rates,
hence avoiding the need for detailed packet trace collection.
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